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Abstract 

This research focuses into the complex dynamics of onion pricing in the Indian agricultural sector, with a 

specific emphasis on the volatility observed in onions, particularly within the wholesale markets of 

Gujarat. The research aims to provide a comprehensive understanding of price fluctuations and their 

impact on farmers, consumers, and the economy at large. The study employs time series analysis, 

specifically the ARIMA technique, to forecast future onion prices. The methodology involves unit root 

tests, model identification, estimation, and diagnostic checking. The selected models, ARIMA (3,1,2) for 

Mahuva, ARIMA (2,1,1) for Ahmedabad, and ARIMA (2,1,2) for Gondal, showcase the nuanced 

approach required for different markets. Post-sample period forecasts for 2021 reveal predicted onion 

prices. The forecasting accuracy is assessed using Mean Absolute Percentage Error (MAPE), with 

Mahuva exhibiting the lowest MAPE at 21.77 percent. The study emphasizes the market-specific nature 

of onion price dynamics, underscoring the importance of tailoring forecasting models to individual 

market characteristics. 
 

Keywords: Onion, forecast, ARIMA, price volatility introduction 
 

Introduction 

Within the agricultural sector, pricing holds substantial significance in the context of the 

Indian economy. It serves as a crucial factor in the computation of farm revenues and exerts a 

direct influence on the welfare of farmers (Saxena and Chand, 2017) [1]. Onions are the most 

highly volatile crop among vegetables, exhibiting a notable tendency for unexpected price 

spikes and falls (Mulla et al., 2020; Pradeep, 2015) [5, 6]. The pronounced price fluctuations in 

recent years have captured the attention of policymakers. Onions are traditionally cultivated in 

the northern regions during the winter (rabi) season. Meanwhile, in the western and southern 

states of Andhra Pradesh, Karnataka, Tamil Nadu, Gujarat, and Maharashtra, onions are grown 

during both the winter (rabi) and rainy (kharif) seasons.  
 

Indian scenario 

Maharashtra takes the lead among Indian states as the top onion producer, contributing 

significantly in terms of both area and production. In the 2018-19 period, Maharashtra's onion 

output accounted for a substantial 29.55 percent (authors calculation) of the total onion 

production in India. The Lasalgaon market in the Nasik district of Maharashtra holds a 

prominent position as the primary onion procurement market in India. It serves as a hub where 

onions are acquired from farmers and subsequently distributed across the country. 
 

Gujarat scenario 

Gujarat stands as the fifth-largest onion producer in India, contributing 3.96 percent (authors 

calculation) of the total cultivated area for onions in the country during 2018-19. Additionally, 

it holds a 5.9 percent share in the overall onion production in India. 
 

Need of present study 

The abrupt surge in onion prices in the market has a ripple effect, impacting both producers 

and consumers.  
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This spillover reaction extends to other onion markets, 

leading to elevated economic inflation. It's not just the 

producers who rely on price information; consumers and 

government agencies also depend on such data to formulate 

various policies. It's a crucial aspect that influences decision-

making across different sectors of the economy. Being aware 

of long-term market fluctuations empowers producers to 

strategize their production decisions, determining what to 

produce and how much (Saxena et al., 2019) [7]. This not only 

shapes the nature of their enterprise but also has a lasting 

impact on individuals' pockets in the long run. It's like playing 

the long game in the dynamic field of agriculture. 

The primary goal of time series analysis is to forecast future 

prices, providing insights into what is likely to occur (Pal, 

2019) [2]. It goes beyond just explaining why certain events 

will unfold, offering a forward-looking perspective that aids 

in making informed decisions in anticipation of future 

developments. The ultimate goal is to the present study is to 

provide suitable and appropriate price forecast so that proper 

policy options can be framed to minimize the recurrence of 

onion price shocks. 

 

Materials and Methods 

The present study is based on time series data of monthly 

duration, spanning from January 2004 to December 2020 

focusing specifically on onion prices. Total 3 markets 

regional markets were selected from Gujarat state viz., 

Mahuva, Ahmedabad, and Gondal. Market selection was 

based on the highest triennial ending average of onion arrivals 

from 2017 to 2020. Data analysis was conducted using R 

software to delve into the intricate patterns of onion prices 

and market dynamics. 

 

Analytical Techniques Used 

In order to achieve the objectives of the present study, 

ARIMA technique was applied to forecast the prices on onion 

in selected markets. 

