International Journal of Statistics and Applied Mathematics

ISSN: 2456-1452
Maths 2024; 9(1): 110-119
© 2024 Stats \& Maths https://www.mathsjournal.com
Received: 02-12-2023
Accepted: 03-01-2024
Dr. Kiran Bala
Department of Mathematics, Government PG College for Women, Sector 14, Panchkula, Haryana, India

Availability Analysis and Optimization of a Steam Generating System in a Thermal Power Station

Dr. Kiran Bala

Abstract

Thermal power stations are an important source of electricity in which thermal energy is converted into mechanical energy which is further converted into electrical energy. Although, there are many functional units in a thermal power station. The present paper is concerned with the main part i.e. Steam-generation part containing gas classifier, crushing mills and boilers working in series. The system is analyzed for availability and optimization. Gas Classifier has units in series, failure of a unit causes complete failure of the system. The crushing mills has two units in operating state, one unit in standby mode and further supported by fuel subsystem which help the system to survive in case of failure of operating units. Boiler is composed of several components in parallel. There may be partial failures but it never fails completely. Taking constant failure and repair rates for each subsystem, the mathematical formulation of the problem has been done using Markov Method. The governing differential equations are solved recursively for a steady state. Table and graph is shown followed by discussion and special cases. Availability optimization is also discussed.

Keywords: Reliability, availability, markov method

Introduction

Competition is the life blood of our present day industrial civilization. This fact is apparent everywhere ranging from user of smallest domestic appliance to those responsible for the management of largest industrial concerns, technological projects or process industries. Panipat Thermal Power Station was installed by Haryana Power Generation Corporation limited (HPGCL) in 1979 for generation of adequate power to feed the factories in the city. At present it has a capacity of 710 MW .
In thermal Power station, thermal energy is first converted into mechanical energy which is further converted into electrical energy. Heat is obtained by burning the coal in the furnace. Firstly, coal is crushed and pulverized and then fed into furnace where it burns to produce heat. Heat thus generated is transferred to boiler tubes which are full of water. After getting heat, the water is converted into steam-water mixture. The liquid thus separated comes back to boiler tubes and the steam goes to super-heater, where it is superheated by heat of gases. The superheated steam from super-heater goes to steam turbine where thermal energy is converted into mechanical energy. The mechanical energy is converted into electrical energy by means of generator coupled with steam turbine.
Before entering into low-pressure section of steam turbine, the steam is reheated by the furnace. The steam leaving the low pressure section is sent to the condenser. In the condenser, the steam is completely converted into water. The water is again sent to boiler. But, before this, the water is passed through regenerative-feed-water-heater and the economizer, so that by the time water reaches the boiler, saturation temperature is attained. The air, before entering the furnace, is pre-heated by gases so that minimum coal is consumed.

For better understanding of the whole plant, we divide it into the following parts:

1. Coal Handling System
2. Steam Generating Section
3. Steam Turbine Section
4. Cooling water system
5. Ash handling system

Corresponding Author:
Dr. Kiran Bala
Department of Mathematics, Government PG College for Women, Sector 14, Panchkula, Haryana, India

In thermal power station, the functions of the coal handling system are to unload the coal, to handle coal in storage yards, the preparation of the coal for burning in the furnace. Among the above mentioned functions, the most important process is the preparation of pulverized coal. The coal arriving from colliery by train is unloaded by wagon tipplers. After the unloading, the coal is crushed into uniform size. The crushed coal is stored in bunkers from where it is sent for pulverizing. The coal is fired immediately after the pulverization.
Coal handling plant sends the prepared coal to steam generation section. In this section, coal is burnt and heat thus produced is transferred to water. The unit in which water is contained is called steam-generator. Here water is converted into super-heated steam. This system is comprised of various units like fuel furnace, water walls, boiler drum and tubes, super-heater coils, re heater coils and heat reclaiming devices.
The steam produced in the boiler is sent to the steam turbine where thermal energy is converted into mechanical energy. The steam turbine consists of a rotor having a series of blades on its circumference. The blades are made to withstand the action of steam and the centrifugal force. The rotor is rotated by the steam striking against the blades. As the steam expands in nozzle, it gains high velocity that is converted into mechanical energy. The principle of the turbine depends on Newton's Second Law of motion. The power in the turbine is obtained by change in momentum of a high velocity jet impinging on a curved blade.
The water required to condense the steam at the exit of turbine is supplied from lake, river or sea. From the upper side of river the cooling water is passed through the condenser and heated water is sent to the lower side of river. But if there is no source of fresh water, the same heated water coming out from condenser is cooled again and again by means of cooling towers.
A large amount of ash is produced in thermal power station. It is about 10-20 percent of total coal burnt. This ash is first quenched and then disposed with the help of ash handling system and used for cement manufacturing.
Although there are many functional units in a thermal power station, here we consider the main part i.e. Steam generation part containing gas classifier, crushing mills and boilers, working in series. The system is analyzed for availability and optimization.
Gas classifier subsystem supplying air to the furnaces has units in series. Failure of a unit in the subsystem causes its failure and hence failure of whole station. The crushing system has two units in operating state and one in standby mode. The system is further supported by a fuel subsystem. In case both the units (Online and standby) of the subsystem fail, then fuel subsystem runs the system. As soon as unit (s) of subsystem is (Are) repaired, the fuel system is replaced by it. The standby in the subsystem and the fuel system are operated upon by two different imperfect switch-over devices. When one unit of subsystem fails and standby unit is available in the system, failed unit is switched out and standby unit is switched in with the help of imperfect switch-over device. Also both the operating units of subsystem may fail causing the system failure, but the system is survived by switching the fuel system through an imperfect switch-over device. The boiling subsystem is composed of several components in parallel. There may be partial failures in the subsystem, but it never fails completely. Failure of unit (s) in subsystem reduces its capacity and hence the efficiency of the plant.
Taking constant failure and repair rates of each subsystem, the mathematical formulation of the problem is done using MarkovMethod. The governing differential equations are solved recursively for a steady state. Table, graph is shown followed by discussion and special cases. Availability optimization is also discussed.

