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Abstract 

Karnataka stands third in the production of coconuts after Kerala and Tamil Nadu. In Karnataka, about 

14 per cent of the total production of coconut is harvested in the form of tender nuts, which is confined to 

Mandya, Bengaluru, Mysore and Hassan districts. Maddur APMC market is one of the world's largest 

tender coconut hubs. Every day, about four million tender coconuts are brought to the APMC market. 

Marketing of tender coconut plays a significant role in the movement of commodities from the producer 

to the consumer and stabilizing prices. Thus, in the present study, two univariate time-series models viz. 

Holt-Winters’ Exponential Smoothing (H-WES) and seasonal ARIMA models were fitted to monthly 

arrivals and price data of tender coconuts in Maddur for the period from April 1997 to March 2018. 

Based on the lowest AIC and BIC, and perusal of ACF and PACF plots, SARIMA (1, 1, 1) (2, 1, 1)12 and 

ARIMA (1, 1, 3) models were respectively selected as the best models for estimating and forecasting 

arrivals and prices of tender coconut. The results showed that the seasonal ARIMA model better 

performed than the H-WMES model for forecasting arrivals and prices of tender coconuts. The seasonal 

ARIMA model could be successfully used for modelling as well as forecasting of monthly price of 

forecasting arrivals and prices of tender coconuts. 

 

Keywords: Tender coconut, time-series analysis, Holt-Winters exponential smoothing, Seasonal 

ARIMA, arrivals and prices, Maddur APMC, Karnataka 

 

Introduction 

The coconut palm tree (Cocos nucifera Linn.) is one of the most natural and valuable gifts to 

mankind. Considering the versatile nature of the crop and the multifarious uses of its products, 

the coconut palm is eulogised as Kalpavruksha (the Tree of Heaven). India being the largest 

coconut producing country in the world occupies 31 per cent of global production. Coconut 

palm provides food security and livelihood opportunities to more than 12 million people in 

India. More than 15,000 coir-based industries employ nearly 6 lakh workers of which 80 per 

cent are women. The crop contributes around Rs. 2,50,000 million to the country’s GDP and 

earns export revenue of around Rs.43,654 million (Anonymous, 2016) [1]. India ranks first in 

production (21,665 million nuts) and productivity (10,119 nuts/ha.) of coconut and ranks third 

in the area (2,141 thousand ha.) under coconut. Indonesia stands first in area (3610 thousand 

ha.) under coconut, ranks second in production (16354 million nuts) and productivity (4530 

nuts/ha.) and the Philippines ranks second in the area (3502 thousand ha.) under coconut, ranks 

third in production (14696 million nuts) and productivity (4196 nuts/ha.). The largest share of 

coconut production in 2014 was recorded in India (31.02%) followed by Indonesia (23.42%) 

and Philippines (21.04%) and other countries 24.52 per cent (Anonymous, 2014) [2]. 

Traditional areas of coconut cultivation in India are the states of Kerala, Karnataka, Tamil 

Nadu, Andhra Pradesh, Goa, Orissa, West Bengal, Puducherry, Maharashtra and the Island 

territories of Lakshadweep and Andaman & Nicobar. Karnataka stands third in production of 

coconuts by producing 5128.84 million nuts, which constitutes 23.13 per cent of India’s 

production after Kerala: 7429.39 million nuts (33.51%) and Tamil Nadu 6171.06 million nuts 

(27.83%) during the year 2015-16. The four southern states viz. Kerala, Tamil Nadu, 

Karnataka and Andhra Pradesh are the major coconut-producing states in India accounting for 

more than 90 per cent of area and production (Anonymous, 2016) [1]. 
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Nowadays, tender coconut is becoming more popular as a 

health and energy drink by replacing artificial soft drinks. 

Coconut water is highly recommended by fitness and nutrition 

experts as a rehydrating agent. It has a caloric value of 17.4 

per 100 gm. On a percentage basis, coconut water is 94.5 per 

cent water, the rest would contain: Protein (0.15 to 0.55%), fat 

(0.10%), ash (0.46%), and carbohydrates (4.40%). Tender 

coconut water has been given intravenously to cholera 

epidemic victims in Sri Lanka, Indonesia, Bangladesh and 

India. Tender coconut water being rich in potassium and other 

minerals plays a major role in increasing urinary output (Ravi 

Kumar, 2012) [3]. 