 

Unit root test 

A stochastic process is considered stationary if its mean and 

variance remain constant over time. Additionally, the 

covariance between two periods is said to be stationary if it 

depends solely on the time gap or lag between the two 

periods, irrespective of the actual time at which the 

covariance is computed. Such a stochastic process is called 

weak stationary or covariance stationary or second order 

stationary etc. 

 

Mean: 𝐸(𝑌𝑡) = 𝜇 

 

Var(𝑌𝑡) = 𝐸(𝑌𝑡 − 𝜇)2 = 𝜎2 

 

Covariance (auto covariance) = 𝐸[(𝑌𝑡 − 𝜇)(𝑌𝑡+𝑘 − 𝜇] =  𝛾𝑘 

 

It is very important to test whether or not the time series is 

stationary because if a time series is not stationary, its 

behaviour can only be studied for the time period under 

consideration, it cannot be generalized to other periods & thus 

one cannot predict such a time series data. So in order to test 

the data is stationary or having unit root, the famous test 

known as Augmented Dickey-Fuller (ADF) test is used. 

The presence of unit root (non-stationary) in the underlying 

series is tested by performing Augmented Dickey-Fuller test 

using the following regression. 

 

∆𝑌𝑡 =  𝛼 + 𝛽𝑖𝑇 + 𝛿𝑖𝑌𝑖𝑡−1 + 𝑏𝑖 ∑ ∆𝑌𝑖𝑡−1 + 𝑒𝑡 
𝑝
𝑖−1    (5) 

 

Where,  

𝑌𝑖𝑡 = Price of a commodity in a given market ‘i’ at a time‘t’; 

∆𝑌𝑡−𝑖 = (𝑌𝑡−1 − 𝑌𝑡−2) (t-i – lagged prices & ∆ is Differenced 

series); 

𝑒𝑡 is pure white noise error-term, 

𝛼 is the drift parameter, 

T is the time trend effect,  

𝛽𝑖, 𝛿𝑖 & 𝑏𝑖 is coefficients  

 

p is the optimal lag value which is selected on the basis of 

Akaike Information Criterion (AIC)  

The null hypothesis is that the coefficient of 𝑌𝑡−1 is zero.  

The alternative hypothesis is: 𝛿 < 0.  

 

The possibility of acceptance & rejection of Ho is based on 

the tau statistic or test (𝜏) & the estimation procedure of tau 

statistic (𝜏) is as follows. 

1. Estimate the equation (1) by OLS method. 

2. Divide the estimated coefficient of Yt-1 by its standard 

error & refer to the DF (Dickey-Fuller) table. 

3. If the computed absolute value of the (|𝜏|) exceeds the 

absolute DF or MacKinnon critical tau values, then the 

null hypothesis (𝛿 = 0) is rejected, in which the case of 

time series is stationary. 

 

On the other hand if the computed absolute value of the (|𝜏|) 

does not exceeds the absolute DF or MacKinnon critical tau 

values, then the null hypothesis (𝛿 = 0) is accepted, in which 

the case of time series is non stationary 

 

ARIMA Model 

An Autoregressive Integrated Moving Average (ARIMA) 

model is characterized by the notation ARIMA (p, d, q) where 

p, d & q denotes orders of auto-regression, integration 

(differencing) & moving average respectively. ARIMA is a 

parsimonious approach which can represent both stationary & 

non-stationary process. An ARMA (p, q) process is defined 

by the equation. 

 

𝑃1𝑡 = 𝜇 + 𝜙1𝑃1𝑡−1 + 𝜙2𝑃1𝑡−2 + ⋯ + 𝜙𝑝𝑃1𝑡−𝑝 + 𝜃0휀1𝑡 +

𝜃1휀1𝑡−1 + ⋯ + 𝜃𝑞휀1𝑡−𝑞 .         (11) 

 

Where, 

𝑃1𝑡 = price of series at time period 

𝜇 = constant term. 

𝜙𝑖 (i = 1, 2,., p) & 𝜃1 (j=0, l, 2,., q) are model parameters.  

휀1𝑡 = Random Error at time period t. 

휀1𝑡 ~ IID (0, 𝜎2) 

 

However, in practical applications, residuals obtained after 

fitting of appropriate ARIMA model may have non-constant 

error variance. Engle (1982) proposed to model time-varying 

conditional variance with auto-regressive conditional 

heteroscedasticity (ARCH) process using lagged disturbance. 

