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Abstract 

The aim of this paper is to introduce a generalized modular sequence space of No¨rlund type defined by 

de la Valle´e-Poussin mean and study some of its topological and geometric properties like k−NUC 

property, uniform Opial property of this Ko¨ the sequence space. 
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Introduction 

Geometric characteristics of Banach spaces, including the Opial property, the Fatou property, 

and their generalizations, are essential to the theory of metric fixed points. The Opial property 

was defined by Opial in [16] and it was demonstrated that while the space 𝐿𝑝[0,2𝜋](𝑝 ≠ 2,1 <

𝑝 < ∞) does not satisfy this property, ℓ𝑝(1 < 𝑝 < ∞) does. It has been demonstrated by 

Franchetti [5] that any infinite dimensional Banach space has an equivalent norm that satisfies 

the Opial property. Subsequently, Prus [19] introduced uniform Opial property for Banach 

spaces and studied it. Further research on the uniform Opial property for Cesaro-Orlicz spaces 

has been done by Cui and Hudzik [2], Petrot and Suantai [18], Mongkolkeha and Kumam [14], 

Şimşek et al. [22] and numerous other researchers. 

Uniform convexity was first introduced by Clarkson [1] and it is well known that this means 

that Banach spaces are reflexive. The notion of nearly uniform convexity of Banach spaces 

was first presented by Huff [7]. According to Rolewicz [20], if 𝑋 has the drop property, then the 

Banach space 𝑋 is reflexive. This result was further extended by Montesinon [15], who 

demonstrated that 𝑋 has drop property if and only if it is reflexive and has property 𝐻. 𝑘 −
𝑁𝑈𝐶 Banach spaces have been characterized by Kutzarova [9]. 

In summability theory, Leindler [10] initially defines the (𝑉, 𝜆)-summability using de la Vallée-

Poussin's mean. Generalized de la Vallée-Poussin's mean is the basis for several sequence 

spaces that have been introduced and investigated by Malkowsky and Savas [12]. Several 

authors have also examined the (𝑉, 𝜆) summable sequence spaces, notably Et [3] and Savaş and 

Savaş [21]. Subsequently, other scholars, including Et et al. [4], Şimşek et al. [22, 23] and Şimşek 
[24] and others, developed different sequence spaces and investigated certain geometric features 

on those sequence spaces by utilizing the idea of de la Vallée-Poussin mean. 

This work presents the definition of de la Vallée-Poussin mean, which defines a new 

generalized modular sequence space 𝑁(𝜆, 𝑝) of Nörlund type. Additionally, a few of its 

geometric and topological aspects are described for this sequence space, including the uniform 

Opial property and the 𝑘 − 𝑁𝑈𝐶 property. 

 

Definitions and Preliminaries 

Throughout this paper, ℕ,ℝ,ℝ+and 𝐹 denotes the set of natural numbers, of real numbers, of 

nonnegative real numbers and the scalar field respectively. Let the space of all real sequences  
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𝑥 = (𝑥(𝑖))𝑖=1
∞  is denote by ℓ0 and (𝑋, ∥⋅∥) be a Banach space and being a subspace of ℓ0. Let 𝑆(𝑋) and 𝐵(𝑋) of 𝑋 denotes the 

unit sphere and closed unit ball respectively. 

 

A Banach space 𝑋 = (𝑋, ∥⋅∥) is said to be a Köthe sequence space if 𝑋 is a subspace of ℓ0 such that ([11, 8]): 

1. If 𝑥 ∈ ℓ0, 𝑦 ∈ 𝑋 and |𝑥(𝑖)| ≤ |𝑦(𝑖)| for all 𝑖 ∈ ℕ, then 𝑥 ∈ 𝑋 and ∥ 𝑥 ∥≤∥ 𝑦 ∥. 

2. There is an element 𝑥 ∈ 𝑋 such that 𝑥(𝑖) > 0 for all 𝑖 ∈ ℕ. 

 

A sequence (𝑥𝑛) ⊂ 𝑋 is said to be 휀-separated sequence, if separation of sequence (𝑥𝑛) denoted by sep(𝑥𝑛) = inf{∥∥𝑥𝑛 −
𝑥𝑚∥∥: 𝑛 ≠ 𝑚} > 휀 for some 휀 > 0 (Huff [7]). 

A Banach space 𝑋 is said to be uniformly convex, denoted by (UC), if for each 휀 > 0, there is a 𝛿 > 0 such that for 𝑥, 𝑦 ∈ 𝑆(𝑋), ∥

𝑥 − 𝑦 ∥≥ 휀 implies ∥
∥𝑥+𝑦

2 ∥
∥ < 1 − 𝛿. For any 𝑥 ∉ 𝑋, the drop determined by 𝑥 is the set 𝐷(𝑥, 𝐵(𝑋)) = conv({𝑥} ∪ 𝐵(𝑋)). A 

Banach space 𝑋 has the drop property (D), if for every closed set 𝐶 disjoint with 𝐵(𝑋), there exists an element 𝑥 ∈ 𝐶 such that 

𝐷(𝑥, 𝐵(𝑋)) ∩ 𝐶 = {𝑥}. 
A Banach space 𝑋 is called nearly uniformly convex (𝑁𝑈𝐶) if for every 휀 > 0, there exists 𝛿 ∈ (0,1) such that for every (𝑥𝑛) ⊆
𝐵(𝑋) with sep(𝑥𝑛) > 휀, we have conv(𝑥𝑛) ∪ ((1 − 𝛿)𝐵(𝑋)) ≠ 𝜙. Huff [7] has proved that every 𝑁𝑈𝐶 Banach space is reflexive 

and has property (H). 
Kutzarova [9] has given a characterization of 𝑘-nearly uniformly convex Banach spaces. Let 𝑘 ≥ 2 be an integer. A Banach space 

𝑋 is said to be 𝑘-nearly uniformly convex (𝑘 − 𝑁𝑈𝐶), if for any 휀 > 0, there exists 𝛿 > 0 such that for any sequence (𝑥𝑛) ⊂

𝐵(𝑋) with sep(𝑥𝑛) > 휀, there are 𝑛1, 𝑛2, … , 𝑛𝑘 ∈ ℕ such that ∥
∥𝑥𝑛1+𝑥𝑛2+⋯+𝑥𝑛𝑘

𝑘 ∥
∥ < 1 − 𝛿. It is clear that 𝑘 − 𝑁𝑈𝐶 Banach spaces 

are 𝑁𝑈𝐶 but the opposite does not hold in general. 

