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Construction and selection of quality interval Bayesian 

RGS Plan through trigonometric ratios 

 
V Sangeetha and M Ravichandran 

 
Abstract 

Bayesian Sampling Plan is that experiment or analytical study which can yield prior frequency 

distribution for the quality of the submitted lots and these ‘prior’ distributions can in turn be used to 

derive lot-by-lot sampling plans. 

In this paper we have constructed a new method for designing Bayesian Repetitive Group sampling plan 

indexed through trigonometric ratios, hypotenuse ratios along with decision region (d1) and probabilistic 

region (d2) which is more applicable in practical situations. Maximum Allowable Percent Defective 

(MAPD) is also considered for the selection of parameters for Bayesian Repetitive Group Sampling Plan. 

New quality descriptors called operating ratios are introduced to design the sampling plan and related 

information’s are provided. Numerical Illustrations are also provided for ready made use of the tables to 

shop-floor situations. 

 

Mathematical Subject Classification: 62P30/62D05. 

 

Keywords: Bayesian sampling, quality decision regions, operating characteristic curve, trigonometric 

ratios 

 

Introduction 

Classical statistics is directed towards the use of sample information. In addition to the sample 

information two other types of information are typically relevant. The first is knowledge of the 

possible consequences of the decision and the second source of non-sample information is 

prior information. Thomas Bayes was first to use the prior information in inductive inference 

and the approach to statistics, which formally seeks to utilize prior information is called 

Bayesian analysis. Suppose a product in a series is supplying a product, due to random 

fluctuations can be separated in to within lot (sampling) variations of individual units and 

between lot (sampling and process) variations. 

Bayesian Acceptance Sampling approach is associated with the utilization of prior process 

history for the selection of distributions (viz., Gamma Poisson, Beta Binomial) to describe the 

random fluctuations involved in Acceptance Sampling. Bayesian sampling plans requires the 

user to specify explicitly the distribution of defectives from lot to lot. The prior distribution is 

the expected distribution of a lot quality on which the sampling plan is going to operate. The 

distribution is called prior because it is formulated prior to the taking of samples. The 

combination of prior knowledge, represented with the prior distribution, and the empirical 

knowledge based on the sample leads to the decision on the lot. 

To enhance product and service quality while reducing inspection costs, it's common to 

modernize quality practices. An effective quality improvement program can boost productivity 

while cutting costs. With increasing customer demands and evolving technology, existing 

quality assurance techniques often require modification. The demand for statistical and 

analytical techniques in quality assurance is rising due to intense industry competition for 

better product quality. 

Acceptance sampling serves as a tool for consumers to reject subpar lots and for producers to 

streamline process control. In a dynamic production environment where non-conforming items 

may occur, statistical process control enhances process capability, while acceptance sampling 

logically prevents the passage of non-conforming units. 
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In continuous production settings, acceptance sampling systems are crucial for maintaining quality. However, when robust 

process control mechanisms are established by producers, acceptance control procedures may become unnecessary, only to be 

reinstated as needed. Sampling plans do not estimate product parameters but instead make holistic decisions to maintain and 

improve product quality. 

This paper introduces a method for selecting Bayesian sampling plans based on quality ranges instead of specific quality points, 

using a novel approach called Quality Interval Sampling (QIS) plans. Divya (2009) explored single sampling plans through 

Quality Region and devised single sampling plans indexed with quality regions involving QIS. This method appears versatile and 

applicable in elementary production processes, where defining quality levels at later stages is advisable, offering a new concept 

for selecting Bayesian Repetitive Group sampling plans based on quality levels. The sampling plan provides decision rules for 

both vendors and buyers regarding product acceptance to meet current quality requirements. With the rapid advancement of 

manufacturing technology, suppliers demand high-quality products with minimal defects, often measured in parts per million. 

