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Abstract 

In this article, a novel Nonparametric, Nonlinear Least Squares Support Vector Machine (LS-SVM) 

methodology is thoroughly studied. The Particle Swarm Optimization (PSO), which is a very efficient 

population-based global stochastic optimization technique, is employed to estimate the hyper-parameters 

and time lag of Nonlinear LS-SVM model for time-series modelling. Relevant computer program is 

written in MATLAB function (m file). The MATLAB and STATISTICA software packages are used for 

carrying out data analysis. Subsequently, as an illustration, the methodology was applied to all-India 

annual rainfall time-series data. Superiority of this approach over ANN model is demonstrated using 

Root Mean Square Error (RMSE) and Mean Absolute Percent Error (MAPE) criteria for data under 

consideration. 

 

Keywords: Indian monsoon rainfall, nonlinear LS-SVM, PSO algorithm, grid search, ANN, SVM and 

MATLAB software 

 

1. Introduction 

Analysis of time-series data has usually been carried out by employing the well-known Box-

Jenkins Autoregressive Integrated Moving Average (ARIMA) family of models. However, the 

main disadvantage of these approaches is that the underlying models are ‘linear’. During the 

last three decades or so, the area of “Nonlinear time-series modelling” has rapidly been 

growing. Here, there are basically two approaches, viz. Parametric or Nonparametric. 

However, quite often it is noticed that there is no appropriate parametric form to describe the 

time-series data under consideration in a satisfactory manner. In such cases, ‘Nonparametric 

regression methodology’ may be employed (Chandran and Prajneshu, 2007) [1]. During the last 

few years, another nonparametric methodology of ‘Wavelet analysis’ has emerged. The novel 

idea of wavelets is that these are localized in both time and space, whereas traditional Fourier 

bases are localized only in frequency but not in time. Wavelet analysis can be carried out 

either in the Time domain or in the Frequency domain. Ghosh et al. (2010) [2] investigated the 

wavelet approach in the frequency domain for analyzing time-series data. Chattopadhyay and 

Chattopadhyay, 2013 [3] was reported that in the last decade, with the success of the 

backpropagation algorithm for computing derivatives, the Artificial Neural Networks (ANN) 

methodology has been extensively used. However, the main drawbacks of this methodology 

are that the resultant models generally over fit the data and that the solution gets trapped in 

local minima. 

The methodology, which does not suffer from the above limitations, is the Support Vector 

Machine/Regression (SVM / SVR) methodology developed by Vapnik (2000) [4]. This 

Nonparametric methodology is very promising for nonlinear regression analysis. It implements 

the Structural Risk Minimization principle, which has been shown to be superior to the 

traditional Empirical Risk Minimization principle implemented in ANN models. An excellent 

description of various aspects of SVR methodology is given in Smola and Scholkopf (2004) 
[5]. Later on, the Least Squares version of SVM, known as the Least Squares-Support Vector 

Machine (LS-SVM) was proposed by Suykens et al., 2002 [6] for nonlinear regression analysis.  
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A heartening aspect of Nonparametric Nonlinear LS-SVM as compared to standard Nonlinear SVR for regression problems is that 

it applies linear least squares criterion to the loss function with only equality type constraints to obtain a set of linear equations 

instead of epsilon insensitive loss function with inequality type constraints to form traditional convex Quadratic Programming 

problem. This leads to the advantages of fast convergence, high accuracy and low computational efforts. 