An element 𝑥 ∈ 𝑋 is said to be order continuous, if for any sequence (𝑥𝑛) ⊂ 𝑋 such that 𝑥𝑛(𝑖) ≤ |𝑥(𝑖)| for each 𝑖 ∈ ℕ and 

𝑥𝑛(𝑖) → 0(𝑛 → ∞), we have ∥∥𝑥𝑛∥∥ → 0 holds. 

A Köthe sequence space 𝑋 is said to be order continuous if all sequences in 𝑋 are order continuous. It is easy to see that 𝑥 ∈ 𝑋 is 

order continuous if and only if 

 

∥ (0, … ,0, 𝑥(𝑛 + 1), 𝑥(𝑛 + 2), … ) ∥→ 0 as 𝑛 → ∞ 

 

A Banach space 𝑋 is said to have the Kadec-Klee property (or property (H)) if every weakly convergent sequence on the unit 

sphere with the weak limit in the sphere is convergent in norm. 

A Banach space 𝑋 is said to have the Opial property ([19]), if for every weakly null sequence (𝑥𝑛) ⊂ 𝑋 and every non-zero 𝑥 ∈ 𝑋, 

we have 

 

lim inf
𝑛→∞

 ∥∥𝑥𝑛∥∥ < lim inf
𝑛→∞

 ∥∥𝑥𝑛 + 𝑥∥∥. 

 

A Banach space 𝑋 is said to have the uniform Opial property ([19]), if for each 휀 > 0, there exists 𝜇 > 0 such that for any weakly 

null sequence (𝑥𝑛) in 𝑆(𝑋) and 𝑥 ∈ 𝑋 with ∥ 𝑥 ∥≥ 휀, the following inequality holds: 

 

1 + 𝜇 ≤ lim inf
𝑛→∞

 ∥∥𝑥𝑛 + 𝑥∥∥. 

 

In any Banach space 𝑋, an Opial property is important because it ensures that 𝑋 has a weak fixed point property ([6]). Opial in 

([16]) has shown that the space 𝐿𝑝[0,2𝜋](𝑝 ≠ 2,1 < 𝑝 < ∞) does not have this property but the Lebesgue sequence space ℓ𝑝(1 <

𝑝 < ∞) has. 

 

For a real vector space 𝑋, a function 𝜌: 𝑋 → [0,∞] is called a modular if it satisfies the following conditions: 

1. 𝜌(𝑥) = 0 if and only if 𝑥 = 0. 

2. 𝜌(𝛼𝑥) = 𝜌(𝑥) for all 𝛼 ∈ 𝐹 with |𝛼| = 1. 

3. 𝜌(𝛼𝑥 + 𝛽𝑦) ≤ 𝜌(𝑥) + 𝜌(𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and all 𝛼, 𝛽 ≥ 0 with 𝛼 + 𝛽 = 1. 

 

Further, the modular 𝜌 is called the convex if, 

4. 𝜌(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝜌(𝑥) + 𝛽𝜌(𝑦) holds for all 𝑥, 𝑦 ∈ 𝑋 and all 𝛼, 𝛽 ≥ 0 with 𝛼 + 𝛽 = 1. 

 

If 𝜌 is a modular in 𝑋, we define 

 

𝑋𝜌 = {𝑥 ∈ 𝑋: 𝜌(𝜆𝑥) → 0 as 𝜆 → 0+},

𝑋𝜌
∗ = {𝑥 ∈ 𝑋: 𝜌(𝜆𝑥) < ∞ for some 𝜆 > 0}.

 

 

It is clear that 𝑋𝜌 ⊆ 𝑋𝜌
∗. If 𝜌 is a convex modular, the functions 

 

∥ 𝑥 ∥𝐿= inf {𝜆 > 0: 𝜌 (
𝑥

𝜆
) ≤ 1} 

 

And 
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∥ 𝑥 ∥𝐴= inf
𝜆>0

 
1

𝜆
(1 + 𝜌(𝜆𝑥)) 

 

are two norms on 𝑋𝜌. If 𝜌 is a convex modular on 𝑋, then 𝑋𝜌 = 𝑋𝜌
∗ and both ∥⋅∥𝐿 and ∥⋅∥𝐴 is a norm on 𝑋𝜌 for which 𝑋𝜌 is a 

Banach space. 

 

The norms ∥⋅∥𝐿 and ∥⋅∥𝐴 are called the Luxemburg norm and the Amemiya norm (Orlicz norm) respectively. In addition, 

 

∥⋅∥𝐿≤∥⋅∥𝐴≤ 2 ∥⋅∥𝐿 

 

for all 𝑥 ∈ 𝑋𝜌 holds ([17]). 

A sequence (𝑥𝑛) in 𝑋𝜌 is called modular convergent to 𝑥 ∈ 𝑋𝜌 if there exists a 𝜆 > 0 such that 𝜌(𝜆(𝑥𝑛 − 𝑥)) → 0 as 𝑛 → ∞. 

 

Lemma 2.1. Let (𝑥𝑛) ⊂ 𝑋𝜌. Then ∥∥𝑥𝑛∥∥𝐿 → 0 (or equivalently ∥∥𝑥𝑛∥∥𝐴 → 0) if and only if 𝜌(𝜆𝑥𝑛) → 0 as 𝑛 → ∞, for every 𝜆 > 0. 

Proof. See [[17], p.15, Theorem 1]. 

Throughout this paper, we assume the sequence 𝑝 = (𝑝𝑛) as a bounded sequence of positive real numbers with 𝑝𝑛 > 1,𝐻 =
sup𝑛  𝑝𝑛 and 𝑀 = max{1,𝐻}. 
Besides this, we need the following inequalities in the sequel; 

 
|𝑎𝑛 + 𝑏𝑛|

𝑝𝑛 ≤ 𝐾(|𝑎𝑛|
𝑝𝑛 + |𝑏𝑛|

𝑝𝑛)  (2.1) 

 
|𝑎𝑛 + 𝑏𝑛|

𝑞𝑛 ≤ |𝑎𝑛|
𝑞𝑛 + |𝑏𝑛|

𝑞𝑛  (2.2) 

 

where 𝑞𝑛 =
𝑝𝑛

𝑀
≤ 1 and 𝐾 = max{1, 2𝐻−1} with 𝐻 = sup𝑛  𝑝𝑛. 