However, traditional methods may fail to detect minute defects in certain situations. To address such challenges, Quality Interval 

Sampling (QIS) plans are introduced. This paper designs plan parameters indexed with quality regions involving QIS. Case and 

Keats [1] have examined the relationship between defectives in the sample and defectives in the remaining lot for each of the five 

prior distributions. They observe that the use of a binomial prior renders sampling useless and inappropriate. These results serve to 

make the designers and users of Bayesian Sampling Plans more aware of the consequence associated with selection of particular 

prior distribution. Calvin [2] has presented in a clear and concise treatment by means of ‘How and When to perform Bayesian 

acceptance Sampling’. These procedures are suited to the sampling of lots from process or assembly operations, which contain 

assignable causes. These causes may be unknown and awaiting isolation, known but irremovable due to the state of the art 

limitations, or known but uneconomical to remove. He has considered the Bayesian sampling, in which, primary concern is with 

the process average function non-conforming p, with lot fraction non-conforming p and its limitations being discussed. 

Hald [4] has derived optimal solutions for the cost function k(n,c) in the cases where the prior distribution is rectangular, polya and 

binomial. Tables are given for optimum n,c and k(n,c) for various values of the parameters, which is an important result on 

Bayesian Acceptance Sampling(BAS). Hald [5] has given a rather complete tabulation and discussed the properties of a system of 

single Sampling attribute plans obtained by minimizing average costs, under the assumptions that the costs linear in the fraction 

defective p, and that the distributions of lot quality is a double binomial distribution. The optimum sampling plan (N.C) depends 

on six parameters namely N, pr, ps, p1, p2 and w2 cost parameters and p1, p2, w2 are the parameters of prior distribution. It may be 

shown, however, that the weights combine with the p’s is such a way that only five independent parameters are left out. 

A set of tables presented by Oliver and Springer [8] are based on assumptions of beta prior distribution with specific posterior risk 

to achieve minimum sample size, which avoids the problem of estimating cost parameters. It is generally true that Bayesian Plan 

requires a smaller sample size than a conventional sampling plan with the same producer and consumer risks. Sherman [10] has 

introduced a new acceptance sampling plan, called repetitive group sampling plan designated as RGS plan. Repetitive Group 

Sampling (RGS) plan comes under the special purpose plans. Ramaswamy [9] has studied RGS plan indexed with AOQL and 

MAPD. Usha [16] has highlighted over Bayesian Single Sampling plan for three attribute classes for double binomial prior and 

point binomial prior distribution. 

Suresh [11] has studied the RGS plan indexed through producer and consumer quality level considering filter and incentive effects. 

Hemalatha [6] has studied the acceptance probabilities of sampling plans where the proportion defective p, in the lot being 

submitted follows a Gamma Distribution. Deepa [3] has studied the formulation of a Bayesian Sampling Plan using acceptance 

probability with Gamma Prior Distribution for product quality using producer and consumer quality levels. Latha [7] has studied to 

evaluate the proportion of lot expected to be accepted for repetitive group sampling plan in an environment that the proportion 

defective varies from lot-by-lot according to gamma distribution. The acceptance probabilities for RGS (c1=0, c2=1) for different 

sample size are then calculated, similar tables are also provided for overall average outgoing quality.  

Suresh and Saminathan [12] have given a procedure to define multiple repetitive group sampling plans indexed with MAPD and 

MAAOQ.Suresh and Kaviyarasu [13] have explained the desirability for developing Quick Switching System with Conditional 

RGS plan indexed through quality levels. Suresh and Divya [14] have given the new procedure for Single Sampling Plan through 

Decision Regions. Suresh and Sangeetha [15] have studied the selection of Repetitive Deferred Sampling plan with Quality 

Regions. This paper designs the parameters of the plan indexed with QDR, PQR, LQR and IQR with numerical illustrations are 

also provided.  

 

Bayesian Repetitive Group Sampling Plan 

This paper related to Bayesian Repetitive Group Sampling Plan for average probability function of incoming quality levels. 

 

Conditions for Application 

The conditions for application for RGS plan are given below 

1. The size of the lot is taken to be sufficiently large 

2. Under normal conditions the lots are expected to be of essentially the same quality (expressed in percent defective). 

3. The product comes from a source in which the consumer has confidence. 

 

Procedure for Operating Characteristic function 
Step 1. Take a random sample of size n. 

Step 2. Count the number of defectives d, in the sample. 

Step 3. If d ≤ c1, accept the lot. 

If d > c2, reject the lot. 