Despite the superior features of the above methodology, its generalization and efficiency are sensitive to the values of hyper-

parameters as well as the dimension of the input vector (the lagged observations). Therefore, the selection of optimal hyper-

parameters and time lags is an important step in Nonlinear LS-SVM modelling. To this end, Chen and Wang (2007) [7] discussed 

the advantages and disadvantages of various efficient estimation procedures and also proposed real-valued Genetic algorithm 

(GA) technique. However, its main drawback is that the GA-SVR approaches cannot optimize all Nonlinear SVR’s hyper-

parameters and time lags simultaneously. Moreover, GAs are capable of finding the solution through evolution operators, such as 

crossover and mutation. Evolution is inductive. In reality, life does not always evolve towards a good solution. Fortunately, a very 

efficient population-based stochastic optimization algorithm, viz. The Particle Swarm Optimization (PSO) technique is capable of 

rectifying the above limitations (Parsopoulos and Vrahatis, 2010) [8]. In contrast to GA, which exploits the competitive 

characteristics of biological evolution, PSO simulates cooperative and social behaviour, such as fish schooling, birds flocking, or 

insects swarming. 

In this article, our purpose is to thoroughly study the Nonlinear LS-SVM methodology and PSO-based estimation procedure to 

estimate its optimal hyper-parameters as well as time lags. The relevant computer program is written in MATLAB function (m 

file). Finally, as an illustration, all-India annual rainfall time-series data are considered. The superiority of the developed model is 

demonstrated over the ANN approach. 

 

2. Description of the methodologies 

2.1 Nonlinear Least Squares Support Vector Machine (LS-SVM) 

Suppose the training data set is  N

iii yxD
1

),(


 , where n

i Rx   is the ith input data, Ryi   is the ith target data and N 

corresponds to the size of the training data. In the primal weight space, the Nonlinear LS-SVM function for regression is given by. 

 

,)()( bxwxy T                         (1) 

 

Where hnn RR  :(.) is a nonlinear function, which maps the input space into a higher dimensional feature space, hn
Rw  is 

the weight vector and b is the bias term. The Nonlinear LS-SVM for regression formulation can be described as.  
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Where hn
Rw  is the weight vector in primal weight space, Rei   are error variables and b is the bias term. Note that the cost 

function JP consists of a sum of squared fitting error and regularization term in primal feature space. The relative importance of 

these two terms is determined by the positive real constant γ. In the case of noisy data, one avoids over-fitting by taking a smaller 

γ value. The weight vector w can be infinite-dimensional, which makes a calculation of w as impossible, in general. The 

Lagrangian function can be constructed as. 
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Where αi, i=1, 2,…,N are Lagrangian multipliers, also called support values. The Karusha-Kuhn-Tucker (KKT) conditions for 

optimality are given by partially differentiating L.  
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After eliminating ‘w’ and ‘ei’, optimization problem can be transferred into the following linear solution system in dual space: 
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Where y =[y1, y2,…,yN]T, 1v =[1,…;1]T,  and Ω ={ Ωij } is given by 
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In the above, K(xi, xj) is called the inner-product kernel function. Thus, Nonlinear LS-SVM for regression is obtained as  
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Where i and b are solutions of the linear system. 

For a univariate time-series forecasting problem, the dimension of input vectors is the past lagged observations. The Nonlinear 

LS-SVM model performs a nonlinear functional mapping from the past observations to the future value as: 

 

tptttt yyyfy   )...,,,( 21                     (9) 

 

Where yt is the output value, p is the dimension of the input vector and t is the error term. 

Several kernel functions K(xi,xj) are available in the literature, like the Polynomial function, Gaussian kernel, and Radial-basis 

function (RBF). In this article, the RBF kernel function  )(2)( 22

ii σ/xxexpxx,K   is used to train the Nonlinear LS-

SVM model, since it has only one hyper-parameter that needs to be pre-determined and yields good performance for nonlinear 

time-series forecasting. Training Nonlinear LS-SVM with RBF kernel function is required to be optimized through two hyper-

parameters, viz. Regularization parameter gamma (γ) and Kernel bandwidth parameter sigma (), which may affect Nonlinear LS-

SVM generalization performance. Also, the important task of Nonlinear LS-SVM modelling is to estimate the optimal dimension 

of input vector p (i.e. the lagged observations). However, in practice, the choice of p is difficult; often trial and error method is 

conducted. To this end, PSO is employed to optimize Nonlinear LS-SVM hyper-parameters as well as time lag p simultaneously. 