Notations: For any 𝑥 ∈ ℓ0 and 𝑖 ∈ ℕ, we use the following notations throughout the paper: 

 

𝑥|𝑖 = (𝑥(1), 𝑥(2), … , 𝑥(𝑖),0,0, … ), called the truncation of 𝑥 at 𝑖,

𝑥|ℕ−𝑖 = (0,0, … ,0, 𝑥(𝑖 + 1), 𝑥(𝑖 + 2), … ),

𝑥|𝐼 = {𝑥 = (𝑥(𝑖))𝑖=1
∞ : 𝑥(𝑖) ≠ 0 for all 𝑖 ∈ 𝐼 ⊆ ℕ and 𝑥(𝑖) = 0 for all 𝑖 ∈ ℕ ∖ 𝐼},

supp𝑥 = {𝑖 ∈ ℕ: 𝑥(𝑖) ≠ 0}

 

 

and cl𝐴 denotes the closure of a set 𝐴. 

 

Let 𝜆 = (𝜆𝑛) be a non-decreasing sequence of positive real numbers tending to ∞ such that 𝜆𝑛+1 ≤ 𝜆𝑛 + 1, 𝜆1 = 1.  

The generalized de la Vallée-Poussin means of a sequence 𝑥 = (𝑥𝑛) are defined as follows: 

 

𝑡𝑛(𝑥) =
1

𝜆𝑛
∑  

𝑗∈𝐼𝑛

𝑥𝑗 

 

Where 𝐼𝑛 = [𝑛 − 𝜆𝑛 + 1, 𝑛] for 𝑛 = 1,2, … 

 

A sequence 𝑥 = (𝑥𝑛) is said to be (𝑉, 𝜆)-summable to a number 𝑙 if 𝑡𝑛(𝑥) → 𝑙 as 𝑛 → ∞ [10]. If 𝜆𝑛 = 𝑛, then (𝑉, 𝜆)-summability 

and strongly (𝑉, 𝜆)-summability are reduced to (𝐶, 1)-summability and [𝐶, 1]-summability, respectively. 

Let (𝑡𝑛) be a sequence of non-negative real numbers with 𝑡0 > 0 and write 𝑇𝑛 = ∑𝑘=0
𝑛  𝑡𝑘 for all 𝑛 ∈ ℕ. Then the Nörlund mean 

with respect to the sequence 𝑡 = (𝑡𝑘) is defined by the matrix 𝑁𝑡 = (𝑎𝑛𝑘
𝑡 ) which is given by 

 

𝑎𝑛𝑘
𝑡 = {

𝑡𝑛−𝑘
𝑇𝑛

0 ≤ 𝑘 ≤ 𝑛

0 𝑘 > 𝑛

 for all 𝑘, 𝑛 ∈ ℕ. 

 

It is known that the Nörlund matrix 𝑁𝑡 is a Toeplitz matrix if and only if 𝑡𝑛/𝑇𝑛 → 0 as 𝑛 → ∞ and is reduced in the case 𝑡 = 𝑒 =
(1,1, … ) to the matrix 𝐶1 of arithmetic means. Additionally, for 𝑡𝑛 = 𝐴𝑛

𝑛−1 for all 𝑛 ∈ ℕ, the method 𝑁𝑡 is reduced to the Cesàro 

method 𝐶𝑟 of order 𝑟 > −1 where 

 

𝐴𝑛
𝑡 = {

(𝑟 + 1)(𝑟 + 2)⋯ (𝑟 + 𝑛)

𝑛!
𝑛 = 1,2, …

1 𝑛 = 0

 

 

Now we introduce the following sequence space 

Let (𝑡𝑛) be a sequence of non-negative real numbers with 𝑡0 > 0 with 𝑇𝜆𝑛 = ∑𝑖∈𝐼𝑛  𝑡𝑖 for all 𝑛 ∈ ℕ where 𝑇𝜆𝑛 → ∞ as 𝑛 → ∞. Let 

𝑝 = (𝑝𝑛) is a bounded sequence of positive real numbers with 𝑝𝑛 ≥ 1 for all 𝑛 ∈ ℕ. Then we define the generalized modular 

sequence space 
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𝑁(𝜆, 𝑝) = {𝑥 ∈ ℓ0: 𝜌(𝜆𝑥) < ∞ for some 𝜆 > 0} 
 

Where 

𝜌(𝑥) = ∑  

∞

𝑛=1

|
1

𝑇𝜆𝑛
∑ 

𝑖∈𝐼𝑛

  𝑡𝑛−𝑖𝑥(𝑖)|

𝑝𝑛

 

 

with 𝑇𝜆𝑛 = ∑𝑖∈𝐼𝑛  𝑡𝑖 where 𝑇𝜆𝑛 → ∞ as 𝑛 → ∞ and 𝐼𝑛 = [𝑛 − 𝜆𝑛 + 1, 𝑛] for 𝑛 ≥ 1. 

We use the notations 𝑁𝐿(𝜆, 𝑝) = (𝑁(𝜆, 𝑝), ∥⋅∥𝐿) and 𝑁𝐴(𝜆, 𝑝) = (𝑁(𝜆, 𝑝), ∥⋅∥𝐴) for brevity. 

 

Main Results 

Theorem 3.1. The functional 𝜌 is a convex modular on 𝑁𝐿(𝜆, 𝑝). 
Proof. Let 𝑥, 𝑦 ∈ 𝑁𝐿(𝜆, 𝑝). It is obvious that 𝜌(𝑥) = 0 if and only if 𝑥 = 0 and 𝜌(𝛼𝑥) = 𝜌(𝑥) for scalar 𝛼 with |𝛼| = 1. Let 𝛼 ≥
0, 𝛽 ≥ 0 with 𝛼 + 𝛽 = 1. By the convexity of the function 𝑡 → |𝑡|𝑝𝑛 for all 𝑛 ∈ ℕ, we have 

 

 

𝜌(𝛼𝑥 + 𝛽𝑦)= ∑  ∞
𝑛=1   |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖(𝛼𝑥(𝑖) + 𝛽𝑦(𝑖))|

𝑝𝑛

= ∑  ∞
𝑛=1   |𝛼

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖(𝑥(𝑖)) + 𝛽

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖(𝑦(𝑖))|

𝑝𝑛

≤ 𝛼 ∑  ∞
𝑛=1   |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖(𝑥(𝑖))|

𝑝𝑛

+ 𝛽∑  ∞
𝑛=1   |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖(𝑦(𝑖))|

𝑝𝑛

= 𝛼𝜌(𝑥) + 𝛽𝜌(𝑦).

