
 

~56~ 

International Journal of Statistics and Applied Mathematics 2024; 9(2): 56-65 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISSN: 2456-1452 

Maths 2024; 9(2): 56-65 

© 2024 Stats & Maths 

www.mathsjournal.com 

Received: 18-01-2024 

Accepted: 21-02-2024 

 

Arun Kumar Chaudhary 

Department of Management 

Science, Nepal Commerce 

Campus, Tribhuvan University, 

Nepal 

 

Lal Babu Sah Telee 

Department of Management 

Science, Nepal Commerce 

Campus, Tribhuvan University, 

Nepal 

 

Vijay Kumar 

Department of Mathematics and 

statistics, DDU Gorakhpur 

University Gorakhpur, India 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author: 

Arun Kumar Chaudhary 

Department of Management 

Science, Nepal Commerce 

Campus, Tribhuvan University, 

Nepal 

 
 

 

 

 

 

 
 

 

 

Cauchy modified generalized exponential distribution: 

Estimation and Applications 

 
Arun Kumar Chaudhary, Lal Babu Sah Telee and Vijay Kumar 

 
DOI: https://doi.org/10.22271/maths.2024.v9.i2a.1682 

 
Abstract 

We present a unique probability model in this study called the Cauchy Modified Generalized Exponential 

Distribution. This model is formulated by combining the Cauchy family of distributions with the 

Modified Generalized Exponential Distribution as the baseline distribution. Our objective is to employ 

this model in the analysis of lifetime data. We've crafted formulas for various statistical functions, like 

skewness, kurtosis, survival function, quantile function, hazard rate function, distribution function, and 

probability density function. Additionally, we've integrated visual depictions of the probability density 

and hazard rate curves. We gathered a dataset that included notable earthquakes (magnitude 7.0 and 

higher) that the USGS had documented between 1990 and 2018. Our proposed model's effectiveness was 

evaluated by applying it to a global dataset covering significant earthquakes of the same magnitude 

range. The model parameters were estimated using maximum likelihood estimation. Several statistical 

measures were applied in order to confirm the validity of the model, including the Bayesian Information 

Criterion, Corrected Akaike's Information Criterion, the Hannan-Quinn Information Criterion, and 

Akaike's Information Criterion. Additionally, Q-Q and P-P plots were employed for validation. We used 

the Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises tests to evaluate how well our 

model fit the data. These tests were conducted to determine the suitability of our model for analyzing the 

provided earthquake data. Our empirical results indicate that, compared to alternative lifetime 

distributions, our suggested distribution not only exhibits a better fit but also provides increased 

flexibility for analyzing lifetime data. This study advances our understanding of earthquake patterns and 

contributes to the ongoing efforts in seismic risk assessment and mitigation strategies. All numerical 

calculations were performed using the R programming language. 

 

Keywords: Cauchy family of distribution, earthquakes, failure rate function, maximum likelihood 

estimation, modified generalized exponential distribution 

 

1. Introduction 

In recent decades, the exponential distribution has become a common baseline distribution for 

establishing new probability models. Numerous modifications of exponential distributions can 

be found in the literature. The Generalized Exponential Distribution (GED) created by (Gupta 

& Kundu, 2007) [17] is a statistical probability distribution that extends the traditional 

exponential distribution by incorporating an additional parameter in base line distribution to 

better capture the characteristics of real-world data. The inclusion of additional parameters 

results in the creation of new probability models. Typically, these adjusted models offer a 

more accurate representation of the data compared to conventional models. The GED 

introduces a shape parameter that changes the hazard function, allowing for a more flexible 

modeling approach than the usual exponential distribution, which assumes a constant hazard 

rate. This modification enables the distribution to better accommodate scenarios where the 

hazard rate varies over time, providing a more accurate representation of diverse phenomena in 

fields such as reliability engineering, biology, finance, life testing and survival analysis. 