If c1< d ≤ c2, repeat steps 1, 2 and 3. 
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The RGS plans are characterized by 3 parameters namely n, c1 and c2. When c1=c2 the resulting plan is the usual single sampling 

plan. 

 

The operating characteristic function of RGS is obtained by Sherman [10] as 
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Where Pa(p) be the probability of acceptance in a particular group sample, Pr(p) be the probability of rejection in a particular 

group sample. 

The probability density function for the Gamma distribution with parameters α and β is 
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Suppose that the defects per unit in the submitted lots p can be modeled with Gamma Distribution having parameters α and β. 

For any RGS plan, the probability of eventually accepting the lot is given as 

 

Pa = P1/(P1+P1’)                        (2.3) 

 

Where P1 is the Probability of acceptance and P1’ is the probability of rejection. 

 

The probability of acceptance in a particular group sample is  
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The probability of rejection in a particular group sample is 
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The OC function of RGS plan is  
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Let p has a prior distribution with density function given as 
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With parameters s and t and mean )(/ saytsp  . 

 

The APA function is given as 
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In particular, the average probability of acceptance for c1=0, c2=1 is obtained as follows 
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Selection of Bayesian Rgs Plan 

Designing of Quality Interval Bayesian Repetitive Group Sampling Plan (QIBRGS) through trignometric ratios 

 

Quality Decision Region (QDR) 

It is an interval of quality
 *1  

 in which product is accepted at engineer’s quality average. The quality is 

reliably maintained up to *  (MAPD) and sudden decline in quality is expected. This region is also called Reliable Quality 

Region (RQR).  

Quality decision Range is denoted as 
 1*1  d

 is derived from the average probability of acceptance. 
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Where t

s


, is the mean value for the product quality p. 

 

Probabilistic Quality Region (PQR) 

It is an interval of quality 
 21  

 in which product is accepted with a minimum probability 0.10 and maximum 

probability 0.95.  

Probabilistic Quality Range denoted as 
 122  d

 is derived from the average probability of acceptance  
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Where t

s


, is the mean value of the product quality p. 

 

Limiting Quality Region (LQR) 

It is an interval of quality 
 2*  

 in which product is accepted with a minimum probability 0.10 and maximum 

probability 0.95.  

Limiting Quality Range denoted as 
 *23  d

 is derived from the average probability of acceptance  
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Where t

s


, is the mean value of the product quality p. 

 

Indifference Quality Region (IQR) 

It is an interval of quality 
 01  

 in which product is accepted with a minimum probability 0.50 and maximum 

probability 0.95.  

Indifference Quality Range denoted as 
 100  d

 is derived from the average probability of acceptance 
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Where t

s


, is the mean value of the product quality p. 

 

Selection of the Sampling plan 

This paper provides a new procedure for designing Bayesian Repetitive Group Sampling plan indexed through trigonometric 

ratios and hypotenuse ratios. Also considering the ability of the declination angles of the tangent at the inflection point on the OC 

curve for discrimination of the Bayesian Repetitive Group Sampling plan (BRGSP) 

 

Here tan 𝜃1 =
0.95−𝐿(𝑝∗)

𝑑1
                        (3.5) 

 

From (1) one can find the parameter for a particular L(p*) and d1.So we can state that both θ1and d1uniquely determines the DSP.  

Similarly, tan 𝜃2 =
𝐿(𝑝∗)−0.10

𝑑2−𝑑1
                       (3.6) 

 

Rom (2) one can find (n,c) for a particular L(p*) and (d2-d1). So we can state that both θ2 and (d2-d1) uniquely determines the 

DSP. 

 

And  tan 𝜃3 =
𝐿(𝑝∗)

𝑑2
                        (3.7) 

 

From (3.5) one can find (n,c) for a particular L(p*) and d2. So we can state that both θ3 and d2uniquely determines the DSP. From 

figure1, we have ΔABC represents the approximate area inscribed by the quality levels  and *. ΔCDE represents the 

approximate area inscribed by the quality levels * and 2. And the ΔBFG represents the approximate area inscribed by the 

quality levels p1 and p2. θ1 is the inscribed triangle by OC with quality levels  and *. θ2 .represent the inscribed triangle by 

OC with quality levels p* and p2. And θ3is the inscribed triangle by OC with quality levels 1 and 2. 