Literature Review

Today with increasing use of highly complex systems, increasing automation, the importance of obtaining highly reliable system has been recognized. A brief look back to the historical beginning of a systematic approach to the reliability problem is revealing. In the expansion of the aircraft industry after First World War, the fact that an engine might fail was partially instrumented to the development of multi-engine aircraft. This led, in 1930, to the concept of expressing reliability or unreliability in the form of an average number of failures or as a mean failure rate for aircrafts. A further field of interest in this work was done in Germany during the Second World War. The development started in 1942 and the original concept for this reliability was that 'a chain cannot be stronger than its weakest link'. After realizing the seriousness of this matter, it was seen that in addition of designing new product, there was a next problem: on of making the product reliable. Since mid 1950, much work had been done on reliability analysis. Availability is the combination of two elements: reliability and maintainability. This means that poor reliability can be offset by improved maintainability. Reliability is a particular case of availability in which no maintenance activity is practiced. Before going in detail, one must have some idea about Markov process. It is based on the assumption that only the last state occupied by the process is relevant in determining the future behavior. This assumption is very strong. If we turn to a process which is no longer strictly Markovian but retain enough of Markovian properties to deserve the name of Semi Markov Process in which transition from one state to another is governed by the transition probabilities of a Markov process but the time spent in each state, before a transition occurs, is a random variable depending upon the last transition made. Thus, at transition instants, the semi Markov process behaves just like a Markov process. Singh (1980) considered the Semi-Markov process generated by the system with imperfect switch over devices. Dhillon and Natesan ${ }^{[1]}$ discussed power system in fluctuating environment.
When the system consists of more than one unit, then there is a chance for complete failure of the system due to single cause. Such failures are termed as common cause failures and these are highly effective as far as reliability analysis of the system is considered. Kumar et al. ${ }^{[2,3]}$ discussed feeding systems in the sugar industry and paper industry. Dayal and Singh ${ }^{[4]}$ studied reliability analysis of a system in a fluctuating environment. Goel and Singh ${ }^{[5,6]}$ presented reliability analysis of a standby complex system having imperfect switch over device and availability analysis of butter manufacturing system in a dairy station. Mahajan and Singh ${ }^{[7]}$ discussed the reliability analysis of utensils manufacturing station. Habchi ${ }^{[8]}$ discussed an improved method of reliability assessment for suspended tests and Gunes and Deveci ${ }^{[9]}$ have studied the reliability of service systems and its application in student office. While Gupta et al. ${ }^{[10]}$ analyzed the reliability and availability of the serial processes in butter-oil processing plant. Sarhan $\left[{ }^{[1]}\right.$ studied the reliability equivalences of a series system consisting of 'n' Independent and Non-identical components. Bansal and Goel ${ }^{[12]}$ studied the availability analysis of poultry, cattle and fish feed station by taking various probability considerations. Ram and Nagiya ${ }^{[13]}$ discussed the gas turbine power station performance evaluation under key failures
by assuming the different types of component failure by using supplementary variable techniques, Laplace transformation and Markov process. Ghamry et al. ${ }^{[14]}$ availability and reliability analysis of a k-Out-of-n Warm Standby System with common-cause failure and fuzzy failure and repair rates by assuming that the failure time of each operating unit or warm standby unit follows Weibull distribution with two fuzzy parameters and the repair time of any failed unit follows exponential distribution with one fuzzy parameter. Each fuzzy parameter is represented by triangular membership function estimated from statistical data taken from random samples of each unit. Saini et al. ${ }^{[15]}$ studied the availability and performance analysis of primary treatment unit of sewage station by introducing the concept of redundancy and constant failure rates. Bala ${ }^{[16]}$ studied the effect of switch-over devices on availability of steam generating system. In last many years, several research papers and books have been published that discuss various facts of reliability technology. The concept of reliability can also be applied in other fields using different techniques. In these papers, authors used either Laplace transforms method or Lagrange's method to solve Chapman-Kolmogorov differential equations associated with a particular problem.
It has been observed that reliability and availability of a system in different industries have been discussed so far. This has motivated the author to consider the case of thermal power station, Panipat. Panipat Thermal Power station is a coal fired power station located in Assan village, Panipat ${ }^{[17]}$. It is owned by Haryana Power Generation Corporation. This Power station consists of eight units. Units $1-4$ are known as Panipat I, and Units 5-8 are known as Panipat II. Units 1-4 were 110 MW each and commissioned between 1979-1987. They reportedly retired in 2016. Units 5-6 are 210 MW each and were commissioned in 1989 and 2001 respectively. Units $7-8$ are 250 MW each and commissioned in 2004-2005. Unit 5 was also retired in March 2020. At present, three units (Unit 6-8) of PTPS (Panipat Thermal Power Station) are functional having capacity of 710 MW .

System, Notations and Assumptions

The steam generating system of thermal power station, discussed in this paper consists of three subsystems A, B, D and two switch-over devices S_{1} and S_{2}, working as follows.

Subsystem A: (Gas Classifier) provides air to furnace. It consists of components in series. Failure of any component in it causes the complete failure of A and hence the complete failure of the station.

Subsystem B: (Crushing Mills), from where powdered form of the coal is sent to boiler furnace with the help of compressed air consisting of two units in operating state and one in cold standby mode each composed of several components in series. The subsystem B is further supported by a fuel subsystem B_{F}. If two units of subsystem B fail, then fuel system runs the system. It is assumed that fuel subsystem B_{F} never fails because it is used only when both the main units fail. As soon as the unit of B are repaired it is switched in and the full subsystem B_{F} is switched out. This subsystem has units in series. The switches detect and disconnect failed units in B subsystem and engage the standby units to keep the system working, separate repair facilities are available for each subsystem and switchover devices so that there is no waiting time in the system.

Subsystem D: (Boilers), Steam is generated in it. It is composed of several components in parallel. Failure of a unit(s) in D reduces the working capacity of D and hence the efficiency of the station. It is assumed that subsystem D never fails completely.

Switch-over device \mathbf{S}_{1}

It is imperfect. Whenever the unit of subsystem B fails, it is switched out and standby unit if available is switched in by S_{1} successfully with probability u. Failure of S_{1}, when online unit has already failed causes the complete failure of the system.

Switch-over device $\mathbf{S}_{\mathbf{2}}$

It is also imperfect. Whenever two units fail in subsystem B, the fuel subsystem B_{F} is switched in by Switch-over device \mathbf{S}_{2} successfully with probability v. Failure of S_{2} when online unit (s) as in subsystem B has already failed causes complete failure of the system.

In addition to the notations used for sub-systems, i.e. A; B and D, we have also used the following assumptions and notations:

Assumptions

1. Failures and repairs are System-independent.
2. Separate repair facilities are available for each subsystem and switch over devices.
3. Upon failure, if all repair facilities are busy, the failed unit joins the end of the queue of respective non- operating units.
4. A repaired unit is as good as new and after repair it is immediately reconnected to the system.
5. Nothing can fail when the system is in failed state.
6. System comes in field state if the switch (Es) cannot detect and disconnect a failed unit.
7. Switchover is instantaneous.
8. The repair of a failed unit starts at once.
9. The failure and repair rates of all units are constant.