While GED distribution is effective for analyzing datasets with a monotone (increasing/ 

decreasing) hazard function (HF), it cannot be applied to datasets with a unimodal or bathtub-

shaped HF and upside-down bathtub shapes, such as those resembling the Weibull or gamma 

distributions. Several innovative probability models have been created through the  
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modification of exponential distributions found in literature. These distributions encompass a wide range of models, including the 

extended exponential distribution (Gomez et al., 2014) [15], The modified exponential (ME) distribution (Rasekhi et al., 2017) [26], 

the New Odd Generalized Exponential - Exponential Distribution (Kumar & Kumar, 2019) [19], the Marshall-Olkin generalized 

exponential distribution (Ristic & Kundu, 2015), the beta generalized exponential distribution (Barreto-Souza et al., 2010) [6], the 

Kumaraswamy-Generalized Exponentiated Exponential Distribution (Mohammed, 2014) [22], Modified slashed generalized 

exponential distribution (Astorga et al., 2020) [5], Weibull generalized exponential distribution (Almongy et al., 2021) [3], Two-

parameter modified weighted exponential distribution (Chesneau et al., 2022) [11], Modified upside-down bathtub-shaped hazard 

function distribution (Chaudhary et al., 2023) [10], and A New Four Parameter Extended Exponential Distribution (Hassan et al., 

2022) [18]. 

These lifetime models might exhibit a hazard rate function (HRF) with a bathtub-shaped pattern. In reality, numerous datasets 

display this characteristic HRF. Moreover, the literature documents other modifications of the Weibull distribution. These 

modifications aim to improve the distribution's suitability and versatility in capturing a wide range of patterns observed in survival 

and reliability analysis. A few examples are the Poisson Modified Weibull distribution (Abd El-Monsef et al., 2022) [2], the 

Kumaraswamy Modified Weibull distribution (Cordeiro et al., 2014) [12], the Beta Modified Weibull distribution (Silva et al., 

2010) [29], and the Modified Weibull distribution (Lai et al., 2003) [20]. These models offer alternative approaches to modeling 

lifetimes by adjusting the original Weibull distribution. The Weibull distribution with two parameters is provided as. 

 

( , , ) exp[ ( , )]F y y    
                      (1.1) 

 

The aforementioned distribution lacks a bathtub hazard rate function (hrf). To address this, the distribution has been adjusted to 

generate multiple distributions with a bathtub hazard rate function. The usage of the exponentiated Weibull distribution, as 

suggested by (Mudholkar & Srivastava, 1993) [24], is one such modification. The following new lifespan distributions may be 

generated by fitting appropriate limits to the beta-integrated distribution, as proposed by (Lai et al., 2016) [21]. 

 

( ) exp[ .exp( )]bF y ay y
                       (1.2) 

In this context, the generalized exponential distribution suggested by (Gupta & Kundu,1999a) [16] is adapted to create a novel 

probability model known as the modified generalized exponential distribution which has recommended by (Telee & Kumar, 2023) 
[9]. The following is the expression for the generalized exponential distribution's cumulative distribution function (PDF). 

 

( , , ) (1 ) ; 0, 0, 0x

GEDF x e x        
                  (1.3) 

 

The Cumulative Distribution Function (CDF) and Probability Density Function (PDF) for the Modified Generalized Exponential 

(MGE) model by (Telee & Kumar, 2023) [9] can respectively be expressed as. 

 

 ( ; , , ) 1 exp ; 0, 0, 0, 0xG x xe x


             
                   (1.4) 

and 

     
1

( ; , , ) 1 exp 1 expx xg x x x xe xe


        


     
                (1.5) 

 

We have constructed an innovative distribution in this study by utilizing the Cauchy family of distributions. A variety of 

probability models utilizing the Cauchy family of distributions are presented in the literature. These models include the Half-

Cauchy exponential extension distribution (Telee & Kumar, 2022) [30], the Arc tan generalized exponential distribution 

(Chaudhary et al., 2021) [7], the generalized Cauchy family of distributions (Alzaatreh et al., 2016), the Pareto ArcTan (PAT) 

distribution (Gómez-Déniz and Calderín-Ojeda, 2015) [14], and the Half-Cauchy modified exponential distribution (Chaudhary et 

al., 2022). 

 

Consider Cauchy family of distribution on a non-negative random variable X such that x > 0, θ > 0 and which is defined by. 

 

2 1
( ) 1 arctan log ( )F x G x

 

 
   

                       (1.6) 

 

where G(x) is distribution function of the base line distribution. 

Corresponding density function of Cauchy family is. 