 

For specified QDR and PQR 

Table 1 is used to construct the plans when the QDR and PQR are specified. For any given values of the QDR (d1) and PQR (d2), 

one can find the ratio T=d1/d2 which is a monotonic increasing function. Find the value in Table 1 under the column T which is 

equal to or just less than the specified ratio. Then the corresponding values of c1, c2 and s are noted. From this, one can determine 

the parameters n, c1, c2 and s for the Bayesian Repetitive Group Sampling Plan. 

 

Example 
For a company 2% defects are seen in QDR and 5% defects are seen in PQR. 

Then d1=0.02 and d2= 0.05, T= d1/d2 =0.4. 

Find the ratio taking value 0.4. Select value of T equal to or just less than this ratio using Table 1. The value of T is 0.405 which is 

associated with c2=2, c1= 0 and s=1. Also nd1=0.756, nd2=1.868 corresponding to c2=2, c1= 0 and s=1. Thus n is calculated. The 

parameters for the Bayesian Repetitive Group Sampling Plan is (37, 2, 0, 1). 

 

For specified QDR and LQR 

Table 1 is used to construct the plans when the QDR and LQR are specified. For any given values of the QDR (d1) and LQR (d3), 

one can find the ratio T1=d1/d3 which is a monotonic increasing function. Find the value in Table 1 under the column T1 which is 

equal to or just less than the specified ratio. Then the corresponding values of c1, c2 and s are noted. From this, one can determine 

the parameters n, c1, c2 and s, for the Bayesian Repetitive Group Sampling Plan. 

 

Example 

For a company 3% defects are seen in QDR and 6% defects are seen in LQR. 

Then d1=0.03 and d3= 0.06, T1= d1/d3 =0.5. 

1 

 

1 

 

https://www.mathsjournal.com/


 

~130~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

Find the ratio taking value 0.50. Select value of T1 equal to or just less than this ratio using Table 1. The value of T1 is 0.510 

which is associated with c2=4, c1= 0 and s=7. Also  

nd1= 1.876, nd3=3.678 corresponding to c2=4, c1= 0 and s=7. Thus n is calculated. The parameters for the Bayesian Repetitive 

Group Sampling Plan is (63, 4, 0, 7). 

 

For specified QDR and IQR 

Table 1 is used to construct the plans when the QDR and IQR are specified. For any given values of the QDR (d1) and IQR (d0), 

one can find the ratio T2=d1/d0 which is a monotonic increasing function. Find the value in Table 1 under the column T2 which is 

equal to or just less than the specified ratio. Then the corresponding values of c1, c2 and s are noted. From this, one can determine 

the parameters n, c1, c2 and s, for the Bayesian Repetitive Group Sampling Plan. 

 

Example 

For a company 3% defects are seen in QDR and 4% defects are seen in IQR. 

Then d1=0.03 and d0= 0.04, T2= d1/d0 =0.75 

Find the ratio taking value 0.75. Select value of T2 equal to or just less than this ratio using Table 1. The value of T2 is 0.751 

which is associated with c2=5, c1= 0 and s=4. Also nd1= 2.495, nd0= 3.324 corresponding to c2=5, c1= 0 and s=4. Thus n is 

calculated. The parameters for the Bayesian Repetitive Group Sampling Plan is (83, 5, 0, 4).  

 

Construction of Tables 

For any RGS plan, the probability of eventually accepting the lot is given as 
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Let p has a prior distribution with density function given as 
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The APA function is given as 
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The incoming qualities nμ1, nμ2 and nμ0 are obtained by equating APA function of Bayesian RGS plan P given in (2.8) to 0.95, 

0.10 and 0.50 respectively. 

nμ* values are obtained by equating the second derivative of APA function to Zero. 
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Where t

s


, is the mean value of the product quality P. 