 

Diagnostic checking 

The ARIMA (p, d, q) model is assumed to be efficient when 

the residuals estimated from it are of white noise which can 

be ensured only when the residuals of the fitted model are 

used for diagnostic checking (Jadav et al., 2017) [4]. In this 

way, the estimated model is checked to verify if it adequately 

represents the series. In this study, diagnostic checks was 

performed on the residuals to see if they are randomly & 
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normally distributed by using Jarque – Bera (JB) test for 

normality. In addition, the adequacy of the selected model 

was checked using Box-Ljung test. 

The Jarque – Bera (JB) test of the following specification was 

used in the present study. 

 

𝐽𝐵 =
𝑛

6
(s2 +

(𝐾−3)2

4
)  ~ χ (2)

2    

 

Where in: 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 (𝑠) =  

1

𝑛
∑ (𝑦𝑖 − �̅�)3𝑛

𝑖=1

[
1

𝑛
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1 ]

3

2

 

 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝑘) =  

1

𝑛
∑ (𝑦𝑖 − �̅�)4𝑛

𝑖=1

[
1

𝑛
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1 ]
2 

 

Where: n is the number of observations, �̅� is the mean of the 

underlying variable series under study & 𝑦𝑖 refers to the 

individual values of the variable under study. The statistic JB 

has an asymptotic chi-square distribution with 2 degrees of 

freedom & can be used to test the hypothesis of skewness 

being zero & excess kurtosis being zero. If JB > χ2 (α, 2), then 

the null hypothesis was rejected & it was concluded that the 

data do not follow normal distribution.  

In addition, an overall check of the model adequacy was made 

using Box-Ljung test (Ljung & Box, 1978) [3]. The test 

statistics is given by. 

 

𝑄 = 𝑛(𝑛 + 2) ∑
𝑟𝑘

2

𝑛−𝑘

𝑚
𝑘=1          (15) 

 

Where: n is the number of observations, rk is the estimated 

autocorrelation of the series at lag k =1, 2,…, m & m is the 

number of lags being considered, χ (1−α,h)
2 is the chi-square 

distribution table value with ‘h’ degrees of freedom & level of 

significance ‘α’ such that P(χ (h)
2  > χ (1−α,h)

2 ) = 1- α & degrees 

of freedom, h = (m-p-q); p & q are the numbers of AR and 

MA terms, respectively.  

In the present study, a formal test regarding the overall fitness 

of the model was done using Box-Ljung test of the residuals 

in the following manner: (i) Null hypothesis (H0): The errors 

are distributed randomly & (ii) Alternate hypothesis (H1): The 

errors are non-random. Accordingly, the null hypothesis was 

rejected if Q > χ (1−α,h)
2  & the errors are not considered to be 

independent. On the other hand, the null hypothesis was 

accepted i.e., the errors are independent if Q < χ (1−α,h)
2 . 

Thereby, if the Q values happens to be significantly large than 

zero exceeding the table χ (1−α,h)
2 value then it is to be 

concluded that the residuals of the estimated model are 

probably auto-correlated & the entire model was then has to 

be reformulated. 

 

Forecasting 

Once the three previous steps of ARIMA model are over, then 

we were able to obtain the forecasted values by estimating 

appropriate model. ARIMA models were used to forecast the 

corresponding variable. For that, the entire data was 

segregated into two parts: one for sample period forecasts & 

the other for post-sample period forecasts. The former was 

used to develop confidence in the model & the latter was used 

to generate genuine forecasts for use in future planning.  

In this regard, the actual value of the left out period & the 

forecasted value of the left out period from the selected model 

are used for cross-validation. For this, the percentage error is 

calculated such as. 

 

% of Forecasting Error = (
𝑌−�̂�

𝑌
) × 100     (16) 

 

Where, Y is the observed value of remaining twelve months 

(January, 2017 to December, 2020) & Ŷ is the forecast values 

of remaining the period under consideration.  

Lower the value of forecasting error percentage, better is the 

prediction by the selected model. Besides, the accuracy of the 

forecasts for both ex-ante & ex-post was tested for the 

minimum values of Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE) & maximum value of 

coefficient of determination (R2). Further, Box-Jenkins 

ARIMA model was run to forecast the onion price under 

study for the ex-post facto period from January, 2021 to 

March, 2021. 