 

  

Lemma 3.1. For 𝑥 ∈ 𝑁𝐿(𝜆, 𝑝), the modular 𝜌 on 𝑁𝐿(𝜆, 𝑝) satisfies the following properties: 

1. If 0 < 𝑎 < 1, then 𝑎𝑀𝜌 (
𝑥

𝑎
) ≤ 𝜌(𝑥) and 𝜌(𝑎𝑥) ≤ 𝑎𝜌(𝑥), 

2. If 𝑎 > 1, then 𝜌(𝑥) ≤ 𝑎𝑀𝜌 (
𝑥

𝑎
) 

3. If 𝑎 ≥ 1, then 𝜌(𝑥) ≤ 𝑎𝜌(𝑥) ≤ 𝜌(𝑎𝑥). 
 

Lemma 3.2. If 𝜌 ∈ Δ2
𝑠 , then for any 𝐿 > 0 and 휀 > 0, there exists 𝛿 = 𝛿(𝐿, 휀) > 0 such that ∣ 𝜌(𝑢 + 𝑣) − 𝜌(𝑢) ∣< 휀 whenever 

𝑢, 𝑣 ∈ 𝑋𝜌 with 𝜌(𝑢) ≤ 𝐿 and 𝜌(𝑣) ≤ 𝛿. 

 

Lemma 3.3. Convergence in norm and in modular sense are equivalent in 𝑋𝜌 if 𝜌 ∈ Δ2. 

 

Lemma 3.4. If 𝜌 ∈ Δ2
𝑠 , then for any 휀 > 0, there exists 𝛿 = 𝛿(휀) > 0 such that ∥ 𝑥 ∥≥ 1 + 𝛿 whenever 𝜌(𝑥) ≥ 1 + 휀. 

 

Lemma 3.5. For any 𝑥 ∈ 𝑁𝐿(𝜆, 𝑝), we have 

1. If ∥ 𝑥 ∥𝐿< 1, then 𝜌(𝑥) ≤∥ 𝑥 ∥𝐿, 

2. If ∥ 𝑥 ∥𝐿> 1, then 𝜌(𝑥) ≥∥ 𝑥 ∥𝑙, 
3. ∥ 𝑥 ∥𝐿= 1 if and only if 𝜌(𝑥) = 1, 

4. ∥ 𝑥 ∥𝐿< 1 if and only if 𝜌(𝑥) < 1, 

5. ∥ 𝑥 ∥𝐿> 1 if and only if 𝜌(𝑥) > 1. 

 

Lemma 3.6. For any 𝑥 ∈ 𝑁𝐿(𝜆, 𝑝), we have 

1. If 0 < 𝑎 < 1 and ∥ 𝑥 ∥𝐿> 𝑎, then 𝜌(𝑥) > 𝑎𝑀, 

2. If 𝑎 ≥ 1 and ∥ 𝑥 ∥𝐿< 𝑎, then 𝜌(𝑥) < 𝑎𝑀. 

 

Lemma 3.7. Let (𝑥𝑛) be a sequence in 𝑁𝐿(𝜆, 𝑝). 
1. If ∥∥𝑥𝑛∥∥𝐿 → 1 as 𝑛 → ∞, then 𝜌(𝑥𝑛) → 1 as 𝑛 → ∞. 

2. If 𝜌(𝑥𝑛) → 0 as 𝑛 → ∞, then ∥ 𝑥 ∥𝐿→ 0 as 𝑛 → ∞. 

 

Lemma 3.8.  

For any 𝑥 ∈ 𝑁𝐿(𝜆, 𝑝) and 휀 ∈ (0,1), there exists 𝛿 ∈ (0,1) such that 𝜌(𝑥) ≤ 1 − 휀 implies 

 

 ∥ 𝑥 ∥𝐿≤ 1 − 𝛿. 

 

Proof. Suppose that the Lemma does not hold, then there exists 휀 > 0 and 𝑥𝑛 ∈ 𝑁𝐿(𝜆, 𝑝) such that 𝜌(𝑥𝑛) ≤ 1 − 휀 and 
1

2
≤

∥∥𝑥𝑛∥∥𝐿 ↗ 1. Let 𝑎𝑛 =
1

∥∥𝑥𝑛∥∥𝐿
− 1. Then, 𝑎𝑛 → 0 as 𝑛 → ∞. Let 𝐿 = sup{𝜌(2𝑥𝑛): 𝑛 ∈ ℕ}. By sup𝑛  𝑝𝑛 < ∞, that is 𝜌 ∈ Δ2

𝑠 , there 

exists 𝐾 ≥ 2 such that 

 

𝜌(2𝑢) ≤ 𝐾𝜌(𝑢) + 1  (3.1) 
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for every 𝑢 ∈ 𝑁𝐿(𝜆, 𝑝) with 𝜌(𝑢) < 1.  

By equation (3.1), we have 𝜌(2𝑥𝑛) ≤ 𝐾𝜌(𝑥𝑛) + 1 ≤ 𝐾 + 1 for all 𝑛 ∈ ℕ. Hence 0 < 𝐿 < ∞. By Theorem 3.1 and Lemma (3.1) 

(iii), we have 

1= 𝜌 (
𝑥𝑛

∥∥𝑥𝑛∥∥𝐿
) = 𝜌(2𝑎𝑛𝑥𝑛 + (1 − 𝑎𝑛)𝑥𝑛)

≤ 𝑎𝑛𝜌(2𝑥𝑛) + (1 − 𝑎𝑛)𝜌(𝑥𝑛)

≤ 𝑎𝑛𝐿 + (1 − 𝑎𝑛)(1 − 휀) → 1 − 휀 as 𝑛 → ∞

 

 

which leads to a contradiction. 

 

Theorem 3.2. The space 𝑁𝐿(𝜆, 𝑝) is a Banach space with respect to the Luxemburg norm. 