Notations

$\mathrm{A}, \mathrm{B}, \mathrm{D}$ denote that subsystems are in full operating state.
B_{S} denotes that subsystem B is working on standby unit.
B_{F} denotes that subsystem B is working on fuel system when all units in system B have failed.
B_{F} ' denotes that subsystem B is working on fuel system when one unit in subsystem B is still in good state.
\bar{D} denotes that subsystem D is working in reduced-state.
a denotes that system is in failed state.
b_{1}, b_{2}, b_{3} denote that one, two and three units in subsystem B are in failed state.
α_{1} denotes the failure rate of sub-system A from good to failed state.
α_{2} denotes the transition rate of the one unit of subsystem B from good to failed state.
α_{3} denotes the transition rate of two units of subsystem B from good to failed state.
α_{4} denotes the failure rate of subsystem D from good to reduce state.
β_{1} denotes the constant transition rate of the subsystem A from failed state to good state.
β_{2} denotes the constant transition rate of subsystem B from failed state b_{1} to good state.
β_{3} denotes the constant transition rate of subsystem B from their failed state to good state.
β_{4} denotes the constant transition rate of subsystem D from reduced state to good state.
β_{5}, β_{6} denotes the respective mean constant repair rates of switch-over devices S_{1}, S_{2} from failed states to good states.
u, v denotes the respective probabilities of successful working of switches $\mathrm{S}_{1}, \mathrm{~S}_{2}$ for each failure event.
$\bar{u}=1-u, \bar{v}=1-v$
$\mathrm{P}_{\mathrm{n}}(\mathrm{t})$ is the probability that the system is in $\mathrm{n}^{\text {th }}$ state at the time $\mathrm{t},(1 \leq \mathrm{n} \leq 22)$
$\mathrm{P}_{\mathrm{n}}=\lim _{t \rightarrow \infty} \mathrm{P}_{\mathrm{n}}(\mathrm{t})$

Dash ($)$ denotes the derivative with respect to time t.
Following the above assumptions and notations, the block diagram and transition diagram of the system as shown in the figure 1 and 2 respectively.

Fig 1: Block diagram of the system

Mathematical Formulation

To determine long run availability of steam generating system, the mathematical formulation of the model is carried out using Markov-Method. In this method, the state of the system is probability based. Probability considerations give the following differential-difference equations associated with transition diagram of the system at time t :
$\mathrm{P}_{1}^{\prime}(\mathrm{t})+\left(\mathrm{u} \alpha_{2}+\bar{u} \alpha_{2}+\bar{v} \alpha_{3}+\mathrm{v} \alpha_{3}+\alpha_{4}+\alpha_{1}\right) \mathrm{P}_{1}(\mathrm{t})=\mathrm{u} \beta_{2} \mathrm{P}_{2}(\mathrm{t})+\mathrm{v} \beta_{3} \mathrm{P}_{4}(\mathrm{t})+\beta_{4} \mathrm{P}_{5}(\mathrm{t})+\beta_{1} \mathrm{P}_{15}(\mathrm{t})$
$\mathrm{P}_{2}^{\prime}(\mathrm{t})+\left(\mathrm{u} \beta_{2}+\mathrm{v} \alpha_{2}+\bar{v} \alpha_{2}+\mathrm{v} \alpha_{3}+\bar{v} \alpha_{3}+\alpha_{4}+\alpha_{1}\right) \mathrm{P}_{2}(\mathrm{t})=\mathrm{u} \alpha_{2} \mathrm{P}_{1}(\mathrm{t})+\mathrm{v} \beta_{3} \mathrm{P}_{3}(\mathrm{t})+\mathrm{v} \beta_{2} \mathrm{P}_{4}(\mathrm{t})+\beta_{4} \mathrm{P}_{6}(\mathrm{t})+\beta_{5} \mathrm{P}_{10}(\mathrm{t})+\beta_{1} \mathrm{P}_{16}(\mathrm{t})(2)$
$\mathrm{P}_{3}{ }^{\prime}(\mathrm{t})+\left(\mathrm{v} \beta_{3}+\alpha_{4}+\alpha_{1}\right) \mathrm{P}_{3}(\mathrm{t})=\mathrm{v} \alpha_{3} \mathrm{P}_{2}(\mathrm{t})+\beta_{4} \mathrm{P}_{7}(\mathrm{t})+\beta_{6} \mathrm{P}_{9}(\mathrm{t})+\beta_{1} \mathrm{P}_{17}(\mathrm{t})$
$\mathrm{P}_{4}^{\prime}(\mathrm{t})+\left(\mathrm{v} \beta_{3}+\mathrm{v} \beta_{2}+\alpha_{4}+\alpha_{1}\right) \mathrm{P}_{4}(\mathrm{t})=\mathrm{v} \alpha_{3} \mathrm{P}_{1}(\mathrm{t})+\mathrm{v} \alpha_{2} \mathrm{P}_{2}(\mathrm{t})+\beta_{4} \mathrm{P}_{8}(\mathrm{t})+\beta_{6} \mathrm{P}_{11}(\mathrm{t})+\beta_{1} \mathrm{P}_{18}(\mathrm{t})$
$\mathrm{P}_{5}{ }^{\prime}(\mathrm{t})+\left(\mathrm{u} \alpha_{2}+\bar{u} \alpha_{2}+\bar{v} \alpha_{3}+\mathrm{v} \alpha_{3}+\beta_{4}+\alpha_{1}\right) \mathrm{P}_{5}(\mathrm{t})=\alpha_{4} \mathrm{P}_{1}(\mathrm{t})+\mathrm{u} \beta_{2} \mathrm{P}_{6}(\mathrm{t})+\mathrm{v} \beta_{3} \mathrm{P}_{8}(\mathrm{t})+\beta_{1} \mathrm{P}_{19}(\mathrm{t})$
$\mathrm{P}_{6}^{\prime}(\mathrm{t})+\left(\mathrm{u} \beta_{2}+\bar{v} \alpha_{2}+\mathrm{v} \alpha_{3}+\bar{v} \alpha_{3}+v \alpha_{3}+\alpha_{1}+\beta_{4}\right) \mathrm{P}_{6}(\mathrm{t})=\alpha_{4} \mathrm{P}_{2}(\mathrm{t})+\mathrm{u} \alpha_{2} \mathrm{P}_{5}(\mathrm{t})+\mathrm{v} \beta_{3} \mathrm{P}_{7}(\mathrm{t})+\mathrm{v} \beta_{2} \mathrm{P}_{8}(\mathrm{t})+\beta_{5} \mathrm{P}_{14}(\mathrm{t})+\beta_{1} \mathrm{P}_{20}(\mathrm{t})$
$\mathrm{P}_{7}^{\prime}(\mathrm{t})+\left(\beta_{4}+\mathrm{v} \beta_{3}+\alpha_{1}\right) \mathrm{P}_{7}(\mathrm{t})=\alpha_{4} \mathrm{P}_{3}(\mathrm{t})+\mathrm{v} \alpha_{3} \mathrm{P}_{6}(\mathrm{t})+\beta_{6} \mathrm{P}_{13}(\mathrm{t})+\beta_{1} \mathrm{P}_{21}(\mathrm{t})$
$\mathrm{P}_{8}^{\prime}(\mathrm{t})+\left(\mathrm{v} \beta_{3}+\mathrm{v} \beta_{2}+\beta_{4}+\alpha_{1}\right) \mathrm{P}_{8}(\mathrm{t})=\alpha_{4} \mathrm{P}_{4}(\mathrm{t})+\mathrm{v} \alpha_{3} \mathrm{P}_{5}(\mathrm{t})+\mathrm{v} \alpha_{2} \mathrm{P}_{6}(\mathrm{t})+\beta_{6} \mathrm{P}_{12}(\mathrm{t})+\beta_{1} \mathrm{P}_{22}(\mathrm{t})$
$\beta_{6} \mathrm{P}_{9+\mathrm{i}}(\mathrm{t})=\bar{v} \alpha_{3} \mathrm{P}_{2+\mathrm{i}}(\mathrm{t}) ; \mathrm{i}=0,4$
$\beta_{5} \mathrm{P}_{10+\mathrm{i}}(\mathrm{t})=\bar{u} \alpha_{2} \mathrm{P}_{1+\mathrm{i}}(\mathrm{t}) ; \mathrm{i}=0,4$
$\beta{ }_{6} \mathrm{P}_{11}(\mathrm{t})=\bar{v} \alpha_{3} \mathrm{P}_{1}(\mathrm{t})+\bar{v} \alpha_{2} \mathrm{P}_{2}(\mathrm{t})$
$\beta_{6} \mathrm{P}_{12}(\mathrm{t})=\bar{v} \alpha_{3} \mathrm{P}_{5}(\mathrm{t})+\bar{v} \alpha_{2} \mathrm{P}_{6}(\mathrm{t})$
$\beta_{1} \mathrm{P}_{14+\mathrm{i}}(\mathrm{t})=\alpha_{1} \mathrm{P}_{\mathrm{i}}(\mathrm{t}) ; 1 \leq \mathrm{i} \leq 8$