 
1

2
2 ( ) 1

( ) 1 log ( )
( )

g x
f x G x

G x  



  
    

                       (1.7) 

 

This study aims to develop a versatile probability distribution and perform data analysis on the occurrence of significant 

earthquakes (magnitude 7.0 and above) worldwide between 1990 and 2018. The primary goal is to create a probability distribution 
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model that provides enhanced flexibility, facilitating a thorough and insightful examination of the frequency of major earthquakes 

(7.0+) globally.  

The following framework is utilized to present the various segments of this investigation. Section 2 will introduce the Cauchy 

Modified Generalized Exponential Distribution, providing an elucidation of its mathematical and statistical properties. Advancing 

to Section 3, we will delve into estimation techniques, including discussions on least-squares (LSE), Cramer-Von-Mises (CVME), 

and maximum likelihood (MLE). In Section 4, our focus will pivot towards presenting model parameter estimates using real data 

pertaining to significant earthquakes (magnitude 7.0 and above) worldwide between 1990 and 2018. Additionally, we will 

exemplify various criteria employed to evaluate the goodness of fit of the proposed model. All numerical calculations were 

conducted using the R programming language. In the concluding Section 5, this study aims to provide valuable insights into the 

realm of statistical analysis and modeling. In essence, this study strives to make a meaningful contribution to the broader 

landscape of statistical analysis and modeling, with particular relevance to the understanding and characterization of earthquake 

occurrences. The insights gained herein provide a basis for further research and applications in areas such as risk assessment, 

disaster preparedness, and the development of more accurate predictive models for seismic activity. 

         

2.1 Cauchy modified generalized exponential distribution 

We provide a new probability model in this work called the Cauchy Modified Generalized Exponential Distribution. This model is 

created by compounding the Cauchy family of distributions with the Modified Generalized Exponential Distribution serving as 

the baseline distribution. 

Using (1.4) and (1.5) in (1.6) and (1.7), distribution and density functions of proposed model Cauchy Modified Generalized 

exponential (CMGE) distribution are respectively defined as. 

 

    
2

( ; , , , ) 1 arctan log 1 exp ; , , , 0, 0xF x xe x
        

 

 
       

            (2.1) 

      
12

( ; , , , ) 1 exp 1 expx xf x x x xe x e 
       



 
     
      

    

1
2

1 log 1 exp ; , , , 0, 0xx e x
    




  
        

                     (2.2) 

 

2.1 Survival Function: The equation (2.3) represents the survival function of the suggested model. 

 

      
2

1 0 0
x

S x arctan log exp x e ; , , , ,x
     

 

 
      

                 (2.3) 

 

2.2 Hazard Function: The hazard rate function, denoted as the instantaneous failure rate, is a measure of the immediate risk of 

failure at any given point in time. It is mathematically defined by expression (2.4), encapsulating the dynamic nature of failure 

probabilities over time. 

 

      
1

( ) 1 exp 1 expx xH x x x xe xe 
   



 
     
      

     
1 12

1 log 1 exp arctan log 1 expx xx e x e
   
 

       
           
                  (2.4) 

 

2.3 The Quantile function: The quantile function provides valuable insights into the model's descriptive analysis, offering an 

alternative perspective to the cumulative distribution function (CDF). Equation (2.5) precisely outlines the quantile function for 

the CMGE. 

 

After x is solved for in equation (2.5), the quantile function with u following a uniform distribution [0, 1] is obtained. 

    log 1 exp tan 1 0
2 2

xx e u  


  
      

                    (2.5) 

 

2.4 Skewness and Kurtosis: 

Based on quartiles, the coefficient of skewness can be obtained using the expression 

 

  

3 1 2

3 1

2 



k

Q Q Q
S

Q Q
              (2.6) 
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Here, 1 2 3Q ,Q  and Q
are lower quartile, 2nd quartile and upper quartile respectively.  

 

Moors (1988) introduced the idea that the kurtosis coefficient is influenced by the octiles, and it can be expressed as: 

 

       

   

0.375 0.125 0.625 0.875

0.75 0.25

  



M

Q Q Q Q
K

Q Q
                 (2.7)  

 

The suggested distribution's hazard rate function and probability density function for a range of parameter values are shown in 

Figure 1. The PDF graph shows a single-peaked distribution with a positive skew, implying a clustering of values around a central 

point. In contrast, the hazard rate function plot displays both a rising trend and an inverted bathtub shape, indicating varying risk 

profiles over time. 