 

Proof. Let (𝑥𝑙) = (𝑥𝑙(𝑖)) be a Cauchy sequence in 𝑁𝐿(𝜆, 𝑝) and 휀 ∈ (0,1). Thus there exists 𝑁 ∈ ℕ such that ∥∥𝑥𝑙 − 𝑥𝑚∥∥𝐿 < 휀 for 

all 𝑙, 𝑚 ≥ 𝑁. By Lemma 3.5(i), we have 

 

𝜌(𝑥𝑙 − 𝑥𝑚) ≤ ∥∥𝑥𝑙 − 𝑥𝑚∥∥𝐿 < 휀 for all 𝑙, 𝑚 ≥ 𝑁.  (3.2) 

 

That is, 

 

∑  ∞
𝑛=1   |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖(𝑥𝑙(𝑖) − 𝑥𝑚(𝑖))|

𝑝𝑛

< 휀 for all 𝑙, 𝑚 ≥ 𝑁  (3.3) 

 

For fixed 𝑛, we have |𝑥𝑙(𝑖) − 𝑥𝑚(𝑖)| < 휀 for all 𝑙, 𝑚 ∈ 𝑁. 

 

Thus, (𝑥𝑙(𝑖)) is a Cauchy sequence in ℝ for all 𝑖 ∈ ℕ. Since ℝ is complete, for each 𝑖 ≥ 1, there exists 𝑥(𝑖) ∈ ℝ such that 

𝑥𝑚(𝑖) → 𝑥(𝑖) as 𝑚 → ∞. 

 

Thus, for fixed 𝑛 and each 𝑖 ∈ 𝐼𝑛, we have 

 

(𝑥𝑙(𝑖) − 𝑥(𝑖)) < 휀 as 𝑚 → ∞, for all 𝑙 ≥ 𝑁.  

 

This implies that 

 

𝜌(𝑥𝑙 − 𝑥𝑚) → 𝜌(𝑥𝑙 − 𝑥) as 𝑚 → ∞.  (3.4) 

 

That is, 

 

∑  ∞
𝑛=1   |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖(𝑥𝑙(𝑖) − 𝑥𝑚(𝑖))|

𝑝𝑛

→ ∑  ∞
𝑛=1   |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖(𝑥𝑙(𝑖) − 𝑥(𝑖))|

𝑝𝑛

 as 𝑚 → ∞.  (3.5) 

 

By equation (3.2), we have 𝜌(𝑥𝑙 − 𝑥) ≤ ∥∥𝑥𝑙 − 𝑥∥∥𝐿 < 휀 for all 𝑙 ≥ 𝑁 and hence 𝑥𝑙 → 𝑥 as 𝑙 → ∞. So we have, 𝑥𝑙 − 𝑥 ∈ 𝑁𝐿(𝜆, 𝑝). 

Since, (𝑥𝑙) ∈ 𝑁𝐿(𝜆, 𝑝) and from the linearity of the sequence space 𝑁𝐿(𝜆, 𝑝), we get 𝑥 = 𝑥𝑙 − (𝑥𝑙 − 𝑥) ∈ 𝑁𝐿(𝜆, 𝑝). 
Therefore, the sequence space 𝑁𝐿(𝜆, 𝑝) is a Banach space with respect to the Luxemburg norm. 

 

Theorem 3.3. Let (𝑥𝑛) ∈ 𝑋𝜌, then ∥∥𝑥𝑛∥∥𝐿 → 0 as 𝑛 → ∞ if and only if 𝜌(𝜆𝑥𝑛) → 0 as 𝑛 → ∞, for every 𝜆 > 0. 

Proof. See [[13], Theorem 1.3(a)]. 

 

Lemma 3.9. Let 𝑥 ∈ 𝑁𝐿(𝜆, 𝑝) and (𝑥𝑙) ⊆ 𝑁𝐿(𝜆, 𝑝). If 𝜌(𝑥𝑙) → 𝜌(𝑥) as 𝑙 → ∞ and 𝑥𝑙(𝑗) → 𝑥(𝑗) as 𝑙 → ∞ for all 𝑗 ∈ ℕ, then 𝑥𝑙 →
𝑥 as 𝑙 → ∞. 

 

Proof. Let 휀 > 0. Since 𝜌(𝑥) = ∑𝑛=1
∞   |

1

𝑇𝜆𝑛
∑𝑖∈𝐼𝑛  𝑡𝑛−𝑖𝑥(𝑖)|

𝑝𝑛

< ∞, there is 𝑛0 ∈ ℕ such that 

 

∑  ∞
𝑛=𝑛0+1

  |
1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖𝑥(𝑖)|

𝑝𝑛

<
6𝐾

  (3.6) 

 

where 𝐻 = sup𝑝𝑛, 𝐾 = max{1, 2𝐻−1}. Since 𝜌(𝑥𝑙) → 𝜌(𝑥) and 𝑥𝑙(𝑗) → 𝑥(𝑗) as 𝑙 → ∞ for all 𝑛 ∈ ℕ, we have 

𝜌(𝑥𝑙) − ∑𝑛=1
𝑛0   |

1

𝑇𝜆𝑛
∑𝑖∈𝐼𝑛  𝑡𝑛−𝑖𝑥𝑙(𝑖)|

𝑝𝑛

→ 𝜌(𝑥) − ∑𝑛=1
𝑛0   |

1

𝑇𝜆𝑛
∑𝑖∈𝐼𝑛  𝑡𝑛−𝑖𝑥(𝑖)|

𝑝𝑛

 as 𝑙 → ∞. 

 

Thus, there exists 𝑙0 ∈ ℕ such that 
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𝜌(𝑥𝑙) − ∑  
𝑛0
𝑛=1   |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖𝑥𝑙(𝑖)|

𝑝𝑛

< 𝜌(𝑥) − ∑  
𝑛0
𝑛=1   |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖𝑥(𝑖)|

𝑝𝑛

+
3𝐾

  (3.7) 

 

for all 𝑙 ≥ 𝑙0. Also, since 𝑥𝑙(𝑗) → 𝑥(𝑗) for all 𝑗 ∈ ℕ, we have 

∑  
𝑛0
𝑛=1   |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖(𝑥𝑙(𝑖) − 𝑥(𝑖))|

𝑝𝑛

<
3

 for all 𝑙 ≥ 𝑙0  (3.8) 

 

It follows from equation (3.6), equation (3.7) and equation (3.8) that for all 𝑙 ≥ 𝑙0, 

 

𝜌(𝑥𝑙 − 𝑥) = ∑  ∞
𝑛=1   |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖(𝑥𝑙(𝑖) − 𝑥(𝑖))|