In Karnataka, about 14 per cent of the total production of 

coconut is harvested in the form of tender nuts, which is 

confined to Mandya, Bengaluru, Mysore and Hassan districts. 

The production of coconut is localised while the consumption 

is spread throughout the country. Though Kerala tops the list 

at the national level for coconut production, it is largely used 

for oil extraction while the fruits from Mandya, Ramanagara 

and Tumkuru are known for their high-water content. 

Maddur APMC market is one of the world's largest tender 

coconut hubs (Naveena and Arunkumar, 2016) [4]. Every day, 

about four million tender coconuts are brought to an exclusive 

market set up by the Agricultural Produce Marketing 

Committee on the Bengaluru-Mysore highway. The nuts are 

brought by farmers and harvesters from Maddur, Mandya, 

Chamarajnagar, Kollegal, Malavalli, Bannur, Nagamangala, 

Pandavapura, K. R. Pet and Srirangapatna (Ravi Kumar, 

2012) [3]. Over 60 per cent of these tender coconuts are loaded 

onto 300 trucks and sent to New Delhi, Mumbai, Pune, 

Kolkata, Goa, Hyderabad, Ahmedabad and other places. The 

rest are sold within Karnataka. 

Marketing of tender coconut plays a significant role in the 

movement of commodities from the producer to the consumer 

and stabilizing prices. The planned increase in agricultural 

output must be coordinated with changes in the demand and 

supply for agricultural commodities and marketing. This can 

be achieved only when the producer’s share in the consumer’s 

rupee increases considerably irrespective of the volume of the 

marketable surplus produced by the farmers. Usually, 

fluctuation in price occurs due to changes in market 

conditions created in response to seasonal and annual 

variations in production (Mohan Kumar et al., 2009) [5]. The 

seasonal variation in arrivals and prices of tender coconut is 

more due to supply factors than due to demand factors 

(Mohan Kumar, et al., 2011a [6]. Thus, modelling and 

forecasting of monthly market arrivals and prices over the 

years using widely accepted sophisticated statistical tools is of 

much practical importance (Mohan Kumar, et al., 2011b) [7]. 

The purpose of this study was to find a suitable statistical 

model to forecast the monthly arrivals and prices of tender 

coconut using two time-series models viz. Holt-Winters 

Exponential Smoothing (H-WES) and Seasonal ARIMA 

models. The forecasting of market arrivals and prices is 

considered to be important as a guide to the producer to 

market his produce and to the consumer to purchase his needs 

at the right time. It also serves as a guide to the government to 

operate its policy measures (procurement and buffer release) 

at the appropriate time.  

 

2. Materials and Methods 

The data for the study are confined to arrivals and prices of 

tender coconut into the tender coconut market, Maddur, which 

is situated on the premises of the Agricultural Produce Market 

Committee (APMC), Maddur, Mandya district. The 

secondary data about monthly arrivals (in thousand nuts) and 

monthly prices (in rupees per thousand nuts) of tender 

coconuts for the period of April 1997 to March 2018 were 

collected from APMC, Maddur. Monthly arrivals are the total 

arrivals in a month and monthly prices are the modal prices in 

a month.  

 

2.1 Holt-Winters Exponential smoothing 

The exponential smoothing (ES) technique is one of the most 

successful forecasting methods which assigns exponentially 

decreasing weights as the observations get older. In other 

words, recent observations are given relatively more weight in 

forecasting than older observations. The moving average 

method and exponential smoothing method deal with almost 

any type of data as long as such data are non-seasonal. When 

seasonality does exist, however, these methods are not 

appropriate on their own (Makridakis et al. 1998) [8]. 

Holt’s method was extended by Winter’s to capture 

seasonality directly. The Holt-Winters’ method is based on 

three smoothing equations, one for level, one for trend, and 

one for seasonality. It is similar to Holt’s method, with 

additional equations to deal with seasonality. Holt-Winters 

Exponential Smoothing (H-WES) methods are widely used 

when the data shows trend and seasonality (Makridakis et al. 