Fig 2: Transition diagram of the steam generating system
With initial conditions
$P_{1}(0)=1$ and 0 otherwise.
The system of differential equations (1) to (13) with above initial conditions have been Solved for steady state.

Steady state

Since management is generally interested in the long run availability of the system, the system is required to run satisfactorily for a long time. We need the steady state probabilities of the system in order to calculate its long run availability. Steady state probabilities of the system are obtained by imposing the following restrictions:

As $\mathrm{t} \rightarrow \infty, \frac{d P}{d t} \rightarrow 0$
Putting $\frac{d P}{d t} \rightarrow 0$ in equations (3.1) to (3.13) and solving recursively, we get the steady state probabilities as $\mathrm{p}_{\mathrm{n}}=\mathrm{r}_{\mathrm{n}} \mathrm{p}_{1} ; 1 \leq \mathrm{n} \leq 22$ (14)

Using the normalizing condition $\sum_{n=1}^{n=22} \mathrm{p}_{\mathrm{n}}=1$,
p_{1} may be obtained and is evaluated as
$\mathrm{p}_{1}=\left[\sum_{i=1}^{i=22} \mathrm{r}_{\mathrm{i}}\right]^{-1}$
The steady state availability $\left(\mathrm{A}_{v}\right)$ of the system is given by
$\mathrm{A}_{\mathrm{v}}=\sum_{n=1}^{n=8} \mathrm{p}_{\mathrm{n}}=\left[\sum_{n=1}^{n=8} \mathrm{r}_{\mathrm{n}}\right]\left[\sum_{n=1}^{n=8} \mathrm{r}_{\mathrm{n}}\right]^{-1}$
Where $k_{1}=\beta_{4}+v \beta_{3,} k_{2}=k_{1}+v \beta_{2}$,
$\mathrm{l}_{1}=\mathrm{k}_{1}\left[\left(\alpha_{2}+\alpha_{3}+\mathrm{u} \beta_{2}+\beta_{4}\right) \mathrm{k}_{2}-\alpha_{2} \mathrm{v} \beta_{2}\right]-\mathrm{v} \beta_{3} \alpha_{2} \mathrm{k}_{2}$,
$\mathrm{l}_{2}=\mathrm{k}_{1} \mathrm{k}_{2} \alpha_{4}$,
$\mathrm{l}_{3}=\mathrm{k}_{2} \mathrm{v} \alpha_{4} \beta_{4}$,
$1_{4}=\mathrm{k}_{1} v \beta_{2} \alpha_{4}$,
$l_{5}=k_{1}\left(k_{2} \alpha_{2}+\mathrm{v} \beta_{2} \alpha_{3}\right.$,
$\mathrm{m}_{1}=\mathrm{k}_{2} \mathrm{l}_{1} \alpha_{4}$,
$\mathrm{m}_{2}=\left(\mathrm{k}_{2} \mathrm{u} \beta_{2}+\mathrm{v} \beta_{3} \alpha_{2}\right) \mathrm{l}_{2}$,
$\mathrm{m}_{3}=\mathrm{m}_{2} \mathrm{l}_{3}\left(\mathrm{l}_{2}\right)^{-1}$,
$\mathrm{m}_{4}=\mathrm{m}_{2} \mathrm{l}_{4}\left(\mathrm{l}_{2}\right)^{-1}+\mathrm{vb}_{3} \alpha_{4} \mathrm{l}_{1}$,
$m_{5}=l_{1}\left[\left(\alpha_{2}+\alpha_{3}+\beta_{4}\right) \mathrm{k}_{2}-\mathrm{v} \beta_{3} \alpha_{3}\right]-l_{5}\left(\mathrm{k}_{2} \mathrm{u} \beta_{2}+\mathrm{v} \beta_{3} \alpha_{2}\right)$,
$\mathrm{m}_{6}=\left[\left(\alpha_{2}+\alpha_{4}+\alpha_{3}+\mathrm{u} \beta_{2} \mathrm{l}_{1}-\beta_{4} \mathrm{l}_{2}\right] \mathrm{m}_{5}-\beta_{4} \mathrm{l}_{5} \mathrm{~m}_{2}\right.$,
$\mathrm{m}_{7}=\mathrm{m}_{5} \mathrm{l}_{1} \alpha_{2}+\beta_{4} \mathrm{l}_{5} \mathrm{~m}_{1}$,
$\mathrm{m}_{8}=\left(\mathrm{v} \beta_{3} \mathrm{l}_{1}+\beta_{4} \mathrm{l}_{3}\right) \mathrm{m}_{5}-\beta_{4} \mathrm{l}_{5} \mathrm{~m}_{3}$,
$\mathrm{m}_{9}=\left(\mathrm{v} \beta_{2} \mathrm{l}_{1}+\beta_{4} \mathrm{l}_{4}\right) \mathrm{m}_{5}+\beta_{4} \mathrm{l}_{5} \mathrm{~m}_{4}$,
$\mathrm{n}_{1}=\mathrm{m}_{5} \alpha_{3} \mathrm{l}_{1} \mathrm{k}_{2}+\left(\mathrm{l}_{1} \alpha_{3}+\alpha_{2} \mathrm{l}_{5}\right) \mathrm{m}_{1} \beta_{4}$,
$\mathrm{n}_{2}=\mathrm{m}_{5} \alpha_{2}\left(\mathrm{l}_{1} \mathrm{k}_{2}+\beta_{4} \mathrm{l}_{2}\right)+\left(\mathrm{l}_{1} \alpha_{3}+\alpha_{2} \mathrm{l}_{5}\right) \mathrm{m}_{2} \beta_{4}$,
$\mathrm{n}_{3}=\beta_{4}\left[\mathrm{~m}_{5} \alpha_{2} \mathrm{l}_{3} \mathrm{k}_{2}+\left(\mathrm{l}_{1} \alpha_{3}+\alpha_{2} 1_{5}\right) \mathrm{m}_{3}\right]$,