 

  
 

Fig 1: Hazard function (right part) and density function (left part) 

 

3. Parameter estimation  

3.1 Method of Maximum Likelihood Estimation (MLE)  

Let a random sample with size ‘n’ drawn from the proposed model be
 1  , ,  nx x x

, then the log likelihood function can be 

expressed as, 

 

 

 
2

( , , , | ) log log 1   log 1 exp

1 1 1

n n nx xi ix n x x x e x ei i i
i i i

 
       



      
              

            
    

 
2

log 1 log 1 exp ; , , , 0, 0

1

n xix e xi
i


    



 
                                       (3.1) 

 

Partial differentiation (3.1) with regard to α, β, λ, and θ is one method to obtain the partial order derivatives. Setting the nonlinear 

equations obtained by taking partial derivatives to zero and solving for the unknown parameters (α, β, λ, and θ) can yield the ML 

estimators for the proposed distribution. As manual calculation of these equations is impractical, one can use appropriate 

computer software for the solution. Let the parameter vector be represented 
( , , , )    

, and the corresponding maximum 

likelihood estimation be denoted by 
ˆ ˆ ˆˆ ˆ( , , , )    

. The resulting asymptotic normality is expressed as

    
1

3
ˆ 0,

    
 

N K
. Here, Fisher’s information matrix is denoted by

 K
 which is given by,  
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Since we don't actually know  , the asymptotic variance 
  

1

K
of the MLE is meaningless. The estimated parameter values 

are therefore plugged in to approximate the asymptotic variance. The information matrix 
 K

 is estimated by the following 

observed fisher information matrix
ˆ( )O

.  
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To enhance the likelihood maximization process, we construct the observed information matrix using the Newton-Raphson 

method. Subsequently, we derive the variance-covariance matrix from this process as  

 

 
 ˆ

1

|

ˆ ˆ ˆˆ ˆ ˆ ˆvar( ) cov( , ) cov( , ) cov( , )

ˆ ˆ ˆ ˆ ˆ ˆˆcov( , ) var( ) cov( , ) cov( , )

ˆ ˆ ˆ ˆ ˆ ˆˆcov( , ) cov( , ) var( ) cov( , )

ˆ ˆ ˆ ˆ ˆ ˆˆcov( , ) cov( , ) cov( , ) var( )

H

      

      

      

      





 
 
  

     
   

 
                (3.2) 

 

Here, H denotes the Hessian matrix. 

 

Therefore, by utilizing the asymptotic normality of Maximum Likelihood Estimates (MLE) and approximating 100(1-δ)% 

confidence intervals for α, β, λ, and θ, the following procedure may be used. 

 

/2
ˆ ˆvar( )  Z

, /2
ˆ ˆvar( )  Z

, /2
ˆ ˆvar( ) Z

 and /2
ˆ ˆvar( )Z 

            (3.3) 

 

Here, /2Z represents the upper percentile of standard normal variate. 

 

3.2 Application to Real Dataset 

The United States Geological Survey (USGS) created the data set that shows the frequency of notable earthquakes (magnitude 7.0 

and above) that occurred between 1990 and 2018 (USGS, 1990-2018). (https://earthquake.usgs.gov/). 

18, 16, 13, 12, 13, 20, 15, 16, 12, 18, 15, 16, 13, 15, 16, 11, 11, 18, 12, 17, 24, 20, 16, 19, 12,19, 16, 7, 17 

Table 1 shows the summary statistics of the model 

 
Table 1: Summary statistics 

 

Minimum Q1 Median Mean Q3 SD Skewness Kurtosis Maximum 

7.000 13.000 16.000 15.410 18.000 3.50 0.009 3.256 24.000 

 

To examine the descriptive characteristics of the data, we generated and presented the TTT plot and boxplot in Figure 2. The 

boxplot indicates a positive skewness and non-normal distribution of the data. Additionally, the TTT plot reveals that the hazard 

rate curve consistently increases and exhibits an inverted bathtub shape. 
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These findings suggest that the data is not symmetrically distributed and exhibits a trend in the hazard rate consistent with a non-

decreasing pattern resembling an inverted bathtub. The positively skewed nature observed in the boxplot indicates that the 

majority of the data points are concentrated towards the lower values, with a tail extending towards higher values. These graphical 

representations provide valuable insights into the underlying characteristics of the dataset, highlighting both the shape of the 

distribution and the behavior of the hazard rate over time. 