1998) [8]. It has two types of models, one is the Holt-Winters’ 

additive method (additive trend, additive seasonality) and 

another Holt-Winters’ multiplicative method (additive trend, 

multiplicative seasonality). In this study, we make use of the 

Holt-Winters additive approach, which provides some simple 

rules based on the variances of differenced time series for 

choosing an appropriate exponential smoothing method. Holt-

Winters additive method of smoothing requires primary 

estimation of parameters level (α), trend (β) and seasonal (γ) 

indices and is given as 

 

Level: 𝐿𝑡 = 𝛼 (𝑌𝑡 − 𝑆𝑡−𝑠) + (1 − 𝛼)(𝐿𝑡−1 + 𝑏𝑡−1)   

Trend: 𝑏𝑡 = 𝛽 (𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑏𝑡−1      

  

Seasonal: 𝑆𝑡 = 𝛾 (𝑌𝑡 − 𝐿𝑡) + (1 − 𝛾)𝑆𝑡−𝑠 

 

Forecast: 𝐹𝑡+𝑚 = 𝐿𝑡 + 𝑚𝑏𝑡 + 𝑆𝑡−𝑠+𝑚  

 

where s is the length of seasonality, Lt represents the level of 

the series, bt denotes the linear trend components, St is the 

multiplicative seasonal components, Ft+m is the forecast for 

the m period ahead and a, b and g are level, trend and seasonal 

smoothing constant or the weights respectively, which are lies 

between 0 and 1. 

 

2.2 box-Jenkins approach for forecasting 

Box-Jenkins procedure is concerned with fitting a mixed 

Auto-Regressive Integrated Moving Average (ARIMA) 

model to a given set of data. The main objective in fitting this 

ARIMA model is to identify the stochastic process of the time 

series and predict future values accurately. Originally, 

ARIMA models have been studied extensively by George 

Box and Gwilym Jenkins and their names have been 

frequently used synonymously with general ARIMA 

processes applied to time series analysis, forecasting and 

control. However, the optimal forecasts of the future value of 

a time series are determined by the stochastic process for that 

series. A stochastic process is either stationary or non-

stationary. The first thing to note is that most time series are 

non-stationary and the ARIMA model refers only to 

stationary (Box et al., 2015) [9]. 
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2.2.1 Autoregressive Integrated Moving Average 

(ARIMA) Model: ARIMA (p, d, q) 

A generalization of ARMA models which incorporates a wide 

class of non-stationary stationary time-series is obtained by 

introducing the differencing into the model. The simplest 

example of a non-stationary process which reduces to a 

stationary one after differencing is a random walk. A process 

{𝑦𝑡} is said to follow an Integrated ARMA model, denoted by 

 

ARIMA (p, d, q), if 𝛻𝑑𝑦𝑡 = (1 − 𝐵)𝑑𝜀𝑡 is ARMA (p, q).  

 

The model is written as  

 

𝜑(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜃(𝐵)𝜀𝑡  

  

where 𝜀𝑡~𝑊𝑁(0, 𝜎2),  

WN indicating White Noise.  

The integration parameter d is a nonnegative integer.  

When d = 0, ARIMA (p, d, q) ≡ ARMA (p, q). 

 

2.2.2 Seasonal Autoregressive Integrated Moving Average 

(SARIMA) Model 

Sometimes the series exhibit perceptible periodic patterns for 

instance, the price and arrivals of agricultural commodities 

usually have a seasonal pattern process in general. 

Then ARIMA notation can be extended readily to handle 

seasonal aspects. In its general form, the Seasonal ARIMA 

model is characterized by a notation as ARIMA (p, d, q) (P, 

D, Q)s is given by 

 
(1 − 𝜑𝑝𝐵)(1 − 𝛷𝑝𝐵𝑠)(1 − 𝐵)(1 − 𝐵𝑠)𝑦𝑡 = (1 − 𝜃𝑞𝐵)(1 − 𝛩𝑞𝐵𝑠)𝜀𝑡 

 

Where B is the backshift operator (i.e. Byt = yt-1, B2yt = yt-2 

and so on), ’s’ the seasonal lag and ‘εt’ and ‘t’ a sequence of 

independent normal error variables with mean 0 and variance 

σ2. 𝛷′𝑠 and 𝜑′𝑠 are respectively the seasonal and non-seasonal 

autoregressive parameters. Θ's and θ’s are respectively 

seasonal and non-seasonal moving average parameters. The 

order p and q are orders of non-seasonal autoregressive and 

moving average parameters respectively, whereas P and Q are 

that of the seasonal autoregression and moving average 

parameters respectively. Also ‘d’ and ‘D’ denote non-seasonal 

and seasonal differences respectively (Box et al., 2015) [9]. 