 

Results and Discussion 

The ARIMA model under study is a parsimonious model 

which tends to illustrate the data more accurately with few 

parameters. It involves both the Autoregressive (AR) & 

Moving Average (MA) components to explain the data. When 

it is compared with any other linear time series model, this 

particular model is preferred for eliminating the linear 

dependency in the data (Jadhav et al., 2013) [8]. There are four 

steps involved in fitting the model viz., identification, 

estimation, diagnostic checking and forecasting for the set of 

data under discussion (Xin and Can, 2016) [9]. Therefore, all 

the necessary steps were carried out for all the selected 

markets and outlined in the respective table. 

 

Identification of parameter 

The ARIMA model comprise of three parameter viz., p, d and 

q where ‘p’ is the number of autoregressive (AR) terms while 

‘q’ is the number of moving average (MA) terms. The number 

of times the sequence must be differenced in order for it to 

become stationary is denoted by ‘d.' The parameter ‘d’ was 

earlier found by carrying out unit root test for the selected 

market and found integrated of order one, i.e. I (1) or ‘d = 1’ 

as mentioned in Table 1. Because the series is non-stationary, 

differencing was used to convert it to a stationary series. The 

Auto Correlation Function (ACF) helps in choosing relevant 

ordering values for moving average (MA) and Partial 

Autocorrelation Functions (PACF) for autoregressive (AR). 

The ACF and PACF coefficients were found to be under the 

standard error limits in all cases. ACF and PACF values were 

retrieved for 24 lags length which are illustrated in Table 2. 

 

Estimation of parameter 

The model having lowest values of MAPE & comparatively 

lower values of Akaike Information Criteria (AIC), Mean 

Absolute Error (MAE) & Root Mean Square Error (RMSE) 

were used as a criteria to determine optimum model for 

forecasting. ARIMA (3, 1, 2) model emerged as a best fit 

model out of several tried model. Least Squares Estimation 

for onion pricing is shown in Table 4. Almost all the 

coefficient of the ARIMA (3,1,2) model were found to be 

statistically significant at 5 percent level of significance 

except few parameter as illustrated in Table 4. Hence, the 

ARIMA (3, 1, 2) model can be utilized as the best model to 

forecast the prices of onion in Mahuva market. 
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Diagnostic checking of the fitted ARIMA model 

The autocorrelation of various lags of the residuals of 

ARIMA (3, 1, 2) model were estimated up to 24 lags. The 

graphical representation of residuals of the ARIMA (3, 1, 2) is 

shown in Figure 1. Except lag 8, 10 and lag 22, none of the 

other lag residuals found outside the confidence limit, thus 

explaining absence of autocorrelation. Therefore, to confirm 

the absence of autocorrelation among residuals Ljung-Box 

test statistics was carried out and it was found that residuals 

were non-significant at the 5 percent level of significance, 

highlighting absence of autocorrelation among error terms of 

the fitted model as mentioned in Table 5. This shows that the 

selected ARIMA (3, 1, 2) model was found appropriate & 

suitable model for forecasting the prices of onion. 

 
Table 1: ACF & PACF values at level & first differenced price series for Mahuva market 

 

Lag 
ACF PACF 

At Level At First Difference At Level At First Difference 

1 0.79 0.02 0.79 0.02 

2 0.58 -0.08 -0.14 -0.08 

3 0.39 -0.13 -0.07 -0.13 

4 0.39 -0.02 0.04 -0.02 

5 0.26 -0.24 -0.07 -0.27 

6 0.15 0.01 0.18 -0.09 

7 0.14 -0.09 -0.05 -0.16 

8 0.14 -0.10 0.09 -0.20 

9 0.25 -0.03 0.13 -0.06 

10 0.20 0.25 0.03 0.10 

11 0.16 -0.02 -0.16 -0.10 

12 0.16 -0.01 0.02 -0.07 

13 0.09 0.01 -0.03 -0.04 

14 0.05 0.03 0.02 -0.05 

15 0.02 -0.01 -0.01 0.02 

16 -0.06 -0.01 -0.08 -0.09 

17 -0.02 -0.01 0.04 0.09 

18 -0.03 -0.03 -0.07 -0.01 

19 -0.03 -0.0 -0.06 -0.15 

20 -0.01 -0.10 0.08 -0.20 

21 0.07 -0.06 0.17 -0.17 

22 0.18 0.012 0.16 -0.12 

23 0.29 0.16 0.12 0.01 

24 0.32 -0.01 -0.05 0.03 

 
Table 2: Summary of the ARIMA model for onion price for Mahuva market 

 