$\mathrm{n}_{4}=\mathrm{m}_{5}\left[\mathrm{l}_{1} \mathrm{k}_{2}\left(\alpha_{4}+\mathrm{v} \beta_{2}+\mathrm{v} \beta_{3}\right)-\alpha_{4} \beta_{4} \mathrm{l}_{1}-\alpha_{2} \beta_{4} \mathrm{l}_{4}\right]-\left(\mathrm{l}_{1} \alpha_{3}+\alpha_{2} \mathrm{l}_{5}\right) \mathrm{m}_{4} \beta_{4}$,
$\mathrm{n}_{5}=\mathrm{m}_{5} \mathrm{l}_{1}\left[\mathrm{k}_{1}\left(\alpha_{4}+\mathrm{v} \beta_{3}\right)-\alpha_{4} \beta_{4}\right]-\alpha_{3} \beta_{4}\left(\mathrm{~m}_{5} \mathrm{l}_{3}+\mathrm{m}_{3} 1_{5}\right.$,
$\mathrm{n}_{6}=\mathrm{m}_{1} \mathrm{l}_{5} \alpha_{3} \beta_{4}$,
$\mathrm{n}_{7}=\mathrm{m}_{5} \alpha_{3}\left(\mathrm{l}_{1} \mathrm{k}_{1}+\beta_{4} \mathrm{l}_{2}\right)+\mathrm{l}_{5} \mathrm{~m}_{1} \alpha_{3} \beta_{4}$,
$\mathrm{n}_{8}=\alpha_{3} \beta_{4}\left(\mathrm{l}_{4} \mathrm{~m}_{5}+\mathrm{l}_{5} \mathrm{~m}_{4}\right)$,
$\mathrm{n}_{9}=\mathrm{n}_{4} \mathrm{n}_{5}-\mathrm{n}_{8} \mathrm{n}_{3}$,
$\mathrm{n}_{10}=\mathrm{m}_{8} \mathrm{n}_{4}+\mathrm{m}_{9} \mathrm{n}_{3}$,
$\mathrm{n}_{11}=\mathrm{n}_{4} \mathrm{n}_{6}+\mathrm{n}_{8} \mathrm{n}_{1}$,
$\mathrm{n}_{12}=\mathrm{m}_{6} \mathrm{n}_{4}-\mathrm{m}_{9} \mathrm{n}_{2}$,
$\mathrm{n}_{13}=\mathrm{n}_{4} \mathrm{n}_{7}+\mathrm{n}_{8} \mathrm{n}_{2}$,
$\mathrm{r}_{1}=1$,
$\mathrm{r}_{2}=\left[\left(\mathrm{n}_{4} \mathrm{~m}_{7}+\mathrm{m}_{9} \mathrm{n}_{1}\right) \mathrm{n}_{9}+\mathrm{n}_{10} \mathrm{n}_{11}\right]\left[\mathrm{n}_{9} \mathrm{n}_{12}-\mathrm{n}_{13} \mathrm{n}_{10}\right]^{-1,}$
$\mathrm{r}_{3}=\left[\left(\mathrm{n}_{11}+\mathrm{n}_{13} \mathrm{r}_{2}\right)\left(\mathrm{n}_{9}\right)^{-1}\right.$,
$\mathrm{r}_{4}=\left[\left(\mathrm{n}_{1}+\mathrm{n}_{2} \mathrm{r}_{2}+\mathrm{n}_{3} \mathrm{r}_{3}\right)\left(\mathrm{n}_{4}\right)^{-1}\right.$,
$r_{5}=\left[\left(m_{1}+m_{2} r_{2}+m_{3} r_{3}+m_{4} r_{4}\right)\left(m_{5}\right)^{-1}\right.$,
$r_{6}=\left[\left(l_{2} r_{2}+l_{3} r_{3}+l_{4} r_{4}+l_{5} r_{5}\right)\left(l_{1}\right)^{-1}\right.$,
$\mathrm{r}_{7}=\left(\alpha_{3} r_{3}+\alpha_{3} r_{6}\right) \mathrm{k}_{2}{ }^{-1}$,
$\mathrm{r}_{8}=\left(\alpha_{4} r_{4}+\alpha_{3} r_{5}+\alpha_{2} r_{6}\right) \mathrm{k}_{1}{ }^{-1}$,
$\mathrm{r}_{9}=\mathrm{r}_{2} \bar{v} \alpha_{3} \beta_{6}{ }^{-1}$,
$\mathrm{r}_{10}=\bar{u} \alpha_{2} \beta_{5}{ }^{-1}$,
$\mathrm{r}_{11}=\bar{v}\left(\alpha_{2} \mathrm{r}_{2}+\alpha_{3}\right) \beta_{6}{ }^{-1}$,
$\mathrm{r}_{12}=\bar{v}\left(\alpha_{2} \mathrm{r}_{6}+\alpha_{3} \mathrm{r}_{5}\right) \beta_{6}{ }^{-1}$,
$\mathrm{r}_{13}=\bar{v} \alpha_{3} \mathrm{r}_{6} \beta_{6}{ }^{-1}$,
$\mathrm{r}_{14}=\bar{u} \alpha_{2} \mathrm{r}_{5} \beta_{5}{ }^{-1}$,
$\mathrm{r}_{15}=\alpha_{1} \beta_{1}{ }^{-1}$,
$\mathrm{r}_{14+\mathrm{i}}=\mathrm{r}_{15} \mathrm{r}_{\mathrm{i}} ; 2 \leq \mathrm{i} \leq 8$

Numerical Illustration

To study the effect of switch -over device over the availability, we evaluate availability of the system by taking $\mathrm{u}=\mathrm{v}=0.9, \alpha_{1}$ $=\alpha_{2}=0.02, \alpha_{4}=0.01, \alpha_{3}=0.001, \beta_{2}=\beta_{4}=0.2, \beta_{1}=0.3, \beta_{3}=0.15$

The Availability Table and graph is given below:
Table 1: Availability Table

$\boldsymbol{\beta}_{\mathbf{5}} \boldsymbol{\beta}_{\mathbf{6}}$	$\mathbf{0 . 1 5}$	$\mathbf{0 . 2 0}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 3 0}$
0.15	0.92671533	0.929253191	0.930782538	0.93180489
0.20	0.92709225	0.92963207	0.93116266	0.93218585
0.25	0.92731848	0.92985955	0.93139089	0.93241458
0.30	0.92746937	0.93001127	0.93154310	0.93257265