The main stages in setting up a Box-Jenkins forecasting 

model are the following: 

1. Identification 

2. Estimating the parameters 

3. Diagnostic checking and 

4. Forecasting 

 

Identification of models 

The foremost step in the process of modelling is to check for 

the stationarity of the series, as the estimation procedures are 

available only for stationary series. The structure of 

autocorrelation and partial correlation coefficient plots may 

provide clues for the presence of stationary or non-stationary. 

Another way of checking for stationarity is to fit a first-order 

autoregressive model for the data and test whether the 

coefficient ‘ 1 ’ is less than one or go for Augmented 

Dickey-Fuller (ADF) test. If the model is found to be non-

stationary, stationary could be achieved mostly by 

differencing the series. 

A good starting point for time series analysis is a graphical 

plot of the data. It helps to identify the presence of trends. 

Before estimating the parameter (p, q) of the model, the data 

are first examined to decide about the model which best 

explains the data. This is done by examining the sample ACF 

and Partial Auto-Correlation Function (PACF) of differenced 

series yt. The sample auto correlations for k time lags can be 

found by: 

 

�̂�𝑘(𝑦𝑡) = 𝑟𝑘(𝑦𝑡) =
𝐶𝑘(𝑦𝑡)

𝐶0(𝑦𝑡)
;  

   

where  

𝐶𝑘(𝑦𝑡) =
1

𝑛
∑(𝑦𝑡 − �̅�𝑡

𝑛−𝑘

𝑡=1

)(𝑦𝑡+𝑘 − �̅�𝑡);  𝑘 = 1, 2, … . , 𝑛 

 

𝑘 = 1, 2, … . , 𝑛 

 

𝑡 = 1, 2, … . , 𝑛 − 𝑘 

 

�̅�𝑡 =
1

𝑛
∑ 𝑦𝑡

𝑛

𝑡=1

 

    

n = Length of time period 

 

The next step in the identification process is to find the initial 

values for the orders of seasonal and non-seasonal parameters, 

p, q, and P, Q. They could be obtained by looking for 

significant autocorrelation and partial autocorrelation 

coefficients. Say, if second order auto correlation coefficient 

is significant, then an AR (2) or MA (2) or ARMA model 

could be tried to start with. Yet another application of the 

autocorrelation function is to determine whether the data 

contains a strong seasonal component. This phenomenon is 

established if the autocorrelation coefficients at lags between t 

and t-12 are significant. If not, these, coefficients will not be 

significantly from zero.  

Both ACF and PACF are used as an aid in the identification 

of appropriate models. There are several ways of determining 

the order of the type of process, but still, there is no exact 

procedure for identifying the model. 

 

Estimation of parameters 

At the identification stage, one or more models are tentatively 

chosen that seem to provide statistically adequate 

representations of the available data. The precise estimates of 

the parameters of the identified models are obtained by 

Maximum Likelihood Estimation (MLE). Standard computer 

packages like SPSS and SAS are available for finding the 

estimates of relevant parameters using iterative procedures. 

Or obtain Least Square Estimates of the parameters which are 

having minimum error sum of squares. 

    

𝑆(𝜑, 𝜃) = ∑ 𝑒𝑡
2(𝜑, 𝜃)𝑛

𝑡=1 ; t = 1, 2, 3,…, n 

 

The MLE method is used in the present analysis for 

estimating the parameters. 

 

Diagnostic checking of the model  

After having estimated the parameters of a tentatively 

identified ARIMA model, it is necessary to do diagnostic 

checking to verify that the model is adequate. 

Examining ACF and PACF of residuals may show an 

adequacy or inadequacy of the model. If it shows random 

residuals, then it indicates that the tentatively identified model 

was inadequate. When an inadequacy is detected, the checks 
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should give an indication of how the model need be modified, 

after which further fitting and checking takes place. 

One of the procedures for diagnostic checking mentioned by 

Box-Jenkins is called over fitting i.e. using more parameters 

than necessary. But the main difficulty in the correct 

identification is not getting enough clues from the ACF 

because of inappropriate level of differencing. The residuals 

of ACF and PACF are considered randomly when all their 

ACF’s were within following the limits:  

 

−1.96√
1

𝑛 − 12
≤ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 (𝑟𝑘) ≤ 1.96√

1

𝑛 − 12
 

 

Hence, the randomness of the ACF satisfies the condition of 

diagnostic checking. 