 

Tables 1 shows the value of c1, c2 and s corresponding ranges d1= nQDR, d2= nPQR, d3=nLQR and d0=nIQR from equation (3.1), 

(3.2), (3.3) and (3.4),and also represents Operating Characteristic ratio for specified values of c1, c2 and s. Table 2 represents the 

conversion table, which is used to determine other quality characteristics. For different values of c1, c2 and c3, L(p*) is determined 

from equation. Substituting the appropriate values in equation (3.5), (3.6), (3.7) and (3.8).Using the table it can be noted as c 

increased d1, d2 increases but L(p*) decreases.Table-2 provides the area of triangle ABC, triangle CDE &triangle BFG for 

different values of c theoperating ratio R1, R2, R3and R4for different values of c1, c2 and s. 
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Table 1: Certain Values of QDR, PQR, LQR and IQR & Operating Characteristic ratio for Specified values of c1, c2, and s. 
 

s c1 c2 d1 d2 area ABC area CDE area BFG R1 R2 R3 R4 

 0 0 0.499 1.781 0.057 0.399 0.644 7.037 11.346 1.612 2.588 

 0 1 0.579 1.838 0.070 0.383 0.652 5.493 9.337 1.700 2.195 

 0 2 0.756 1.868 0.097 0.330 0.647 3.391 6.658 1.963 1.533 

1 0 3 0.264 1.012 0.036 0.216 0.342 5.977 9.489 1.588 2.788 

 0 4 0.464 1.231 0.070 0.210 0.398 2.988 5.671 1.898 1.696 

 0 5 0.600 1.476 0.096 0.232 0.464 2.404 4.817 2.004 1.455 

 0 6 0.649 1.654 0.108 0.259 0.509 2.392 4.699 1.965 1.485 

 0 0 0.118 1.945 0.020 0.463 0.590 22.808 29.077 1.275 8.029 

 0 1 0.27 1.564 0.047 0.323 0.468 6.804 9.872 1.451 3.525 

 0 2 0.454 1.787 0.081 0.328 0.529 4.046 6.525 1.613 2.443 

2 0 3 0.744 1.806 0.135 0.259 0.530 1.919 3.932 2.049 1.335 

 0 4 1.097 2.21 0.201 0.269 0.644 1.336 3.201 2.397 0.985 

 0 5 1.329 2.629 0.246 0.312 0.761 1.265 3.091 2.444 0.945 

 0 6 1.797 3.337 0.336 0.366 0.961 1.090 2.859 2.622 0.832 

 0 0 0.222 2.01 0.042 0.423 0.576 10.107 13.764 1.362 5.080 

 0 1 0.356 1.925 0.068 0.367 0.547 5.402 8.043 1.489 3.263 

 0 2 0.329 1.736 0.063 0.326 0.490 5.141 7.711 1.500 3.100 

3 0 3 1.235 2.104 0.241 0.200 0.588 0.827 2.439 2.948 0.708 

 0 4 1.588 2.535 0.312 0.217 0.707 0.695 2.267 3.262 0.604 

 0 5 1.997 3.189 0.393 0.272 0.888 0.693 2.261 3.261 0.593 