 

2.2 Development of Particle Swarm Optimization Algorithm (PSO) for Nonlinear LS-SVM 
The PSO is a population-based stochastic optimization search method, i.e. it exploits a population of potential solutions to probe 

the search space concurrently, proposed by Kennedy and Eberhart in 1995 (Parsopoulos and Vrahatis, 2010 [8]). The population is 

called the ‘swarm’ and its individuals are called the ‘particles’ Let 
nRA  be the search space and RYA   be the objective 

function, then the swarm is defined as a set },...,,{ 21 NXXXS  of N particles (candidate solution), defined as

AXXXX T

iniii  ),...,,( 21 , i=1, 2,…, N. Indices are arbitrarily assigned to particles, while N is a user-defined parameter of the 

algorithm. The PSO algorithm investigates solution space using a set of particle vectors that are updated from iteration to iteration. 

Each particle is a potential solution, characterized by three quantities: Its velocity ,),...,,( 21

T

iniii VVVV  current position

T

iniii XXXX ),...,,( 21 and personal best position .),...,,( 21

T

iniii pbestpbestpbestpbest   Let t denote the current iteration and 

gbest denote its global best position achieved so far by any of its particles. Initially, the swarm is randomly dispersed within the 

search space, and random velocity is assigned to each particle. Particles interact with one another by sharing information to 

discover the optimal solution. Each particle moves in the direction of its personal best position (pbest) and its global best position 

(gbest). To search optimal solution, each particle changes its velocity according to the cognitive and social parts as given by eq. 

(10) and move to a new potential solution by updating its position based on the eq. (11). 
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Where Vij, Xij and pbestij are respectively velocity, position and pbest position of particle i on the jth dimension and gbestj is the jth 

dimension gbest position among all particles at iteration t. The R1 and R2 are random values, which are mutually independent and 

uniformly distributed over [0, 1],  is constraint factor used to control the velocity weight, whose value is usually set equal to 1. 

Positive constants c1 and c2 are usually called the “acceleration factors”. Factor c1 is sometimes referred to as a “cognitive” 

parameter, while c2 is referred to as a “social” parameter. The w(t) is the inertia weight at iteration t and is used to balance global 

exploration and local exploitation. This can be determined by. 

 

,)((t) maxup Ttwwww lowup                       (12) 

 

Where t is current iteration number, wup and wlow are desirable lower and upper limits of w, and Tmax is the maximum number of 

iterations. 

The process of optimizing the Nonlinear LS-SVM model hyper-parameters as well as time lags by PSO is described in the 

following steps. 

1. Data preparation: The time-series data points are divided into two parts: (i) Training dataset, which is used only for building 

the model, and (ii) Testing dataset, which is used for validation of the model.  

2. Initialization and PSO parameter setting: First, set the time lag one to the maximum number of lags to be considered as the 

dimension of the input vector to estimate optimal time lag p. Then, Nonlinear LS-SVM model hyper-parameters γ and σ 

(Here n=2) are directly coded with real values within a given search space to randomly generate N number of initial particles 

of swarm set S. The search space of hyper-parameters γ and  are respectively limited to ranges of [γmin, γmax] and [σmin, σmax]. 

Also randomly generate initial particle velocity (Vi) limited to the range [-Vmax,Vmax]. 

3. Evaluate each particle’s fitness: For each candidate particle of initial particles, train the Nonlinear LS-SVM model using k-

fold cross-validation to evaluate the minimum value of fitness function, defined as the cross-validation Mean Square Error 

(CV-MSE): 
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Where yj and jŷ are respectively actual and predicted values of the validation subset, m is the number of samples in the validation 

subset and k is the number of folds for cross-validation. Then, update the personal best position pbesti of each particle and the 

global best position gbest achieved so far by any of its particles according to minimum fitness value. 