𝑝𝑛

= ∑  
𝑛0
𝑛=1   |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖(𝑥𝑙(𝑖) − 𝑥(𝑖))|

𝑝𝑛

+ ∑  ∞
𝑛=𝑛0+1

  |
1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖(𝑥𝑙(𝑖) − 𝑥(𝑖))|

𝑝𝑛

<
3
+ 𝐾 [∑  ∞

𝑛=𝑛0+1
  |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖𝑥𝑙(𝑖)|

𝑝𝑛

+∑  ∞
𝑛=𝑛0+1

  |
1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖𝑥(𝑖)|

𝑝𝑛

]

=
3
+ 𝐾 [𝜌(𝑥𝑙) − ∑  

𝑛0
𝑛=1   |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖𝑥𝑙(𝑖)|

𝑝𝑛

+∑  ∞
𝑛=𝑛0+1

  |
1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖𝑥(𝑖)|

𝑝𝑛

]

<
3
+ 𝐾 [𝜌(𝑥) − ∑  

𝑛0
𝑛=1   |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖𝑥(𝑖)|

𝑝𝑛

+
3𝐾

+∑  ∞
𝑛=𝑛0+1

  |
1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖𝑥(𝑖)|

𝑝𝑛

]

=
3
+ 𝐾 [∑  ∞

𝑛=𝑛0+1
  |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖𝑥(𝑖)|

𝑝𝑛

+
3𝐾

+∑  ∞
𝑛=𝑛0+1

  |
1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖𝑥(𝑖)|

𝑝𝑛

]

<
3
+ 𝐾 [2 ⋅

6𝐾
+

3𝐾
] =

3
+

3
+

3
= 휀.

 (3.9) 

 

This shows that 𝜌(𝑥𝑙 − 𝑥) → 0 as 𝑙 → ∞. Hence, by Lemma 3.7(ii), we have ∥∥𝑥𝑙 − 𝑥∥∥𝐿 → 0 as 𝑙 → ∞. That is, 𝑥𝑙 → 𝑥 as 𝑙 → ∞. 

This completes the proof. 

 

Theorem 3.4. The space 𝑁𝐿(𝜆, 𝑝) has the Kadec-Klee property. 

Proof. Let 𝑥 ∈ 𝑆(𝑁𝐿(𝜆, 𝑝)) and (𝑥𝑙) ⊆ 𝐵(𝑁𝐿(𝜆, 𝑝)) such that ∥∥𝑥𝑙∥∥𝐿 → 1 and 𝑥𝑙 →
𝑤
𝑥 as 𝑙 → ∞. From Lemma 3.5(iii), we have 

𝜌(𝑥) = 1, so it follows from Lemma 3.7(i) that 𝜌(𝑥𝑙) → 𝜌(𝑥) as 𝑙 → ∞. Since 𝑥𝑙 →
𝑤
𝑥 and the coordinate mapping 𝜋𝑗: 𝑁

𝐿(𝜆, 𝑝) →

ℝ defined by 𝜋𝑗(𝑥) = 𝑥(𝑗) is continuous linear function on 𝑁𝐿(𝜆, 𝑝), it follows that 𝑥𝑙(𝑗) → 𝑥(𝑗) as 𝑙 → ∞ for all 𝑗 ∈ ℕ. Thus, by 

Lemma 3.9, we have 𝑥𝑙 → 𝑥 as 𝑙 → ∞. 

 

Theorem 3.5. The sequence space 𝑁𝐿(𝜆, 𝑝) has 𝑘 − 𝑁𝑈𝐶-property for any integer 𝑘 ≥ 2. 

 

Remark 3.1. Since the Luxemburg norm ∥⋅∥𝐿 and the Amemiya norm ∥⋅∥𝐴 are equivalent, so all the above results are also true for 

the space 𝑁𝐴(𝜆, 𝑝). 
 

Theorem 3.6. 𝑆(𝑁𝐴(𝜆, 𝑝)) is a closed subspace of 𝑁𝐴(𝜆, 𝑝). 
Proof. We know, 𝑆(𝑁𝐴(𝜆, 𝑝)) = {𝑥 ∈ ℓ0: 𝜌(𝜆𝑥) < ∞ for all 𝜆 > 0} 
 

and 𝑁𝐴(𝜆, 𝑝) = {𝑥 ∈ ℓ0: 𝜌(𝜆𝑥) < ∞ for some 𝜆 > 0}.  
 

It is easy to prove that 𝑆(𝑁𝐴(𝜆, 𝑝)) is a subspace of 𝑁𝐴(𝜆, 𝑝). Now, we will prove that 𝑆(𝑁𝐴(𝜆, 𝑝)) is closed in 𝑁𝐴(𝜆, 𝑝). That is, 

we have to show that if (𝑥𝑙) ⊆ 𝑆(𝑁𝐴(𝜆, 𝑝)) for each 𝑙 ∈ ℕ and 𝑥𝑙 → 𝑥 ∈ 𝑁𝐴(𝜆, 𝑝), then 𝑥 ∈ 𝑆(𝑁𝐴(𝜆, 𝑝)). 

Since ∥∥𝑥𝑙 − 𝑥∥∥𝐴 → 0, we have by Theorem 3.3, that 𝜌(𝛼(𝑥 − 𝑥𝑙)) → 0 as 𝑙 → ∞ for all 𝛼 > 0. Hence, there exists 𝑙1 ∈ ℕ such 

that 𝜌 (2𝛼(𝑥 − 𝑥𝑙1)) < 1 and by 𝑥𝑙1 ∈ 𝑆(𝑁𝐴(𝜆, 𝑝)), we have 𝜌(2𝛼𝑥𝑙1) < ∞. Thus 
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𝜌(𝛼𝑥)= ∑  