Graph 1: Availability Graph

Special Cases

Case 1. Non Reparable from failed state
When there is no repair from failed state, then probability considerations give the following steady-state difference equations associated with the transition diagram of the system.
$\left(\mathrm{u} \alpha_{2}+\bar{u} \alpha_{2}+\bar{v} \alpha_{3}+v \alpha_{3}+\alpha_{4}+\alpha_{1}\right) \mathrm{p}_{1}=\mathrm{u} \beta_{2} \mathrm{p}_{2}+v \beta_{3} \mathrm{p}_{4}+\beta_{4} \mathrm{p}_{5}$
$\left(v \alpha_{2}+\bar{v} \alpha_{2}+\bar{v} \alpha_{3}+v \alpha_{3}+\mathrm{u} \beta_{2}+\alpha_{4}+\alpha_{1}\right) \mathrm{p}_{2}=\mathrm{u} \alpha_{2} \mathrm{p}_{1}+v \beta_{3} \mathrm{p}_{3}+\mathrm{p}_{4} v \beta 2+\beta_{4} \mathrm{p}_{6}$
$\left(\alpha_{1}+\alpha_{4}+v \beta_{3)} \mathrm{p}=v \alpha_{3} \mathrm{p}_{2}+\beta_{4} \mathrm{p}_{7}\right.$
$\left(\alpha_{1}+\alpha_{4}+v \beta_{2}+v \beta_{3} \mathrm{p}_{4}=v \alpha_{3} \mathrm{p}_{1}+v \alpha_{2} \mathrm{p}_{2}+\beta_{4} \mathrm{p}_{8}\right.$
$\left(\mathrm{u} \alpha_{2}+\bar{u} \alpha_{2}+\bar{v} \alpha_{3}+v \alpha_{3}+\beta_{4}+\alpha_{1}\right) \mathrm{p}_{5}=\alpha_{4} \mathrm{p}_{1}+\mathrm{u} \beta_{2} \mathrm{p}_{6}+v \beta_{3} \mathrm{p}_{8}$
$\left(\alpha_{1}+v \alpha_{3}+\bar{v} \alpha_{3}+\bar{u} \alpha_{3}+u \alpha_{2}+\beta_{4}\right) \mathrm{p}_{6}=\alpha_{4} \mathrm{p}_{2}+\mathrm{u} \alpha_{2} \mathrm{p}_{5}+v \beta_{3} \mathrm{p}_{7}+v \beta_{2} \mathrm{p}_{8}$
$\left(\alpha_{1}+v \beta_{3}+\beta_{4}\right) \mathrm{p}_{7}=\alpha_{4} \mathrm{p}_{3}+v \alpha_{3} \mathrm{p}_{6}$
$\left(\alpha_{1}+v \beta_{2}+v \beta_{3}+\beta_{4}\right) p_{8}=\alpha_{4} p_{3}+v \alpha_{3} p_{5}+v \alpha_{2} p_{6}$
$\mathrm{p}_{9+\mathrm{i}}=\bar{v} \alpha_{3} \mathrm{p}_{2+\mathrm{i}}, \mathrm{i}=0,4$
$\mathrm{p}_{10+\mathrm{i}}=\bar{u} \alpha_{2} \mathrm{p}_{1+\mathrm{i}}, \mathrm{i}=0,4$
$\mathrm{p}_{11}=\bar{v} \alpha_{3} \mathrm{p}_{1}+\bar{v} \alpha_{2} \mathrm{p}_{2}$
$\mathrm{p}_{12}=\bar{v} \alpha_{3} \mathrm{p}_{5}+\bar{v} \alpha_{2} \mathrm{p}_{6}$
$\mathrm{p}_{15+\mathrm{i}}=\alpha_{1} \mathrm{p}_{1+\mathrm{i}} ; 0 \leq \mathrm{i} \leq 7$
Solving equations (4.1) to (4.13) recursively, we get various steady -state probabilities as
$\mathrm{p}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}} \mathrm{p}_{1,1} \leq \mathrm{n} \leq 22$
Where,
$\mathrm{a}_{1}=\mathrm{u} \alpha_{2}+\bar{u} \alpha_{2}+\bar{v} \alpha_{3}+v \alpha_{3}+\alpha_{4}+\alpha_{1}$,
$\mathrm{a}_{2}=v \alpha_{2}+\bar{v} \alpha_{2}+\bar{v} \alpha_{3}+v \alpha_{3}+\mathrm{u} \beta_{2}+\alpha_{4}+\alpha_{1}$,
$\mathrm{a}_{3}=\alpha_{1}+\alpha_{4}+v \beta_{3}$,
$\mathrm{a}_{4}=\alpha_{1}+\alpha_{4}+v \beta_{2}+v \beta_{3}$,
$\mathrm{a}_{5}=\mathrm{u} \alpha_{2}+\bar{u} \alpha_{2}+\bar{v} \alpha_{3}+v \alpha_{3}+\beta_{4}+\alpha_{1,}$
$\mathrm{a}_{6}=\alpha_{1}+v \alpha_{3}+\bar{v} \alpha_{3}+\bar{u} \alpha_{3}+u \alpha_{2}+\beta_{4}$,
$\mathrm{a}_{7}=\alpha_{1}+v \beta_{3}+\beta_{4}$,
$\mathrm{a}_{8}=\alpha_{1}+v \beta_{2}+v \beta_{3}+\beta_{4}$,
$\mathrm{a}_{9}=\mathrm{a}_{7}\left(\mathrm{a}_{6} \mathrm{a}_{8}-v^{2} \alpha_{2} \beta_{2}\right)-v^{2} \alpha_{2} \beta_{2} \mathrm{a}_{8}$,
$\mathrm{e}_{1}=\left(\mathrm{a}_{5} \mathrm{a}_{8}-v^{2} \alpha_{3} \beta_{3}\right) \mathrm{a}_{9}-\left(u \beta_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{3}\right)\left(u \alpha_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{2}\right) \mathrm{a}_{7}$,
$\mathrm{e}_{2}=\left(\mathrm{a}_{9}-\alpha_{4} \beta_{4} \mathrm{a}_{7} \mathrm{a}_{8}\right) \mathrm{e}_{1}-\left(\mathrm{a}_{7}\right)^{2} \alpha_{4} \beta_{4} \mathrm{a}_{8}\left(u \alpha_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{2}\right)\left(u \beta_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{3}\right)$,
$\mathrm{e}_{3}=\mathrm{u} \alpha_{2} a_{9} \mathrm{e}_{1}+\alpha_{4} \beta_{4} \mathrm{a}_{7} \mathrm{a}_{9}\left(\mathrm{u} \alpha_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{2}\right)$,
$\mathrm{e}_{4}=v \beta_{3}\left[\mathrm{e}_{1}\left(a_{9}+\alpha_{4} \beta_{4} \mathrm{a}_{8}\right)+\mathrm{a}_{7} \alpha_{4} \beta_{4} \mathrm{a}_{8}\left(\mathrm{u} \alpha_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{2}\right)\left(u \beta_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{3}\right]\right.$,
$\mathrm{e}_{5}=v \beta_{3} \mathrm{e}_{1}\left(a_{9}+\alpha_{4} \beta_{4} \mathrm{a}_{7}\right)+\mathrm{a}_{7} v \alpha_{4} \beta_{4}\left(\mathrm{u} \alpha_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{2}\right)\left[\beta_{3} \mathrm{a}_{9}+\left(u \beta_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{3}\right) \beta_{2} \mathrm{a}_{7}\right]$,