It is also used Ljung and Box ‘Q’ statistic for whether the auto 

correlations for those residuals are significantly different from 

zero. It can be computed as follows. 

 

𝑄 = 𝑛(𝑛 + 2) ∑(𝑛 − 𝑘)−1

ℎ

𝑘=1

𝑟𝑘
2 

 

Where 

h = Maximum lag considered 

n = Number of observations 

rk = ACF for lag k 

m=p+ q+P+Q = Number of parameters to be estimated. 

In addition, Q is distributed approximately as a Chi-square 

statistic with (h-m) degree of freedom. If the p-value 

associated with the Q statistic is small (p-value<0.05 or 0.01), 

the model is considered inadequate. The analyst should 

consider a new or modified model and continue the analysis 

until a satisfactory model has been determined.  

The minimum Akaike’s Information criterion (AIC) and 

Schwartz Bayesian Information Criterion (SBIC) is used to 

determine both the differencing order (d, D) required for 

attaining Stationarity and identify the appropriate number of 

AR and MA parameters. It can be computed as follows. 

 

AIC = −2 ln(𝐿) + 2𝑚 

 

BIC = −2 ln(𝐿) + 𝑚𝑙𝑛(𝑛)  

 

where, 
2  = Estimated MSE 

n = Number of observations 

m = p+ q+P+Q = Number of parameters to be estimated  

 

This diagnostic checking helps us to identify the differences 

in the model, so that the model could be subjected to 

modification, if need be.  

 

Forecasting 

The principal objective of developing an ARIMA model for a 

variable is to generate a sample period forecast for the same 

variable. The ultimate test for any model is whether it can 

predict future events accurately or not.  

The accuracy of forecasts was tested using Root Mean square 

error (RMSE) and Mean average percentage error (MAPE). 

 

3. Results and Discussions 

The graph of the arrivals and prices of tender coconut in the 

Maddur market is plotted. A perusal of the plot indicated that 

arrivals show huge fluctuations from minimum arrivals of 10, 

51, 350 to 2, 42, 39, 150 thousand nuts and minimum prices 

of 2, 500 to 11, 000 rupees per thousand nuts. The huge 

fluctuation of the data set indicated arrivals and price series 

were non-stationary and revealed strong seasonality. The 

ability to forecast was tested using Holt-Winters and seasonal 

ARIMA models for the monthly arrivals and prices of tender 

coconuts for the period of April 1997 to March 2018. 

 

3.1 Holt-Winters Exponential Smoothing Model for 

Estimating Arrivals and Prices: Time-series plots of 

monthly arrivals and price data of tender coconut in the 

Maddur market during the period from April 1997 to March 

2018 have shown the positive linear trend factor and 

seasonality exist in the time series data. When the time series 

has a linear trend and seasonality along with constant 

variability in arrivals and prices, the additive approach is 

more suitable. Therefore, in this study, we have employed the 

Holt-Winters Additive Exponential Smoothing method to 

forecast, which provides some simple rules based on the 

variances of differenced time series for choosing an 

appropriate exponential smoothing method. The model 

consists of three parameters, which are symbolized as α for 

mean and β for trend and  for seasonality. The best model of 

the Holt-Winters Exponential Smoothing has been selected 

based on the lowest value of MSE, RMSE, MAE and MAPE 

from the combination of α, β and  which satisfies the 

condition 0 < α, β and  <1. Estimates of the Holt-Winters 

Exponential Smoothing Model Parameter along with its 

standard error are tabulated in Table 1 and Table 2 

respectively for arrivals and prices of tender coconut. The 

result showed that, the parameters combination of {α=0.6, 

β=0.000016, =0.0000063} and {α = 0.71, β = 0.0000004, 

=0.0000001} are found to be best suitable for arrivals and 

prices respectively. 

 
Table 1: Estimates of Holt-Winters Exponential smoothing model 

parameters for forecasting arrivals of tender coconut in the Maddur 

market. 
 

Model Parameters Estimate S.E. t-statistic 

α (Level) 0.6 0.59 10.14** 

β(Trend) 0.000016 0.028 0.001NS 

 (Seasonal) 0.0000063 0.046 0.00001NS 

** Significant at 1% level of significance NS: Not Significant 

 
Table 2: Estimates of Holt-Winters Exponential smoothing model 

parameters for forecasting prices of tender coconut in Maddur 

market. 
 

