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An Application of multivariate time series models for 

forecasting the prices of tomato in Haryana 

 
Pushpa Ghiyal and Joginder Kumar 

 
Abstract 

Time series forecasting of agricultural products has the basic importance in maintaining the sustainability 

of agricultural production. In this study, multivariate time series models: vector autoregressive (VAR) 

and vector autoregressive integrated moving average (VARMA) have been used for modelling the 

interdependence among the price series of tomato in selected APMC markets of Haryana. The 

forecasting performance of VAR and VARMA models have also been compared using percentage 

relative deviation (RD (%)), standard error of prediction (SEP) and mean absolute percent error (MAPE) 

for different forecast horizons 1, 3, 6, 9 and 12 months. The results suggest that forecast performance of 

VARMA models is more accurate than VAR models for forecasting the price series of tomato. The 

findings of the study would help in decision making for managing agricultural supplies and helping to 

improve the purchasing behavior of consumers. 

 

Keywords: VAR, VARMA, tomato prices, multivariate time series and forecasting 

 

Introduction 

India is primarily an agriculture-based country and its economy largely depends upon 

agriculture. Agricultural price movements have been a matter of serious concern for policy 

makers in our country as the behaviors of agricultural prices is affecting the economic 

development. Among other things, price plays a strategic role in influencing the cultivation of 

food grains. Indeed, the price analysis of agricultural commodities assumes greater significant 

not only to the policy makers in formulating developmental plans but to both producers and 

consumers as well. 

Time series forecasting is an important area in which prediction of future values of a variable 

is made based on past values of the variable first formulated the concept of Autoregressive 

(AR) and Moving Average (MA) models. Box and Jenkins (1970) integrated the existing 

knowledge in the book entitled “Time Series Analysis: Forecasting and Control” which has an 

enormous impact on the theory and practice of modern time series analysis and forecasting.  

The modeling of multiple time series at the same time is known as multivariate time series or 

vector time series, which is used to examine the relationship between the time series as well as 

the structure responsible for their dynamic movement. There are two main reasons for using 

multivariate time series models: (i) to explain the dynamic relationships among the various 

time series, and (ii) to improve the accuracy of forecasts of one series using the information 

about that series contained in all other time series. Villani (2001) [8] used the Swedish 

monetary data for seven variables to forecast the inflation of the country using Bayesian co-

integrated VAR. Pesaran et al. (2004) [6], Dees et al. (2007) [2] and Gutierrez et al. (2014) [4] 

employed the global Vector Autoregressive (GVAR) methodology to analyze the global wheat 

market. Poskitt (2011) [7] developed a new methodology for identifying the structure of 

VARMA time series models. Deryugina and Ponomarenko (2015) [3] built Bayesian VAR 

model comprising 14 major domestic real price and monetary macroeconomic indicators as 

well as external sector variables for Russia. Xu and Lin (2015) [9] used a Vector Autoregressive 

model to examine the factors that influence changes in carbon dioxide emissions in China. 

They discovered that energy efficiency is essential in reducing carbon dioxide emissions. Iwok 

and Okoro (2016) [5] used probability multivariate time series models to forecast stocks of the 

Nigerian banking sector. 
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Azubuike and Kosemoni (2017) [1] used Average Monthly Exchange Rates (AMER) of Naira (Nigerian currency) to six other 

currencies of the World to evaluate and compared the performance of univariate and multivariate based time series models. 

Zadrozny and Chen (2020) [10] used weighted‐covariance factor decomposition of VARMA models for forecasting quarterly U.S. 

Real GDP at monthly intervals. 

 

Materials and methods 

Multivariate time series models are used to explain the interdependencies and co-movements of multiple variables. The 

assumption in multivariate analysis is that dependency of variables not only depends on their past values but also depend on other 

variables. The VAR models are used to capture the linear interdependencies among multiple time series. 

 

In general, VAR (p) model is given by 

 

𝑦𝑡 = 𝛿𝑡 + ∑ 𝐴𝑖𝑦𝑡−𝑖 +
𝑝
𝑖=1 𝜀𝑡  …                       (1) 

 

Where, 𝑦𝑡 = (𝑦1𝑡 , 𝑦2𝑡 , …… , 𝑦𝑘𝑡)
′, and the 𝐴𝑖

′𝑠 (𝑖 = 1, 2, … … , 𝑝) are (𝐾 × 𝐾) coefficient matrices and 𝜀𝑡 =

(𝜀1𝑡, 𝜀2𝑡, …… , 𝜀𝑘𝑡)
′ and 𝛿𝑡 = (𝛿𝑡1𝑡

, 𝛿𝑡2𝑡
, …… , 𝛿𝑡𝑘𝑡

)
′
 is K-dimensional error term and constant term.𝐴𝑖𝑗 is the (i, j)th element of A 

matrix and 𝐴𝑖𝑗 denotes the linear dependence of 𝑦𝑖𝑡 on 𝑦𝑗,𝑡−1 in the presence of 𝑦𝑖,𝑡−1, hence 𝐴𝑖𝑗 is the conditional effect of 𝑦𝑖𝑡 on 

𝑦𝑗,𝑡−1 given 𝑦𝑖,𝑡−1. If 𝐴12 = 0, then 𝑦𝑖𝑡 does not depend on 𝑦𝑗,𝑡−1 and indicate that 𝑦𝑖𝑡  only depend on its own lag period. 