$\mathrm{e}_{6}=\left[\mathrm{a}_{9}\left(\mathrm{a}_{3} \mathrm{a}_{7}-\alpha_{4} \beta_{4}\right)-v^{2} \alpha_{3} \alpha_{4} \beta_{3} \beta_{4} \mathrm{a}_{7} \mathrm{a}_{8}\right.$,
$\mathrm{e}_{7}=v \alpha_{3} \alpha_{4} \beta_{4} \mathrm{a}_{7} \mathrm{a}_{8} \mathrm{a}_{9}\left(\mathrm{u} \alpha_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{2}\right)$,
$\mathrm{e}_{8}=v \mathrm{a}_{7}\left[\mathrm{e}_{1}\left(\alpha_{2} a_{9}+\alpha_{3} \alpha_{4} \beta_{4} \mathrm{a}_{8}\right)+\alpha_{3} \alpha_{4} \beta_{4} \mathrm{a}_{7} \mathrm{a}_{8}\left(\mathrm{u} \alpha_{2} a_{8}+v^{2} \alpha_{3} \beta_{2}\right)\left(u \beta_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{3}\right]\right.$,
$\mathrm{e}_{9}=v^{2} \alpha_{3} \alpha_{4} \beta_{2} \mathrm{a}_{7}\left[\beta_{4} \mathrm{e}_{1}+\left(\mathrm{u} \alpha_{2} a_{8}+v^{2} \alpha_{3} \beta_{2}\right)\left\{\beta_{3} \mathrm{a}_{9}+\left(u \beta_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{3}\right) \beta_{3} \mathrm{a}_{7}\right\}\right]$,
$\mathrm{f}_{1}=\left[\left(\mathrm{a}_{4} \mathrm{a}_{9}-\alpha_{4} \beta_{4}\right) \mathrm{a}_{9}-v^{2} \alpha_{2} \alpha_{4} \beta_{2} \mathrm{a}_{7}\right] \mathrm{e}_{1}-v^{2} \alpha_{4} \beta_{4}\left[\alpha_{3} \mathrm{a}_{9}+\mathrm{a}_{7} \beta_{4}\left(\mathrm{u} \alpha_{2} a_{8}+v^{2} \alpha_{3} \beta_{2}\right)\right]\left[\beta_{3} \mathrm{a}_{9}+\left(u \beta_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{3}\right) \beta_{2} \mathrm{a}_{7}\right]$,
$\mathrm{f}_{2}=v \mathrm{a}_{8} \mathrm{a}_{9}\left[\alpha_{3} \mathrm{e}_{1}+\alpha_{4} \beta_{4}\left\{\alpha_{3} \mathrm{a}_{9}+\mathrm{a}_{7} \beta_{4}\left(\mathrm{u} \alpha_{2} a_{8}+v^{2} \alpha_{3} \beta_{2}\right)\right\}\right]$,
$\mathrm{f}_{3}=v \mathrm{a}_{8}\left(u \beta_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{3}\right)\left[\alpha_{2} \mathrm{e}_{1}\left(\mathrm{a}_{9}+\beta_{4} \mathrm{a}_{4} \mathrm{a}_{7}\right)+\alpha_{4} \beta_{4} \mathrm{a}_{7}\left\{\alpha_{3} \mathrm{a}_{9}+\mathrm{a}_{7} \beta_{4}\left(\mathrm{u} \alpha_{2} a_{8}+v^{2} \alpha_{3} \beta_{4}\right)\right\}\right]$,
$\mathrm{f}_{4}=v^{2} \mathrm{a}_{8} \beta_{3} \alpha_{4} \beta_{4}\left[\alpha_{2} \mathrm{e}_{1}+\left(u \beta_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{3)}+\left\{\alpha_{3} \mathrm{a}_{9}+\mathrm{a}_{7} \beta_{4}\left(\mathrm{u} \alpha_{2} a_{8}+v^{2} \alpha_{3} \beta_{4}\right)\right\}\right]\right.$,
$\mathrm{s}_{1}=1$,
$S_{2}=\left[\left(e_{6} f_{1}-e_{9} f_{4}\right)\left(e_{3} f_{1}+e_{5} f_{2}\right)+\left(e_{4} f_{1}+e_{5} f_{4}\right)\left(e_{7} f_{1}+e_{9} f_{2}\right)\right]\left[\left(e_{6} f_{1}-e_{9} f_{4}\right)\left(e_{2} f_{1}-e_{5} f_{3}\right)-\left(e_{4} f_{1}+e_{5} f_{4}\right)\left(e_{8} f_{1}+e_{9} f_{3}\right)\right]$,
$s_{3}=\left[\left(e_{7} f_{1}+e_{9} f_{2}\right)+\left(e_{8} f_{1}+e_{9} f_{3}\right) s_{2}\right]\left(e_{6} f_{1}-e_{9} f_{4}\right)^{-1}$,
$s_{4}=\left(f_{2}+f_{3} s_{2}+f_{4} s_{3}\right) f_{1}^{-1}$,
$\mathrm{s}_{5}=\alpha_{4}\left[\mathrm{a}_{8} \mathrm{a}_{9}+\mathrm{a}_{7} \mathrm{a}_{8}\left(u \beta_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{3}\right) \mathrm{s}_{2}+\left(u \beta_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{3}\right) v \beta_{3} \mathrm{a}_{8} \mathrm{~s}_{3}+v \alpha_{4}\left(\beta_{3} \mathrm{a}_{9}+\left(u \beta_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{3}\right) \beta_{3} \mathrm{a}_{7}\right) \mathrm{s}_{4}\right]$,
$\mathrm{s}_{6}=\left[\alpha_{4} \mathrm{a}_{7} \mathrm{a}_{8} \mathrm{~s}_{2}+v \beta_{2} \beta_{4} \mathrm{a}_{7} \mathrm{~s}_{4}+v \alpha_{4} \beta_{3} \mathrm{a}_{8} \mathrm{~s}_{3}+\mathrm{a}_{7} \mathrm{~s}_{5}\left(u \alpha_{2} \mathrm{a}_{8}+v^{2} \alpha_{3} \beta_{2}\right)\right] \mathrm{a}_{9}{ }^{-1}$,
$\mathrm{s}_{7}=\left(\alpha_{4} \mathrm{~s}_{3}+v \alpha_{3} \mathrm{~s}_{6}\right) \mathrm{a}_{7}{ }^{-1}$,
$\mathrm{s}_{8}=\left(\alpha_{4} \mathrm{~s}_{4}+v \alpha_{3} \mathrm{~s}_{5}+v \alpha_{3} \mathrm{~s}_{6}\right) \mathrm{a}_{8}{ }^{-1}$,
$\mathrm{s}_{9}=\bar{v} \alpha_{3} \mathrm{~s}_{2}$,
$\mathrm{s}_{10}=\bar{u} \alpha_{2}$,
$\mathrm{s}_{11}=\bar{v}\left(\alpha_{3}+\alpha_{2} \mathrm{~S}_{2}\right)$,
$\mathrm{s}_{12}=\bar{v}\left(\alpha_{3} \mathrm{~s}_{5}+\alpha_{2} \mathrm{~s}_{6}\right)$,
$\mathrm{s}_{13}=\bar{v} \alpha_{2} \mathrm{~s}_{5}$,
$\mathrm{s}_{14}=\bar{u} \alpha_{2} \mathrm{~S}_{5}$,
$\mathrm{s}_{15+\mathrm{i}}=\alpha_{1} \mathrm{~s}_{1+\mathrm{i}}, 0 \leq \mathrm{i} \leq 7$.