 0 6 2.377 3.438 0.471 0.241 0.951 0.510 2.019 3.955 0.455 

 0 0 0.213 2.497 0.042 0.518 0.691 12.252 16.350 1.334 6.287 

 0 1 0.297 1.612 0.059 0.298 0.446 5.058 7.568 1.496 3.061 

 0 2 0.492 2.13 0.098 0.371 0.589 3.803 6.036 1.587 2.617 

4 0 3 1.348 2.445 0.268 0.248 0.676 0.928 2.526 2.721 0.788 

 0 4 1.859 3.282 0.370 0.322 0.906 0.869 2.447 2.817 0.740 

 0 5 2.495 4.149 0.497 0.373 1.144 0.751 2.300 3.064 0.646 

 0 6 3.196 5.013 0.638 0.410 1.381 0.643 2.166 3.371 0.558 

 0 1 0.458 1.679 0.093 0.270 0.455 2.893 4.877 1.686 2.081 

 0 2 1.364 2.075 0.279 0.157 0.561 0.562 2.011 3.580 0.546 

 0 3 1.365 2.464 0.280 0.241 0.664 0.861 2.370 2.752 0.772 

5 0 4 1.556 3.126 0.321 0.344 0.840 1.071 2.620 2.446 0.944 

 0 5 2.305 4.11 0.477 0.394 1.102 0.825 2.310 2.799 0.750 

 0 6 3.964 4.982 0.823 0.221 1.332 0.269 1.617 6.020 0.268 

 0 0 0.279 2.073 0.058 0.388 0.553 6.678 9.499 1.422 4.075 

 0 1 0.393 2.267 0.082 0.404 0.602 4.917 7.326 1.490 3.385 

 0 2 1.577 2.806 0.331 0.264 0.744 0.798 2.245 2.814 0.743 

6 0 3 2.195 3.295 0.463 0.236 0.871 0.509 1.881 3.695 0.498 

 0 4 2.35 3.93 0.497 0.337 1.035 0.678 2.082 3.070 0.647 

 0 5 3.738 4.093 0.794 0.075 1.075 0.095 1.354 14.241 0.141 

 0 6 4.129 5.876 0.880 0.370 1.539 0.421 1.749 4.157 0.417 

 0 0 0.213 2.445 0.046 0.471 0.638 10.342 14.012 1.355 5.736 

 0 1 0.319 2.846 0.068 0.531 0.741 7.761 10.819 1.394 5.090 

 0 2 0.269 3.329 0.058 0.641 0.864 11.064 14.909 1.347 6.793 

7 0 3 0.632 4.636 0.137 0.836 1.200 6.117 8.779 1.435 4.915 

 0 4 1.876 5.554 0.407 0.765 1.433 1.879 3.520 1.873 1.793 

 0 5 2.051 6.378 0.447 0.897 1.641 2.007 3.673 1.830 1.940 

 0 6 3.152 6.86 0.689 0.766 1.759 1.111 2.554 2.298 1.116 

 0 0 0.208 1.999 0.046 0.368 0.511 8.075 11.203 1.387 4.589 

 0 1 0.227 2.4 0.050 0.445 0.612 8.912 12.244 1.374 5.255 

 0 2 0.779 3.446 0.172 0.544 0.876 3.164 5.090 1.609 2.770 

8 0 3 1.082 4.66 0.240 0.728 1.181 3.034 4.923 1.623 2.817 

 0 4 2 5.634 0.445 0.736 1.423 1.655 3.199 1.933 1.664 

 0 5 2.54 6.046 0.567 0.708 1.522 1.248 2.685 2.152 1.288 

 0 6 2.857 6.604 0.640 0.753 1.658 1.177 2.591 2.201 1.232 
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Table 2: Certain parametric values of Bayesian RGS Plan 
 