VAR model of order p may have some drawbacks. However, the 𝐴𝑖 parameter matrices are unknown and can be replaced by 

estimators. VAR model of large order is required for an appropriate representation of time series data. Hence, a large number of 

parameters may be required to adequate description of the data. Given limited sample size, this usually lead to low estimation 

precision and forecasts based on VAR model with estimated coefficients may suffer from the uncertainty in the parameter 

estimations. As a result, it is useful to consider the larger model class of vector autoregressive moving average (VARMA) model 

which may be able to adequately describe the data in a more parsimonious manner. VARMA models for multivariate time series 

include the VAR model as well as moving average terms for each variable. VARMA (p, q) model is written as 

 

𝑦𝑡 = 𝛿𝑡 + ∑ 𝐴𝑖𝑦𝑡−𝑖 − ∑ 𝑀𝑗𝜀𝑡−𝑗
𝑞
𝑗 +

𝑝
𝑖=1 𝜀𝑡  …  (2) 

 

Where 𝐴𝑖  (𝑖 = 1, 2, … , 𝑝) are (𝐾 × 𝐾) matrices of autoregressive parameters and 𝑀𝑗  (𝑗 = 1, 2, … , 𝑞) are (𝐾 × 𝐾) matrices of 

moving average parameters. Defining the VAR and MA operators: 

 

𝐴(𝐵) = 𝐴0 + 𝐴1𝐵 + 𝐴2𝐵
2 + ⋯ + 𝐴𝑝𝐵

𝑝  …  (3) 

 

𝑀(𝐵) = 𝑀0 − 𝑀1𝐵 − 𝑀2𝐵
2 − ⋯ − 𝑀𝑞𝐵

𝑞  …  (4) 

 

The model can be written in more compact notation as 

 

𝐴(𝐵)𝑦𝑡 = 𝑀(𝐵)𝜀𝑡 , 𝑡 = 0, ±1,±2,…… …  (5) 

 

Where, 𝜀𝑡 is a white noise process with mean zero, nonsingular, time- invariant covariance matrix 𝐸(𝜀𝑡𝜀𝑡
′) = Σ and covariances 

zero, 𝐸(𝜀𝑡𝜀𝑡−ℎ
′ ) = 0 for ℎ = 0,±1,±2, .. The 𝐴0 and 𝑀0 matrices are assumed to be nonsingular. They are often identical 𝐴0 =

𝑀0 and in many cases they will be equal to identity matrix 𝐴0 = 𝑀0 = 𝐼𝑘. 

 

Comparison and Validation of the Developed Models 

Model Selection 

Information criteria such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are used to select an 

appropriate model.  

 

AIC =  −2𝐼𝑛(L) + 2𝑘 …  (6) 

 

BIC =  −2𝐼𝑛(L) + 𝐼𝑛(N)𝑘  (7) 

 

Where L is the value of the likelihood function evaluated at the parameter estimates, N is the number of observations and 𝑘 is the 

number of estimated parameters. The models having minimum values of AIC and BIC will be selected as better model. 

 

Model Evaluations 

The model is evaluated quantitatively using the MAPE, SEP, RMSE and Relative Deviation (RD%). The SEP is used for the 

comparison of forecast from different models because of its dimension less. 

 

MAPE =
100

n
× ∑ |

Oi−Ei

Oi
|n

i=1  …  (8) 

 

SEP =
100

y̅
RMSE where RMSE = [

1

n
∑ (Oi − Ei)

2n
i=1 ]

1

2
 …  (9) 
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𝑅𝐷 =
𝑂𝑖−𝐸𝑖

𝑂𝑖
× 100 …  (10) 

 

Where, Oi, y̅ and Ei are the observed, mean and predicted values and n is the number of observations in validation set.  

 

Results  

Vector Autoregression (VAR) model 

In Table 1, the results of KPSS test show that the differenced series are stationary and hence, VAR and VARMA models can be 

fitted. The order of VAR and VARMA models is determined on the basis of lowest value of information Criteria such as Akaike 

information criterion (AIC) and Bayesian Information Coefficient (BIC).  