1. Now set the iteration number (t) one to the maximum number of iterations and evaluate inertia weight w(t) at iteration t using 

eq. (12). 

2. Compute and update the velocity of each particle using eq. (10). 

3. Compute and update the position of each particle using eq. (11). 

4. Termination: Repeat the search process from Step (iii) to Step (vi) until stop conditions, such as maximum iteration, are met. 

 

Finally, optimal hyper-parameters and time lag p are utilized to build the Nonlinear LS-SVM model on the training dataset and the 

testing dataset is used to validate the fitted model. To perform the above tasks, the LS-SVMLab, Version 1.8 toolbox, developed 

by De Brabanter et al. (2011) [9] for the MATLAB 2012a software platform, is employed for training the Nonlinear LS-SVM 

model. We have written MATLAB function (m file) code for estimating hyper-parameters of the Nonlinear LS-SVM model using 

the PSO algorithm, and the same is appended as ANNEXURE-1. 

 

3. An illustration 

As an illustration, all-India annual rainfall (in mm) time-series data for the period 1871 to 2011, obtained from the website 

(www.tropmet.res.in) of the Indian Institute of Tropical Meteorology, Pune, India are considered. The data points for the period 

1871 to 1999 are used as a training dataset and the remaining data points for the period 2000 to 2011 are used as a testing dataset. 

Note that, before training the model, training and testing data points are normalized to the range [0, 1] separately using eq. (14), 

which can improve the generalization power of Nonlinear LS-SVM.  
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Through the initial experiment, the parameters of the PSO technique were set as follows: 100 initial particles (so that it is enough 

to cover the search space within the limited iterations based on experimental runs), 500 maximum iterations, inertia weight is 

initially set as 0.9 and reduced to 0.1 linearly according to eq. (16) and c1=c2=2.05. The searching range of Nonlinear LS-SVM 

model hyper-parameters γ and  were respectively set in the range [0.001,1000] and [0.001,100] and their velocity bounds were 

respectively set to be in the range [-499. 99, 499. 99] and [-49.99, 49.99]. For comparison purposes, Grid search, the most 
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commonly used method for estimating optimal hyper-parameters was also employed. In the training stage, the PSO and Grid 

search techniques were employed to estimate optimal hyper-parameters and time lag of Nonlinear LS-SVM based on 10-fold 

cross-validation and the results along with CV-MSE values are reported in Table 1. 

 
Table 1: Optimal hyper-parameters and time lag estimated by Grid Search and PSO techniques. 

 

Model   lag CV-MSE 

LS-SVM 593.751 0.055 10 0.031 

PSO+LS-SVM 996.999 0.053 9 0.029 

 

The following Fig. 1 illustrates the CV-MSE estimates over a different lag period by Grid Search and PSO techniques. 

 

 
 

Fig 1: Cross-Validation MSE over different lag periods by Grid Search and PSO techniques. 
 

Then, optimal hyper-parameters values and time lag are utilized to train the Nonlinear LS-SVM model for modeling all-India 

annual rainfall time-series data.  

Further, for comparing the prediction performance of Nonlinear LS-SVM models, we also employed the most widely used 

Artificial Neural Network as a benchmark model using the STATISTICA Neural Network Version 7 software package. The ANN 

model performs a nonlinear functional mapping from the past observations to the future value, which is equivalent to a Nonlinear 

Autoregressive model. Before developing ANN model, training and testing data points are normalized to the range [0, 1] 

separately using eq. (14). In this article, a typical three-layer feed-forward network with one input layer, one hidden layer and one 

output layer is used to develop the model. The most commonly used sigmoid activation function for time-series modelling was 

applied to the input layer to the hidden layer and the hidden layer to the output layer. In the training and testing of the ANN 

network, the same input lag structure of PSO + Nonlinear LS-SVM model was considered. The network was trained using the 

Back-Propagation algorithm with a learning rate of 0.001 and the trial and error method was performed to optimize the optimal 

number of neurons in the hidden layer, which was found to be 9 neurons.  