Using normalizing condition

$\sum_{n=1}^{n=22} \mathrm{p}_{\mathrm{n}}=1$,
p_{1} may be obtained and is evaluated as
$\mathrm{p}_{1}=\left[\sum_{i=1}^{i=22} \mathrm{~s}_{\mathrm{i}}\right]^{-1}$
The steady state availability $\left(\mathrm{A}_{\mathrm{v}}\right)$ of the system is given by
$\mathrm{A}_{\mathrm{v}}=\sum_{n=1}^{n=8} \mathrm{p}_{\mathrm{n}}=\left[\sum_{n=1}^{n=8} \mathrm{~S}_{\mathrm{n}}\right]\left[\sum_{n=1}^{n=22} \mathrm{~S}_{\mathrm{n}}\right]^{-1}$
Case 2: Perfect Switch-over Devices
When the switch-over device is perfect, the results are obtained by taking $\mathrm{u}=\mathrm{v}=1$ in the forgoing analysis. By taking $\alpha_{1}=\alpha_{2}=$ $0.02, \alpha_{4}=0.01, \alpha_{3}=0.001, \beta_{2}=\beta_{4}=0.2, \beta_{1}=0.3, \beta_{3}=0.15$
Availability of the system is evaluated to be 0.938493205 .

Optimum Availability

When repair rates of switches are not given. Then on differentiating A_{v} with respect to β_{5} and β_{6} and using the condition of maxima, then the optimum availability of the system will be given by:
$A v=\frac{\mathrm{p} \beta 5 \beta 6}{\mathrm{q} \beta 5 \beta 6+\mathrm{r} \beta 5+\mathrm{s} \beta 6}$, where $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$ are
$\mathrm{p}=\sum_{i=1}^{i=8} \mathrm{r}_{\mathrm{i}}$,
$\mathrm{q}=\sum_{i=15}^{i=22} \mathrm{r}_{\mathrm{i}}$,
$\mathrm{r}=v\left[\alpha_{3}\left(1+\mathrm{r}_{2}+\mathrm{r}_{5}+\mathrm{r}_{6}\right)+\alpha_{2}\left(\mathrm{r}_{2}+\mathrm{r}_{6}\right)\right]$,
$\mathrm{s}=\mathrm{u} \alpha_{2}\left(1+\mathrm{r}_{5}\right)$.

Analysis of results

Analysis of availability and optimization of steam generating system in thermal power station can help in increasing the production of electricity. Study of above Availability table and graph reveals that β_{5} (mean constant repair rates of switch-over
devices S_{1} from failed states to good states) increases the availability of the system more effectively than β_{6} (mean constant repair rates of switch-over devices S_{2} from failed states to good states). So, switch S_{1} requires utmost care as compared to switch S_{2}. To obtain the value of β_{5} and β_{6} for optimum value of $A v$, we can fix the target of maximum availability under prevailing conditions of the system and financial constraints. Similarly, other repair/failure rates (instead of β_{5} and β_{6}) may be evaluated for the maximum target of availability. Thus, a set of values is chosen and maintained for most economic gain. Similar comparative tables and graphs can be prepared by taking repair/failure rates for various components. As controlling the failure of subsystems/units is more difficult than controlling the repair. Table for repair rates provides good information about the effectiveness of the system components. Since, in practice, the management is always interested in long run availability, the system is analyzed for the same. Hence, it is suggested that management should try to keep the switches good to increase the overall performance of the station.

Acknowledgements

The author is highly grateful to Dr. Pardeep Goel, Associate Professor of Mathematics (Retd.) for his invaluable guidance.

References

1. Dhillon BS, Natesan J. Stochastic analysis of outdoor power system in fluctuating environment. Microelectron Reliability. 1983;23:867-81.
2. Kumar D, Singh J, Singh IP. Reliability analysis of the feeding system in paper industry. Microelectron Reliability. 1988a;28:213-15.
3. Kumar D, Singh J, Singh IP. Availability of the feeding system in the sugar industry. Microelectron Reliability. 1988b;28:867-71.
4. Dayal B, Singh J. Reliability analysis of a system in a fluctuating environment. Microelectron Reliability. 1992;32:601-3.
5. Goel P, Singh J. Availability analysis of butter-oil manufacturing system in a dairy station. In: Proceedings of International Conference on Operational Research for a Better Tomorrow. 1995. p. 109-16.
6. Goel P, Singh J. Reliability analysis of a standby complex system having imperfect switch-over device. Microelectron Reliability. 1995;35:285-8.
7. Mahajan P, Singh J. Reliability of utensils manufacturing plant - a case study. Opsearch. 1999;36:260-71.
8. Habchi G. An improved method of reliability assessment for suspended tests. International Journal of Quality \& Reliability Management. 2002;19:454-70.
9. Günes M, Deveci I. Reliability of service system and an application in student office. International Journal of Quality \& Reliability Management. 2002;19:206-11.
10. Gupta P, Lal AK, Sharma RK, Singh J. Numerical analysis of reliability and availability of the serial processes in butter-oil processing plant. Int. J. Qual. Reliab. Manag. 2005;22(3):303-316.
11. Sarhan AM. Reliability Equivalences of a Series System Consists of an Independent and Non-identical Components. International Journal of Reliability and Applications. 2006;7(2):111-125.
12. Bansal R, Goel P. Availability analysis of poultry, cattle and fish feed plant. 2016;1(1):8-16.
13. Ram M, Nagiya K. Gas turbine power plant performance evaluation under key failures. J. Eng. Sci. Technol. 2017;12(7):1871-1886.
14. El-Ghamry E, Muse AH, Aldallal R, Mohamed MS. Availability and Reliability Analysis of a k-Out-of- n warm standby system with common-cause failure and fuzzy failure and repair rates. Math. Probl. Eng. 2022. DOI: 10.1155/2022/3170665.
15. Saini M, Goyal D, Kumar A. Availability and performance analysis of primary treatment unit of sewage plant. 2023;21:383396.
16. Bala K. Effect of switch-over devices on availability of steam generating system in thermal Power Plant. 2023;5(3):1-8.
17. Website: hpgcl.org.in