Model Parameters Estimate S.E. t-statistic 

α (Level) 0.71 0.61 11.74** 

β(Trend) 0.0000004 0.06 0.00008NS 

 (Seasonal) 0.0000001 0.78 0.01NS 

** Significant at 1% level of significance NS: Not Significant 

 

3.2 Box-Jenkins Approach for Forecasting Arrivals and 

Prices: The forecasting through the Box-Jenkins model is 

carried out in four stages, viz., identification of tentative 

models based on examination of the Autocorrelation Function 

(ACF) and Partial Autocorrelation Function (PACF). Then, 

the parameters of the identified models are estimated by the 

Maximum likelihood estimation method and then the 

residuals of each of the fitted models are obtained. By 

examining ACF and PACF plots of residuals may show an 

adequacy or inadequacy of the model. If it shows random 

residuals, then it indicates that the tentatively identified model 
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was inadequate. The adequacy of the model is also judged 

based on the values of the Ljung-Box “Q” statistic. The model 

has the lowest value of the Akaike Information Coefficient 

(AIC) and the Bayesian Information Criteria (BIC) statistic is 

selected as the best model among tentatively identified 

models for forecasting the future. Both Ex-ante and Ex-post 

forecasts are done and it was compared with actual values of 

observation. The results of the forecast and the accuracy of 

the forecast are tested using test statistics like RMSE, and 

MAPE. Monthly arrivals and price data of tender coconut in 

the Maddur market during the period from April 1997 to 

March 2018 are used to build the forecasting model. 

 

3.2.1 Arrivals of tender coconuts 

An upward trend was observed in the arrivals of tender 

coconuts. AFC and PACF of arrivals are presented in Fig.1; 

perusal of these plots indicates the existence of non-

stationarity and seasonality in the arrival’s series. The non-

stationary series can be converted into stationary by 

differencing the original series using a difference technique. It 

can also be visualized from the plot of ACF and PACF of the 

series. The decay rate for the ACF of the series is very low. 

But after differencing of the original series, the decay rate 

becomes high and the arrival series becomes stationary. 

To this end, Augmented Dickey-Fuller (ADF) was used for 

the test of stationarity, it was found to be a non-stationary 

series. An examination of the ACF and PACF revealed 

seasonality at the 12th lag. Each coefficient of ACF and PACF 

is tested for their significance using a t-test. Further, the 

presence of a peak at the 12th lag clearly indicates the 

suitability of the choice of seasonal difference D =1, to 

accomplish stationary series. The plots of ACF and PACF of 

differenced (d=D=1) series shown in Fig. 2 up to 25 lags. By 

examining the ACF and PACF plots of the differenced 

arrivals series at lag d=D=1, the tentative models were first 

identified which are presented in Table 3. Based on minimum 

AIC and BIC values SARIMA (1, 1, 1) (2, 1, 1)12 model is 

selected as the best model among tentative models. An 

estimate of parameters of selected SARIMA (1, 1, 1) (2, 1, 

1)12 models are estimated using Maximum Likelihood 

estimation and then residuals for the best model are obtained 

by back forecasting. However, the parameter constant mean 

was found not significant and thus dropped from the model. 

The estimate of the parameters with corresponding standard 

error for SARIMA (1, 1, 1) (2, 1, 1)12 model are given in 

Table 4. 

Residual analysis was carried out to check the adequacy of the 

model. The plots of ACF and PACF of residual series are 

shown in Fig. 3 up to 25 lags. The adequacy of the model is 

judged based on the values of Ljung and Box “Q” statistic. 

The Q-statistics value 19.25 was found to be non-significant 

(p=0.115) indicating white noise of the series and none of the 

autocorrelation and partial autocorrelation coefficients has 

fallen outside the limits indicated white noise of the series. 

Thus, these tests suggest model SARIMA (1, 1, 1) (2, 1, 1)12 

is adequate. 

The ex-ante forecast was done using SARIMA (1,1,1) 

(2,1,1)12 and Holt-Winter’s Exponential smoothing model and 

it was compared with actual values of observation. The 

accuracy of forecasting models are tested using RMSE and 

MAPE, which are presented in Table 5. Based on the lowest 

RMSE and MAPE values SARIMA (1, 1, 1) (2, 1, 1)12 better 

performed than Holt-Winter’s Exponential smoothing model. 