∞

𝑛=1

  |
1

𝑇𝜆𝑛
∑ 

𝑖∈𝐼𝑛

  𝑡𝑛−𝑖𝛼𝑥(𝑖)|

𝑝𝑛

= ∑  

∞

𝑛=1

  |
1

2

1

𝑇𝜆𝑛
∑ 

𝑖∈𝐼𝑛

  𝑡𝑛−𝑖(2𝛼(𝑥(𝑖) − 𝑥𝑙1(𝑖)) − 2𝛼𝑥𝑙1(𝑖))|

𝑝𝑛

= ∑  

∞

𝑛=1

  |
1

𝑇𝜆𝑛
∑ 

𝑖∈𝐼𝑛

  𝑡𝑛−𝑖 (2𝛼(𝑥(𝑖) − 𝑥𝑙1(𝑖)) −
1

2

1

𝑇𝜆𝑛
∑ 

𝑖∈𝐼𝑛

  𝑡𝑛−𝑖2𝛼𝑥𝑙1(𝑖)|

𝑝𝑛

≤
𝐾

2
∑  

∞

𝑛=1

  |
1

𝑇𝜆𝑛
∑ 

𝑖∈𝐼𝑛

  𝑡𝑛−𝑖 (2𝛼(𝑥(𝑖) − 𝑥𝑙1(𝑖))|
𝑝𝑛

+
𝐾

2
∑  

∞

𝑛=1

  |
1

𝑇𝜆𝑛
∑ 

𝑖∈𝐼𝑛

  𝑡𝑛−𝑖2𝛼𝑥𝑙1(𝑖)|

𝑝𝑛

=
𝐾

2
𝜌 (2𝛼(𝑥 − 𝑥𝑙1)) +

𝐾

2
𝜌(2𝛼𝑥𝑙1)

 

 

where 𝐾 = max(1, 2𝐻−1). Since, 𝜌 (2𝛼(𝑥 − 𝑥𝑙1)) < ∞ and 𝜌(2𝛼𝑥𝑙1) < ∞ for every 𝛼 > 0, we obtain 𝜌(𝛼𝑥) < ∞ for every 𝛼 >

0. Therefore, 𝑥 ∈ 𝑆(𝑁𝐴(𝜆, 𝑝)). 
Let 𝐸 be the set of all sequences of 𝑁𝐴(𝜆, 𝑝) with finite number of coordinates different from 0. 

 

Lemma 3.10. If 𝜌(𝑥) < ∞, then the distance 𝑑(𝑥, 𝐸) from 𝑥 to 𝐸 is no more than 1. 

Proof. See [[18], Lemma 2.2]. 

 

Theorem 3.7. If lim inf𝑛→∞  𝑝𝑛 > 1, then the following assertions are true. 

1. 𝑆(𝑁𝐴(𝜆, 𝑝)) = 𝑐𝑙(𝐸), the closure of the set 𝐸, 

2. 𝑆(𝑁𝐴(𝜆, 𝑝)) is the subspace of all order continuous elements of 𝑁𝐴(𝜆, 𝑝), 
3. 𝑆(𝑁𝐴(𝜆, 𝑝)) is a separable space. 

 

Proof.  

1. First we have to show that 𝑆(𝑁𝐴(𝜆, 𝑝)) ⊂ cl(𝐸). Then for any 𝑥 ∈ 𝑆(𝑁𝐴(𝜆, 𝑝)) and 𝛼 ≥ 1, we have 𝛼𝑥 ∈ 𝑆(𝑁𝐴(𝜆, 𝑝)). 

Therefore, by Lemma 3.10, we get 𝑑(𝛼𝑥, 𝐸) ≤ 1 or 𝑑(𝑥, 𝐸) ≤
1

𝛼
. 

 

Since, 𝛼 is arbitrary, we find that 𝑥 ∈ cl(𝐸). 
Conversely, since Theorem 3.6 asserts that 𝑆(𝑁𝐴(𝜆, 𝑝)) is a closed linear subspace of 𝑁𝐴(𝜆, 𝑝), hence to show cl(𝐸) ⊆
𝑆(𝑁𝐴(𝜆, 𝑝)), it suffices to show that 𝑒𝑖 ∈ 𝑆(𝑁𝐴(𝜆, 𝑝)) for each 𝑖 ∈ ℕ. Let = lim inf𝑛→∞  𝑝𝑛 > 1. Fix, 𝑖 ∈ ℕ and take any 𝛼 > 0. 

Choose 𝑛0 = max{𝑖, 𝛼} such that 𝑝𝑛 ≥ 𝛾 for all 𝑛 ≥ 𝑛0. Thus 

 

𝜌(𝛼𝑒𝑖) = ∑  

𝑛0

𝑛=1

(
𝛼

𝑛
)
𝑝𝑛

+ ∑  

∞

𝑛=𝑛0+1

(
𝛼

𝑛
)
𝑝𝑛

≤ ∑  

𝑛0

𝑛=1

(
𝛼

𝑛
)
𝑝𝑛

+ ∑  

∞

𝑛=𝑛0+1

(
𝛼

𝑛
)
𝛾

< ∞ 

 

Hence 𝑒𝑖 ∈ 𝑆(𝑁𝐴(𝜆, 𝑝)). 
 

2. Obviously, 𝑆(𝑁𝐴(𝜆, 𝑝)) is a subspace of 𝑁𝐴(𝜆, 𝑝). Now, we have to show that each element of 𝑆(𝑁𝐴(𝜆, 𝑝)) is an order 

continuous. 

 

Let 𝑥 ∈ 𝑆(𝑁𝐴(𝜆, 𝑝)) be any arbitrary element and 휀 > 0. Since, 𝑥 ∈ 𝑆(𝑁𝐴(𝜆, 𝑝)), there exists 𝑛0 ∈ ℕ such that 

 

𝜌((𝑥 − 𝑥|𝑛)/휀) < 휀 for all 𝑛 ≥ 𝑛0.  

 

Therefore, ∥∥휀−1(𝑥 − 𝑥|𝑛)∥∥𝐴 ≤ 1 + 𝜌 ((𝑥 − 𝑥|𝑛0)/휀) ≤ 1 + 휀 for all 𝑛 ≥ 𝑛0. 

This yields ∥∥𝑥 − 𝑥|𝑛∥∥𝐴 → 0 as 𝑛 → ∞, since 휀 is arbitrary. So 𝑥 is an order continuous element. But, 𝑥 is any arbitrary element of 

𝑆(𝑁𝐴(𝜆, 𝑝)) and hence every element of 𝑆(𝑁𝐴(𝜆, 𝑝)) is order continuous. 

 

3. From the construction of 𝐸, it can be seen that 𝐸 is a countable dense set. Also, from (i), we have 𝑆(𝑁𝐴(𝜆, 𝑝)) has atleast one 

dense set 𝐸. Hence 𝑆(𝑁𝐴(𝜆, 𝑝)) is separable. 