s c1 c2 nμ1 nμ2 nμ0 nμ* μ2/μ1 μ0/μ1 μ*/μ1 

 0 0 0.008 1.789 0.426 - 223.625 53.25 - 

 0 1 0.042 1.880 0.856 0.621 44.762 20.381 14.786 

 0 2 0.056 1.924 1.028 0.812 34.357 18.357 14.500 

1 0 3 0.981 1.993 1.656 1.245 2.032 1.688 1.269 

 0 4 1.081 2.312 1.980 1.545 2.139 1.832 1.429 

 0 5 1.156 2.632 2.212 1.756 2.277 1.913 1.519 

 0 6 1.202 2.856 2.301 1.851 2.376 1.914 1.540 

 0 0 0.051 1.996 0.756 - 39.137 14.824 - 

 0 1 0.766 2.330 1.382 1.036 3.042 1.804 1.352 

 0 2 1.002 2.789 1.881 1.456 2.783 1.877 1.453 

2 0 3 1.152 2.958 2.526 1.896 2.568 2.193 1.646 

 0 4 1.196 3.406 2.956 2.293 2.848 2.472 1.917 

 0 5 1.252 3.881 3.046 2.581 3.100 2.433 2.062 

 0 6 1.286 4.623 3.851 3.083 3.595 2.995 2.397 

 0 0 0.076 2.086 0.946 - 27.447 12.447 - 

 0 1 0.856 2.781 1.546 1.212 3.249 1.806 1.416 

 0 2 1.352 3.088 2.086 1.681 2.284 1.543 1.243 

3 0 3 1.408 3.512 2.881 2.643 2.494 2.046 1.877 

 0 4 1.446 3.981 3.438 3.034 2.753 2.378 2.098 

 0 5 1.512 4.701 3.943 3.509 3.109 2.608 2.321 

 0 6 1.560 4.998 4.831 3.937 3.204 3.097 2.524 

 0 0 0.089 2.586 1.081 - 29.056 12.146 - 

 0 1 1.386 2.998 2.042 1.683 2.163 1.473 1.214 

 0 2 1.451 3.581 2.986 1.943 2.468 2.058 1.339 

4 0 3 1.508 3.953 3.583 2.856 2.621 2.376 1.894 

 0 4 1.586 4.868 3.938 3.445 3.069 2.483 2.172 

 0 5 1.612 5.761 4.936 4.107 3.574 3.062 2.548 

 0 6 1.670 6.683 5.451 4.866 4.002 3.264 2.914 

 0 1 1.402 3.081 2.658 1.860 2.198 1.832 1.327 

 0 2 1.581 3.656 3.045 2.945 2.312 1.926 1.863 

 0 3 1.688 4.152 3.683 3.053 2.460 2.182 1.809 

5 0 4 1.730 4.856 4.051 3.286 2.807 2.342 1.899 

 0 5 1.851 5.961 5.081 4.156 3.220 2.745 2.245 

 0 6 1.899 6.881 6.408 5.863 3.623 3.374 3.087 

 0 0 1.013 3.086 1.451 - 3.046 1.432 - 

 0 1 1.581 3.848 2.861 1.974 2.434 1.810 1.249 

 0 2 1.762 4.568 3.608 3.339 2.593 2.048 1.895 

6 0 3 1.888 5.183 4.956 4.083 2.745 2.625 2.163 

 0 4 1.936 5.866 5.013 4.286 3.030 2.589 2.214 

 0 5 1.948 6.041 5.866 5.686 3.101 3.011 2.919 

 0 6 1.956 7.832 6.777 6.085 4.004 3.465 3.111 

 0 0 1.111 3.556 1.833  3.201 1.650  

 0 1 1.685 4.531 2.456 2.004 2.689 1.458 1.189 

 0 2 1.880 5.209 2.863 2.149 2.771 1.523 1.143 

7 0 3 1.912 6.548 3.056 2.544 3.425 1.598 1.331 

 0 4 1.983 7.537 4.456 3.859 3.801 2.247 1.946 

 0 5 2.005 8.383 5.636 4.056 4.181 2.811 2.023 

 0 6 2.096 8.956 6.738 5.248 4.273 3.215 2.504 

 0 0 1.887 3.886 1.903 - 2.059 1.008 - 

 0 1 1.981 4.381 2.805 2.208 2.212 1.416 1.115 

 0 2 2.085 5.531 3.563 2.864 2.653 1.709 1.374 

8 0 3 2.186 6.846 4.083 3.268 3.132 1.868 1.495 

 0 4 2.222 7.856 4.956 4.222 3.536 2.230 1.900 

 0 5 2.386 8.432 5.856 4.926 3.534 2.454 2.065 

 0 6 2.451 9.055 6.908 5.308 3.694 2.818 2.166 
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Fig 1: OC Curve for Decision Region (d1) and Probabilistic Region (d2) and Tangent Angles 

 

Conclusion 

Bayesian Acceptance sampling is the technique, which deals with the procedures in which decision to accept or reject lots or 

process based on their examination of past history or knowledge of samples. This paper deals with sampling model based on prior 

distribution and costs, which encompasses most of the existing Bayesian models based on costs. The work is presented in this 

paper mainly related to construction and selection Bayesian Repetitive Group Sampling Plan for Quality Regions. Quality Interval 

Sampling (QIS) plan possesses wider potential applicability in industry ensuring higher standard of quality attainment for product 

or process. Thus Quality Interval Sampling (QIS) plan is a good measure for defining quality and designing any acceptance 

sampling plan which are readymade use to industrial shop-floor situations. 

The Quality Decision Region (QDR) idea is proposed in order to provide higher probability of acceptance compared with (AQL, 

LQL) indexed plan/scheme/system. Quality Decision Region (QDR) depends on the quality measure MAPD, which is a key 

measure assessing to what degree the inflection point empowers the OC curve to discriminate between good and bad lots. The 

present development would be a valuable addition to the literature and a useful device for quality control practitioners. 
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