The charts of Ex-ante forecast of arrivals by both the models 

are shown in Fig 4. A perusal of Fig 4 indicates that seasonal 

ARIMA model has nicely captured the variation of monthly 

arrivals of tender coconut into the Maddur market.  

Both fitted models were be used for forecasting (Ex-post) the 

arrivals for next 12 months i.e. from April 2018 to March 

2019, Ex-post forecasting value along with actual arrivals are 

tabulated in Table 8. 

 
Table 3: Tentatively identified SARIMA models for Arrivals of 

tender coconut 
 

Tentative models AIC BIC 

(0 1 0) (0 1 1) 7704.79 7708.27 

(0 1 1) (0 1 1) 7700.92 7707.87 

(1 1 1) (0 1 1) 7687.12 7697.55 

(1 1 0) (0 1 1) 7685.13 7692.09 

(1 1 1) (1 1 0) 7722.35 7732.50 

(1 1 1) (1 1 1) 7666.62 7680.52 

(1 1 1) (2 1 1) 7661.56 7678.95 

(2 1 0) (2 1 0) 7682.09 7695.99 

(2 1 1) (2 1 1) 7662.79 7683.65 

 

 
 

Fig 1: Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots for arrivals of tender coconuts in Maddur market 
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Fig 2: Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots for arrivals of tender coconuts after differencing 

series by d=D=1 

 

 
 

Fig 3: Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots for residuals SARIMA (1, 1, 1) (2, 1, 1)12 model for 

Arrivals. 
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Fig 4: Ex-ante forecast of Arrivals of tender cocoanut in Maddur market 
 

Table 4: Estimates of SARIMA (1, 1, 1) (2, 1, 1)12 model for 

Arrivals of tender coconut 
 

Parameter Estimate Standard Error t-Value Approx Pr > |t| 

AR (1) 0.33555 0.09889 3.39** 0.0007 

MA (1) 0.79047 0.06476 12.21** <.0001 

SAR (1) -0.31720 0.11709 -2.71** 0.0067 

SAR (2) -0.33100 0.09213 -3.59** 0.0003 

SMA (1) 0.45134 0.11779 3.83** 0.0001 

 ** Indicates significant at 1% level of significance 

 
Table 5: Model forecast accuracy criteria 

 

Accuracy 

criteria 

Arrivals Predicted by Price Predicted by 

SARIMA H-WES SARIMA H-WES 

RMSE 2119526.78 2147802.60 374.39 376.56 

MAPE (%) 36.01 39.28 3.67 4.28 

 

3.2.2 Prices of tender coconuts 

An upward trend was observed in the prices of tender 

coconuts. AFC and PACF of prices are presented in Fig.5; 

perusal of these plots indicates the existence of non-

stationarity in the price series. The non-stationary series can 

be converted into stationary by differencing the original series 

using a difference technique. It can also be visualized from 

the plot of ACF and PACF of the series. The decay rate for 

the ACF of the series is very low. But after differencing of the 

original series, the decay rate becomes high and the prices 

series become stationary. To this end, Augmented Dickey-

Fuller (ADF) was used for the test of stationarity, it was found 

to be a non-stationary series. An examination of the ACF and 

PACF plots at the 12th lag revealed no seasonality in the 

prices. Each coefficient of ACF and PACF is tested for their 

significance using a t-test. The plots of ACF and PACF of 

differenced (d=1) series shown in Fig. 6 up to 25 lags. After 

examining the ACF and PACF plots of the differenced prices 

series at lag d=1, tentative models were first identified which 

are presented in Table 6. On the basis of minimum AIC and 

BIC values, the ARIMA (1, 1, 3) model is selected as the best 

model among tentative models. An estimate of parameters of 

the selected ARIMA (1, 1, 3) model is estimated using 

Maximum Likelihood estimation and then residuals for the 

best model are obtained by back forecasting.  

However, the parameter constant mean was found not 

significant and thus dropped from the model. The estimates of 

the parameters with corresponding standard error for the 

ARIMA (1, 1, 3) model are given in Table 7. 

Residual analysis was carried out to check the adequacy of the 

model. The plots of ACF and PACF of residual series are 

shown in Fig. 7 up to 25 lags. The adequacy of the model is 

judged based on the values of Ljung and Box “Q” statistics 

over different lags and outliers. The Q-statistics value 15.95 

was found to be non-significant (p=0.317) indicating white 

noise of the series and none of the autocorrelation and partial 

autocorrelation coefficients have fallen outside the limits 

indicated white noise of the series. Thus, these tests suggest 

model ARIMA (1, 1, 3) is adequate. 