Further, Nonlinear LS-SVM models and ANN model are compared based on Root Mean Square Error (RMSE) and Mean 

Absolute Percent Error (MAPE) respectively given in eq. (15) and eq. (16).  
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Where, yj is the actual value and jŷ  is the predicted value, n is the number of samples in the data subset. The RMSE and MAPE 

for the above-fitted models are computed on the training dataset, which are reported in Table 2. 

 
Table 2: Comparison of prediction performance over different models on training dataset. 

 

Accuracy\Models PSO+LS-SVM LS-SVM ANN 

RMSE 0.125 0.1930 95.234 

MAPE 0.009 0.014 7.028 

 

It may be noted that RMSE and MAPE for the PSO + Nonlinear LS-SVM model on the training dataset are respectively computed 

as0.125 and 0.009, which are found to be lower than the corresponding Nonlinear LS-SVM model, respectively computed as 

0.1930 and 0.014 and ANN model, respectively computed as 95.234 and 7.028. The PSO + Nonlinear LS-SVM model is found to 
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be the best-fitted model as compared to Nonlinear LS-SVM and ANN models. The predicted value on the training dataset along 

with actual data points of the fitted PSO + Nonlinear LS-SVM model are plotted as shown in Fig. 2. 

 

 
 

Fig 2: Fitted PSO + Nonlinear LS-SVM model along with data points. 
 

Further, one-step ahead forecasts along with actual values during the period 2000 to 2011 for the above models are reported in 

Table 3.  

 
Table 3: One-step ahead forecasts of all-India annual rainfall (In mm) data for the fitted models. 

 

Years Actual data 
Predicted 

PSO+LS-SVM LS-SVM ANN 

2000 989.7 1039.78 1021.97 1034.28 

2001 1059.9 1037.78 1041.88 1037.10 

2002 882.4 996.98 1007.50 1014.71 

2003 1088.5 1035.40 1023.90 1024.54 

2004 1003.4 1077.37 1061.93 1023.44 

2005 1141.1 1077.86 1080.46 1034.25 

2006 1112.7 1031.02 1036.06 1031.28 

2007 1149.7 1056.79 1044.69 1038.60 

2008 1118.3 1039.07 1047.79 1044.29 

2009 886.4 989.71 1007.99 1003.45 

2010 1107.6 1037.82 1026.57 1053.74 

2011 1051.8 1042.13 1031.59 1015.04 

Accuracy 
RMSE 73.957 77.420 80.791 

MAPE 6.609 6.792 7.004 

 

The RMSE and MAPE for the PSO + Nonlinear LS-SVM model on the testing dataset are respectively computed as 73.957 and 

6.609, which are also found to be lower than the corresponding Nonlinear LS-SVM model, respectively computed as 77.420 and 

6.792, and ANN model, respectively computed as 80.791 and 7.004. For the testing dataset, the PSO + Nonlinear LS-SVM model 

is found to be the best-fitted model as compared to Nonlinear LS-SVM and ANN.  

 

4. Conclusion 

In this article, Nonlinear LS-SVM methodology which is a very promising methodology for nonlinear regression analysis is 

described. PSO technique, which avoids over-fitting or under-fitting, is employed to optimize the two hyper-parameters as well as 

the time lag (dimensions of input vector) of the above model. PSO is a powerful optimization method, which not only has strong 

global search capability but also is very easy to implement. As an illustration, modelling and forecasting of all-India annual 

rainfall time-series data is considered. It is shown that the PSO + Nonlinear LS-SVM model can achieve greater accuracy than 

Nonlinear LS-SVM using the Gird search. Also, the superiority of this model over the ANN model is demonstrated using Root 

Mean Square Error (RMSE) and Mean Absolute Percent Error (MAPE) criteria for the data under consideration. 
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