 
Table 1: KPSS test for stationary checking 

 

Markets Level (actual series) Differencing (d=1, D=1) 

 t-statistic p-value t-statistic p-value 

Gurugram 0.73 0.01 0.02 0.1 

Yamunanagar 0.85 0.01 0.03 0.1 

Panipat 0.74 0.01 0.04 0.1 

Kurukshetra 0.81 0.01 0.03 0.1 

Panchkula 1.36 0.01 0.05 0.1 

Karnal 0.77 0.01 0.04 0.1 

 
Table 2: Information criteria for VAR models of different orders 

 

VAR (p) VARMA (p,q) 

Order(p) AIC BIC Order (p, q) AIC BIC 

1 67.92 68.95 1,1 67.01 70.82 

2 68.07 69.98 1,2 113.82 116.47 

3 68.27 71.07 2,1 68.81 71.46 

4 68.61 72.29 2,2 68.81 71.46 

5 68.75 73.32 2,3 129.63 133.96 

 

Table 2 shows that the results of information criteria for different order of p and q. Vector Autoregression of order 1 i.e. VAR (1) 

is selected on the basis of minimum values of AIC (67.92), BIC (68.95) and HQC (68.34) and VARMA (1,1) is chosen with the 

least value of AIC (67.01) and BIC (70.82) among the other models. 

 

Parameter Estimation 

The estimated parameters of VAR (1) models are given below: 

 

[
 
 
 
 
 
 
 

∆𝑌̂𝐺𝑢𝑟𝑢𝑔𝑟𝑎𝑚,𝑡

∆𝑌̂𝑌𝑎𝑚𝑢𝑛𝑎𝑛𝑎𝑔𝑎𝑟,𝑡

∆𝑌̂𝑃𝑎𝑛𝑖𝑝𝑎𝑡,𝑡

∆𝑌̂𝐾𝑢𝑟𝑢𝑘𝑠ℎ𝑒𝑡𝑟𝑎,𝑡

∆𝑌̂𝑃𝑎𝑛𝑐ℎ𝑘𝑢𝑙𝑎,𝑡

∆𝑌̂𝐾𝑎𝑟𝑛𝑎𝑙,𝑡 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
13.67
16.61
17.15
17.06
15.69
9.41 ]

 
 
 
 

+

[
 
 
 
 
 
0.64∗∗ −0.22 −0.44∗ −0.11 −0.12∗∗ −0.02
0.67∗∗

0.63∗∗

0.59∗∗

0.56∗

0.41∗

−0.26
−0.23
−0.06
−0.27
−0.33

−0.28
−0.50∗∗

−0.31∗

−0.22
−0.27

−0.10
−0.01
−0.27
0.39
0.18

−0.13
−0.01
−0.08
−0.44∗∗

0.01

−0.03
−0.04
−0.01
−0.10
0.05 ]

 
 
 
 
 

[
 
 
 
 
 
 

∆𝑌𝐺𝑢𝑟𝑢𝑔𝑟𝑎𝑚,𝑡−1

∆𝑌𝑌𝑎𝑚𝑢𝑛𝑎𝑛𝑎𝑔𝑎𝑟,𝑡−1

∆𝑌𝑃𝑎𝑛𝑖𝑝𝑎𝑡,𝑡−1

∆𝑌𝐾𝑢𝑟𝑢𝑘𝑠ℎ𝑒𝑡𝑟𝑎,𝑡−1

∆𝑌𝑃𝑎𝑛𝑐ℎ𝑘𝑢𝑙𝑎,𝑡−1

∆𝑌𝐾𝑎𝑟𝑛𝑎𝑙,𝑡−1 ]
 
 
 
 
 
 

 

‘*’ significant at 5% level of significance 

‘**’ significant at 1% level of significance 

 

Out of forty-two estimated parameters, only eleven parameters were found to be significant in this model. So, the non-significant 

parameters are restricted to zero because non-significant parameters reduce the accuracy of model and the following VAR (1) 

model is obtained. 