 

Theorem 3.8. If 𝑝𝑛 > 1 for all 𝑛 ∈ ℕ and limsup𝑛  𝑝𝑛 < ∞, then 𝑁𝐴(𝜆, 𝑝) has the uniform Opial property. 

Proof. Take any 휀 > 0 and 𝑥 ∈ 𝑁𝐴(𝜆, 𝑝) such that ∥ 𝑥 ∥𝐴≥ 휀. Let (𝑥𝑙) be a weakly null sequence in 𝑆(𝑁𝐴(𝜆, 𝑝)). Since, 

lim sup𝑛  𝑝𝑛 < ∞, by Theorem 3.4, there exists a 𝛿 ∈ (0,2/3) independent of 𝑥 such that 𝜌(𝑥/2) > 𝛿. Also, since lim sup𝑛  𝑝𝑛 <
∞, we have 𝑆(𝑁𝐴(𝜆, 𝑝)) = 𝑁𝐴(𝜆, 𝑝). By Theorem 3.7(ii), 𝑥 is an order continuous element. Hence, we can find 𝑛0 ∈ ℕ such that  
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∥∥𝑥|ℕ−𝑛0∥∥ <
𝛿

4
 and 

 

∑  ∞
𝑛=𝑛0+1

  |
1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖𝑥(𝑖)|

𝑝𝑛

<
𝛿

8
  (3.10) 

 

Since 𝜌(𝑥/2) ≥ 𝛿, it follows that 

 

𝛿≤ ∑  

𝑛0

𝑛=1

  |
1

𝑇𝜆𝑛
∑ 

𝑖∈𝐼𝑛

  𝑡𝑛−𝑖
𝑥(𝑖)

2
|

𝑝𝑛

+ ∑  

∞

𝑛=𝑛0+1

  |
1

𝑇𝜆𝑛
∑ 

𝑖∈𝐼𝑛

  𝑡𝑛−𝑖
𝑥(𝑖)

2
|

𝑝𝑛

≤ ∑  

𝑛0

𝑛=1

  |
1

𝑇𝜆𝑛
∑ 

𝑖∈𝐼𝑛

  𝑡𝑛−𝑖
𝑥(𝑖)

2
|

𝑝𝑛

+
𝛿

8

 

 

which implies that 

 

∑  
𝑛0
𝑛=1   |

1

𝑇𝜆𝑛
∑  𝑖∈𝐼𝑛   𝑡𝑛−𝑖

𝑥(𝑖)

2
|
𝑝𝑛

≥
7𝛿

8
  (3.10) 

 

Since, 𝑥𝑙 →
𝑤
0, it follows that 𝑥𝑙(𝑖) → 0 as 𝑙 → ∞ for each 𝑖 ∈ ℕ, so there exists 𝑙0 ∈ ℕ such that 

 

∥∥𝑥𝑙|𝑛0∥∥𝐴
<

𝛿

4
  (3.11)  

 

for all 𝑙 ≥ 𝑙0, which implies that ∥∥𝑥𝑙|ℕ−𝑛0∥∥𝐴
> 1 −

𝛿

4
 since ∥ 𝑥 ∥𝐴= 1. 

Now, for all 𝑙 ≥ 𝑙0, we have 

 

∥∥𝑥 + 𝑥𝑙∥∥= ∥∥(𝑥 + 𝑥𝑙)|𝑛0 + (𝑥 + 𝑥𝑙)|ℕ−𝑛0∥∥𝐴
≥ ∥∥𝑥|𝑛0 + 𝑥𝑙|ℕ−𝑛0∥∥𝐴

− ∥∥𝑥|ℕ−𝑛0∥∥𝐴
− ∥∥𝑥𝑙|𝑛0∥∥𝐴

 (3.12) 

 

Now, we consider ∥∥𝑥|𝑛0 + 𝑥𝑙|ℕ−𝑛0∥∥𝐴
. Since, 𝑝𝑛 > 1 for all 𝑛 ∈ ℕ, we have there exists 𝑐𝑙 > 0 such that 

 

∥∥𝑥|𝑛0 + 𝑥𝑙|ℕ−𝑛0∥∥𝐴
=

1

𝑐𝑙
[1 + 𝜌 (𝑐𝑙(𝑥|𝑛0 + 𝑥𝑙|ℕ−𝑛0))].  (3.13) 

 

Combining this fact with equation (3.12) and considering the fact that 𝜌(𝑥 + 𝑦) ≥ 𝜌(𝑥) + 𝜌(𝑦) if supp(𝑥) ∩ supp(𝑦) = 𝜙, we 

get 

 

∥∥𝑥 + 𝑥𝑙∥∥𝐴≥
1

𝑐𝑙
+
1

𝑐𝑙
𝜌(𝑐𝑙𝑥|𝑛0) +

1

𝑐𝑙
𝜌(𝑐𝑙𝑥𝑙|ℕ−𝑛0) −

𝛿

2
 

 

Without loss of generality, we may assume that 𝑐𝑙 ≥
1

2
 for all 𝑙 because if 𝑐𝑙 <

1

2
, then ∥∥𝑥 + 𝑥𝑙∥∥𝐴 > 2 −

𝛿

2
> 1 + 𝛿. 

Since, 2𝑐𝑙 ≥ 1, by the convexity of the function 𝑡 → |𝑡|𝑝𝑛, we have 𝜌(𝑐𝑙𝑥|𝑛0) ≥ 2𝑐𝑙𝜌(𝑥|𝑛0). Thus, inequality (3.10) and (3.14) 

implies that 

 

∥∥𝑥 + 𝑥𝑙∥∥𝐴≥ ∥∥𝑥𝑙|ℕ−𝑛0∥∥𝐴
+ 2𝜌 (

𝑥|𝑛0
2

)
𝛿

2

= ∥∥𝑥𝑙|ℕ−𝑛0∥∥𝐴
+ 2∑  

𝑛0

𝑛=1

  |
1

𝑇𝜆𝑛
∑ 

𝑖∈ℕ

  𝑡𝑛−𝑖
𝑥(𝑖)

2
|

𝑝𝑛

−
𝛿

2

> 1 −
𝛿

4
+
14𝛿

8
−
𝛿

2
= 1 + 𝛿

 

 

which implies that lim inf𝑛→∞  ∥∥𝑥 + 𝑥𝑙∥∥𝐴 ≥ 1 + 𝛿. 
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