 

  
 

Fig 2: TTT plot (right panel) and boxplot (left panel) 
 

Using maximum likelihood estimation, parameters of the model are estimated and mentioned in table 2. In order to get the MLEs 

for estimate, the maxLik() function in the R program(R Core Team, 2022) is utilized to maximize the likelihood function. Log-

Likelihood value acquired is l = -77.33385. 

 
Table 2: Estimated parameters using MLE 

 

Parameters MLE SE 

̂  1.8496 5.6349 

̂
 

0.0043 0.0315 

̂  
0.3741 0.3589 

̂  
0.0037 0.0019 

 

We often utilize PDF and CDF plots to evaluate how well a proposed model fits. To gain further insights, it is essential to generate 

Q-Q and P-P graphs. The P-P plot highlights any lack of fit, while the Q-Q plot can provide information about the fit towards the 

distribution's tails. Figure 3 illustrates the strong fit of the CMGE model to the data. The combination of PDF and CDF plots 

along with Q-Q and P-P graphs offers a robust framework for evaluating the goodness of fit of the CMGE distribution.  

 

  
 

Fig 3: The Q-Q graph (right part) and P-P graph (left part) for CMGE model. 
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In Figure 4, we have made a comparison between the density plot, the histogram, and the empirical cumulative distribution 

function (ECDF) vs the fitted cumulative distribution function (CDF). 

 

  
 

Fig 4: Histogram versus pdf plot (left part) and ECDF versus CDF (left part) 
 

We have chosen a few well-known distributions for comparison in order to show the CMGE distribution's goodness of fit. These 

are Modified Weibull (MW) (Lai et al., 2003) [20], Odd Lomax Exponential (OLE) distribution (Ogunsanya et al., 2019), 

Generalized Exponential (GE) distribution (Gupta & Kundu, 1999a) [16], Extended Kumaraswamy Exponential (EKwE) 

Distribution (Chaudhary et al., 2023) [10].  

Table 3 presents the estimated parameter values and standard errors of the proposed models as well as those of competing models. 

The estimated parameter values and standard errors of the proposed and competing models are essential for understanding and 

comparing their respective performance. In Table 3, these key statistical measures provide insights into the precision and 

reliability of the model estimates. Analyzing this information enables a comprehensive evaluation of the proposed models in 

relation to their competitors, aiding in the assessment of their overall effectiveness and robustness in capturing the underlying 

relationships within the data. 

 
Table 3: Estimated values of the parameters and their standard error for CMGE and competing models 

 

Model Alpha Beta Lambda Theta 

CMGE 1.8496(5.6349) 0.0043(0.0315) 0.3741(0.3589) 0.0037(0.0019) 

MW 0.0057 (0.0040) 0.1510(0.5651) 0.2766(0.0657) - 

GE 48.7789 (24.8900) - 0.2855(0.0391) - 

EKwE - 30.9481(18.6062) 0.2618(0.0430) - 

OLE 0.5683(0.1828) 0.0059 (0.0068) 2.6221(0.6692) - 

 

To evaluate how well the proposed model performs, we compute several information criteria including Hannan-Quinn 

information criterion (HQIC), the Corrected Akaike information criterion (CAIC), Akaike information criterion (AIC), and 

Bayesian information criterion (BIC). The findings are displayed in Table 4. 