The ex-ante forecast was done using ARIMA (1, 1, 3) and 

Holt-Winter’s Exponential smoothing model and it was 

compared with actual values of observation. The accuracy of 

the forecast tested using RMSE and MAPE is presented in 

Table 5. Based on the RMSE and MAPE values ARIMA (1, 

1, 3) better performed than Holt-Winter’s Exponential 

smoothing model. The chart of the Ex-ante forecast of prices 

by both models is shown in Fig 8. A perusal of Fig. 8 

indicates that seasonal ARIMA model has nicely captured the 

variation of monthly price of tender coconut into the Maddur 

market.  

Both fitted models were used for forecasting (Ex-post) the 

arrivals for the next 12 months i.e. from April 2018 to March 

2019, the Ex-post forecasting value along with actual arrivals 

are tabulated in Table 8. 

 
Table 6: Tentatively identified models for Prices of tender coconut 

 

Tentative models AIC BIC 

(0 1 1) (0 0 1) 3704.64 3711.69 

(0 1 1) (0 0 0) 3702.80 3706.30 

(1 1 0) (0 0 1) 3707.35 3717.91 

(1 1 1) (0 0 1) 3705.68 3719.78 

(0 1 2) (0 0 0) 3704.03 3714.60 

(1 1 3) (0 0 0) 3692.85 3703.43 

(1 1 1) (0 0 0 ) 3705.43 3716.01 

(0 1 2) (0 0 0 ) 3700.97 3715.34 
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Fig 5: Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots for prices of tender coconuts in Maddur market 
 

 
 

Fig 6: Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots for prices of tender coconuts after differencing series 

by d= 1 

 

 
 

Fig 7: Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots for residuals from ARIMA (1, 1, 3) model for prices. 
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Fig 9: Ex-ante forecast of prices of tender cocoanut in Maddur market 

 
Table 7: Estimates of ARIMA (1, 1, 3) model for Prices of tender 

coconut 
 

Parameter Estimate Standard Error t-Value Approx Pr > |t| 

AR (1) 0.52944 0.15265 3.47** 0.0005 

MA (1) 0.78685 0.12862 6.12** <.0001 

MA (3) -0.25445 0.04885 -5.21** <.0001 

** Indicates significant at 1% level of significance 

 
Table 8: Ex-post forecasting of arrivals and prices for the next 12 

months i.e. from April 2018 to March 2019 
 

Months-Years 
Forecasted Arrivals Forecasted prices 

SARIMA H-WES ARIMA H-WES 

Apr-18 10236792 10868795 10000 10092 

May-18 8253974 8586521 10000 10140 

Jun-18 4940118 6473790 10000 10097 

Jul-18 4936298 5679878 10000 10183 

Aug-18 4582946 5743378 10000 10130 

Sep-18 7040555 7397131 10000 10111 

Oct-18 8456795 8722498 10000 10145 

Nov-18 7172366 8339063 10000 10316 

Dec-18 3686980 7421043 10000 10411 

Jan-19 8797463 9066897 10000 10316 

Feb-19 12033738 10622221 10000 10402 

Mar-19 14529325 12483851 10000 10387 

 

4. Conclusions 

In the present study, two univariate time-series models viz. 

Holt-Winters’ Exponential Smoothing and seasonal ARIMA 

models were fitted to monthly arrivals and prices data of 

tender coconut in Maddur market which is world largest 

market for tender coconuts, during the period from April 1997 

to March 2018. The results showed that ARIMA model better 

performed than H-WMES model for forecasting of arrivals 

and prices of tender coconuts. Seasonal ARIMA model could 

be successfully used for modelling as well as forecasting of 

monthly price of forecasting arrivals and prices of tender 

coconuts. The model demonstrated a good performance in 

terms of explained variability predicting power. Forecasting 

the future arrivals and prices of tender coconut will help the 

farmer to know the demand and price which in turn helps 

them for planning the harvest tender coconuts and to get good 

price. Forecasting will also helps Govt, traders, dealers to 

perform better strategic planning and also to help them in 

maximizing revenue and minimizing the cost of price. 
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