Model AIC MAPE MAE RMSE 

ARIMA (3,1,2) 3044.5 21.76 217.87 421.40 

 
Table 3: Parameter estimates for fitted ARIMA (3, 1, 2) model for onion prices for Mahuva market 

 

Variables Estimates Standard Error t Ratio Probability 

AR1 -0.01 0.09 0.14 0.88 

AR2 0.68 0.06 9.95 < 0.01 

AR3 -0.25 0.07 3.46 0.05 

MA1 -0.05 0.07 0.77 0.43 

MA2 -0.87 0.08 12.24 < 0.01 
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Fig 1: Residual correlogram of ACF & PACF for fitted ARIMA (3, 1, 2) model 

 
Table 4: AIC & Ljung-Box test statistic value for the fitted ARIMA (3, 1, 2) model for onion prices for Mahuva market 

 

Fitted model (3,1,2) 

AIC 3044.5 

Ljung-Box 31.26 (test statistics) (Test Statisctis) 0.14 (p-value) (p- value) 

 

Similar steps were carried out for Ahmedabad and Gondal market as well. Details are illustared in the table Ahmedabad 

 
Table 5: ACF & PACF values at level & first differenced price series for Ahmedabad market 

 

Lag 
ACF PACF 

At Level At First Difference At Level At First Difference 

1 0.82 0.82 0.82 0.16 

2 0.60 -0.25 -0.25 -0.09 

3 0.38 -0.09 -0.09 -0.05 

4 0.21 -0.03 -0.03 -0.21 

5 0.12 0.11 0.11 -0.07 

6 0.08 0 0 -0.13 

7 0.06 0.03 0.03 -0.21 

8 0.10 0.15 0.15 -0.09 

9 0.17 0.08 0.08 -0.01 

10 0.20 -0.06 -0.06 0.01 

11 0.19 -0.07 -0.07 -0.14 

12 0.15 0.04 0.04 -0.06 

13 0.09 -0.04 -0.04 -0.03 

14 0.05 0.03 0.03 -0.01 

15 0.07 -0.07 -0.07 -0.06 

16 -0.03 -0.06 -0.006 -0.04 

17 -0.05 0.01 0.01 0.02 

18 -0.06 -0.05 -0.05 -0.09 

19 -0.05 0.02 0.02 -0.16 

20 -0.05 0.11 0.11 -0.16 

21 0.08 0.17 0.17 -0.15 

22 0.21 0.16 0.16 -0.11 

23 0.33 0.10 0.10 0.06 

24 0.38 -0.06 -0.06 0.10 

 
Table 6: Summary of the ARIMA model for onion price for Ahmedabad market 

 

Model AIC MAPE MAE RMSE 

ARIMA (2,1,1) 3092.02 22.99 273.93 478.88 

 
Table 7: Parameter estimates for fitted ARIMA (2, 1, 1) model for onion price in Ahmedabad market 

 

Variables Estimates Standard Error t Ratio Probability 

AR1 1.03 0.06 15.14 <0.01 

AR2 -0.29 0.08 4.32 <0.01 

MA1 -0.96 0.02 46.74 < 0.01 
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Table 8: AIC & Ljung-Box test statistic value for the fitted ARIMA (2, 1, 1) model for Ahmedabad market 
 

Fitted model (2, 1, 1) 

AIC 3092.0 

Ljung-Box 31.38 (test statistics) (p- value) (Test Statisctis) 0.14 (p-value) (p- value) (P- value) 

 

 
 

Fig 2: Residual correlogram of ACF & PACF of fitted ARIMA (2, 1, 1) model 
 

Table 9: ACF & PACF values at level & first differenced of onion price series for Gondal market 
 