 
Table 4: CMGE distribution's log-likelihood (LL), BIC, CAIC, AIC, and HQIC 

 

Distributions LL AIC BIC CAIC HQIC 

CMGE -77.33385 162.6677 168.1369 164.3344 164.3806 

MW -79.50305 165.0061 169.1080 165.9661 166.2908 

GE -79.8132 163.6263 166.3609 164.0878 164.4827 

EKwE -80.29985 164.5997 167.3343 165.0612 165.4561 

OLE -81.8507 169.7014 173.8033 170.6614 170.9861 

 

The information criterion values in Table 4 are lower than those of the majority of the models that were taken into consideration, 

indicating that the suggested model fits the real dataset better than most of the other models. Fitted density function, empirical 

distribution function, the histogram, and estimated distribution function are all displayed for CMGE, MW, GE, EKwE, and OLE 

distributions in Figure 5. 
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Fig 5: Empirical and estimated distribution functions (right panel) and the density function and histogram of fitted distributions (left panel) 
 

Table 5 presents a goodness-of-fit comparison of the CMGE model with other selected distributions using the Anderson-Darling 

(W), Kolmogorov-Smirnov (KS), and Cramer-Von Mises (A2) statistics. The CMGE distribution exhibits a higher p-value and a 

lower test statistic value, suggesting that its findings align more accurately with the distribution and are consequently more 

reliable compared to those obtained from the other distributions employed for comparison. 

 
Table 5: The goodness-of-fit statistics and associated p-values 

 

Distributions KS(p-value) W(p-value) A2(p-value) 

CMGE 0.1326(0.6882) 0.0704(0.7528) 0.4108(0.8367) 

MW 0.1395(0.6254) 0.0973(0.6015) 0.6911(0.5649) 

GE 0.1668(0.3945) 0.1284(0.4651) 0.8118(0.4715) 

EKwE 0.1691(0.3785) 0.1352(0.4401) 0.8797(0.4260) 

OLE 0.1982(0.2048) 0.2353(0.2086) 1.5068(0.1750) 

 

4. Concluding Remarks 

In this study, we present a novel probability model termed the Cauchy Modified Generalized Exponential Distribution (CMGE). 

Constructed by combining the Cauchy family of distributions with the Modified Generalized Exponential Distribution as the 

baseline, this model manifests a positively skewed and unimodal form. A thorough examination of various statistical properties 

associated with the proposed model was conducted, revealing its notable flexibility in accommodating escalating hazard functions, 

including an inverted bathtub-shaped hazard function. These insights came from a thorough graphical examination of the CMGE's 

Probability Density Function (PDF) and Hazard Rate Function (HRF). 

For parameter estimation, we employed Maximum Likelihood Estimation (MLE), providing valuable insights into the accuracy of 

our model's parameter estimation. Additionally, we evaluated the CMGE distribution's performance by applying it to a real-world 

dataset comprising significant earthquakes (magnitude 7.0 and above) recorded by the United States Geological Survey (USGS) 

from 1990 to 2018 worldwide. Results from this application demonstrated the superior fitting performance of the CGME 

distribution compared to several other commonly used lifetime models, emphasizing its potential utility in analyzing lifetime data, 

especially in complex and dynamic scenarios such as significant earthquakes. 

Our investigation focused on assessing the suitability of the CMGE distribution for modeling and understanding intricate and 

dynamic scenarios, such as the impact on assets and human lives during catastrophic events. The goodness of fit of our model to 

the earthquake data was evaluated through the Anderson-Darling, Kolmogorov-Smirnov, and Cramer-von Mises tests. Empirical 

results indicate that, compared to alternative lifetime distributions, our proposed distribution not only provides a better fit but also 

offers increased flexibility for analyzing lifetime data. This study contributes to advancing our understanding of earthquake 

patterns and supports ongoing efforts in seismic risk assessment and mitigation strategies. Our study also underscores the 

significance of interdisciplinary collaboration between statisticians, geoscientists, and risk management experts. The insights 

gained from this collaboration can inform the development of more accurate and insightful models that consider both the 

statistical intricacies and the real-world implications of seismic events. This interdisciplinary approach is vital for addressing the 

multifaceted challenges associated with natural disasters and other high-impact events. 

 

5. Conclusion 

The exponential distribution has evolved as a foundational model, with various modifications enhancing its applicability to real-

world data. The Generalized Exponential Distribution (GED) and its derivatives offer improved accuracy in modeling phenomena 

with varying hazard rates, such as those in reliability engineering, biology, finance, and survival analysis. However, while these 

models excel with monotonic hazard functions, they may not be suitable for unimodal or bathtub-shaped hazard functions. Several 

innovative distributions, such as the Cauchy Modified Generalized Exponential Distribution (CMGE), aim to address these 

limitations, providing flexible and accurate models for complex data patterns. 
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