Lag 
ACF PACF 

At Level At First Difference At Level At First Difference 

1 0.78 0.08 0.78 0.08 

2 0.52 -0.06 -0.24 -0.06 

3 0.29 -0.14 -0.08 -0.13 

4 0.13 -0.19 0.01 -0.17 

5 0.06 -0.09 0.05 -0.09 

6 0.03 -0.05 -0.01 -0.09 

7 0.02 -0.09 0.02 -0.16 

8 0.05 -0.08 0.09 -0.16 

9 0.11 -0.08 0.10 -0.19 

10 0.21 0.12 0.14 0.05 

11 0.25 0.2 -0.05 0.06 

12 0.20 -0.01 -0.12 -0.15 

13 0.12 0.02 0.02 -0.03 

14 0.06 0.02 0.05 0.02 

15 0 -0.03 -0.09 -0.04 

16 -0.04 -0.06 -0.02 -0.10 

17 -0.05 0.01 0.04 0.01 

18 -0.07 -0.05 -0.06 -0.04 

19 -0.06 -0.10 0.02 -0.11 

20 -0.01 -0.11 0.06 -0.16 

21 0.09 -0.07 0.13 -0.21 

22 0.22 0.06 0.18 -0.08 

23 0.33 0.20 0.10 0.07 

24 0.34 0.26 -0.07 0.01 

 
Table 10: Summary of the ARIMA model for onion price for Gondal market 

 

Model AIC MAPE MAE RMSE 

ARIMA(2,1,2) 3090 27.51 241.99 473.79 

https://www.mathsjournal.com/


 

~28~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

Table 11: Parameter estimates for fitted ARIMA (2, 1, 2) model for 

Gondal market 
 

Variables Estimates Standard Error t ratio Probability 

AR1 1.37 0.16 8.44 <0.01 

AR2 -0.58 0.12 4.84 <0.01 

MA1 -1.43 0.18 7.71 <0.01 

MA2 0.45 0.18 2.52 0.01  

 

Table 12: AIC & Ljung-Box test statistic value for the selected 

ARIMA (2, 1, 2) model for Gondal market 
 

Fitted model (2,1,2) 

AIC 3092.0 

Ljung-Box 28.16 (test statistics) 0.25 (p- value) 

 

 
 

Fig 3: Residual correlogram of ACF & PACF of fitted ARIMA (2, 1, 2) model 

 

Post sample period forecast 

 
Table 13: Forecasting of onion prices by for the year 2021 using 

best fitted ARIMA model 
 

Month & Year Forecast (Rs./q) 

Mahuva (3, 1, 2) 

Jan-21 1216 

Feb-21 1468 

Mar-21 1206 

Ahmedabad (2, 1, 1) 

Jan-21 2713 

Feb-21 2562 

Mar-21 1076 

Gondal (2, 1, 2) 

Jan-21 2567 

Feb-21 2268 

Mar-21 1304 

 

Forecasting accuracy 

The accuracy of forecast models was evaluated using error 

measures, such as Mean Absolute Percentage Error. The 

findings are organised under the Table 15. 

 
Table 14: Accuracy of the different forecast model 

 

Market 
MAPE (%) 

ARIMA 

Mahuva 21.77 

Ahmedabad 22.99 

Gondal 27.51 

Among all the selected markets, forecasted onion prices were 

reportedly found better with less MAPE value. The results 

were found contrary to the findings of Shruthi (2015) [10]. 

Thus explaining the need to use more accurate & elaborative 

model which can capture the volatility in onion prices. 

 

Summary and Conclusion 

For the Mahuva market, the ARIMA model (3, 1, 2) emerged 

as the most effective, demonstrating its ability to capture and 

predict the intricate patterns in onion price fluctuations in that 

specific region. On the other hand, the Ahmedabad market 

exhibited optimal forecasting results with the implementation 

of the ARIMA model (2, 1, 1). This model's performance 

highlights its suitability for capturing the unique dynamics 

and trends influencing onion prices in Ahmedabad, 

showcasing the importance of tailoring modeling choices to 

specific market characteristics. In the case of the Gondal 

market, the ARIMA model (2, 1, 2) stood out as the most 

proficient in forecasting onion prices. Its success underscores 

the significance of considering different model specifications 

for accurate predictions, as market-specific factors play a 

crucial role in determining the effectiveness of forecasting 

models. Ultimately, the study emphasizes the need for a 

nuanced approach to time series forecasting, acknowledging 

the diversity of market behaviors and dynamics. By tailoring 

ARIMA model parameters to specific markets, stakeholders 

can enhance the precision of onion price predictions and make 

more informed decisions in the volatile agricultural market. 
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