 

∆𝑌̂𝐺𝑢𝑟𝑢𝑔𝑟𝑎𝑚,𝑡  =  0.64∆𝑌̂𝐺𝑢𝑟𝑢𝑔𝑟𝑎𝑚,𝑡−1 − 0.44∆𝑌̂𝑃𝑎𝑛𝑖𝑝𝑎𝑡,𝑡−1 − 0.12∆𝑌̂𝑃𝑎𝑛𝑐ℎ𝑘𝑢𝑙𝑎,𝑡−1 

 

∆𝑌̂𝑌𝑎𝑚𝑢𝑛𝑎𝑛𝑎𝑔𝑎𝑟,𝑡 =  0.67∆𝑌̂𝑌𝑎𝑚𝑢𝑛𝑎𝑛𝑎𝑔𝑎𝑟,𝑡−1 

 

∆𝑌̂𝑃𝑎𝑛𝑖𝑝𝑎𝑡,𝑡  =  0.63∆𝑌̂𝐺𝑢𝑟𝑢𝑔𝑟𝑎𝑚,𝑡−1 − 0.50∆𝑌̂𝑃𝑎𝑛𝑖𝑝𝑎𝑡,𝑡−1 

 

∆𝑌̂𝐾𝑢𝑟𝑢𝑘𝑠ℎ𝑒𝑡𝑟𝑎,𝑡  =  0.59∆𝑌̂𝐺𝑢𝑟𝑢𝑔𝑟𝑎𝑚,𝑡−1 − 0.31∆𝑌̂𝑃𝑎𝑛𝑖𝑝𝑎𝑡,𝑡−1 

 

∆𝑌̂𝑃𝑎𝑛𝑐ℎ𝑘𝑢𝑙𝑎,𝑡  =  0.56∆𝑌̂𝐺𝑢𝑟𝑢𝑔𝑟𝑎𝑚,𝑡−1 − 0.44∆𝑌̂𝑃𝑎𝑛𝑐ℎ𝑘𝑢𝑙𝑎,𝑡−1 

 

∆𝑌̂𝐾𝑎𝑟𝑛𝑎𝑙,𝑡  =  0.41∆𝑌̂𝐺𝑢𝑟𝑢𝑔𝑟𝑎𝑚,𝑡−1 
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The obtained the estimated parameters of chosen VARMA (1,1) model given as below 

 

[
 
 
 
 
 
 
 

∆𝑌̂𝐺𝑢𝑟𝑢𝑔𝑟𝑎𝑚,𝑡

∆𝑌̂𝑌𝑎𝑚𝑢𝑛𝑎𝑛𝑎𝑔𝑎𝑟,𝑡

∆𝑌̂𝑃𝑎𝑛𝑖𝑝𝑎𝑡,𝑡

∆𝑌̂𝐾𝑢𝑟𝑢𝑘𝑠ℎ𝑒𝑡𝑟𝑎,𝑡

∆𝑌̂𝑃𝑎𝑛𝑐ℎ𝑘𝑢𝑙𝑎,𝑡

∆𝑌̂𝐾𝑎𝑟𝑛𝑎𝑙,𝑡 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
11.57
13.09∗

19.06∗

15.03
14.81
6.64 ]

 
 
 
 

+

[
 
 
 
 
 

0.54 −0.19 −0.44∗∗ −0.53 −0.21 0.13
0.38
0.42
0.78∗∗

0.75
0.01∗∗

−0.08
0.45

0.55∗∗

0.16
−0.33

−0.03
−0.37

−0.33∗∗

−0.11
−0.21

−0.53∗∗

−0.17
−0.57
−0.03
−0.08

−0.46
−0.16
−0.24
−0.08
0.23

0.14
0.49∗∗

0.22
−0.03
0.16 ]

 
 
 
 
 

[
 
 
 
 
 
 
 

∆𝑌̂𝐺𝑢𝑟𝑢𝑔𝑟𝑎𝑚,𝑡−1

∆𝑌̂𝑌𝑎𝑚𝑢𝑛𝑎𝑛𝑎𝑔𝑎𝑟,𝑡−1

∆𝑌̂𝑃𝑎𝑛𝑖𝑝𝑎𝑡,𝑡−1

∆𝑌̂𝐾𝑢𝑟𝑢𝑘𝑠ℎ𝑒𝑡𝑟𝑎,𝑡−1

∆𝑌̂𝑃𝑎𝑛𝑐ℎ𝑘𝑢𝑙𝑎,𝑡−1

∆𝑌̂𝐾𝑎𝑟𝑛𝑎𝑙,𝑡−1 ]
 
 
 
 
 
 
 

−

[
 
 
 
 
 

0.74∗∗ 0.91 −0.21∗ −0.49 −0.17 0.59∗∗

−0.53∗∗

−0.71
0.01
0.21
0.38

0.57
0.27

0.07∗∗

0.45
0.28

0.41
0.36

−0.05∗

0.19
0.23

−0.70∗∗

−0.47∗

−0.64∗∗

−0.06∗

−0.62

−0.37∗∗

−0.08
−0.17
0.41∗∗

0.35∗∗

0.36
0.72∗∗

0.46∗∗

0.48∗∗

0.37 ]
 
 
 
 
 

[
 
 
 
 
 
 

𝑒̂𝐺𝑢𝑟𝑢𝑔𝑟𝑎𝑚,𝑡−1

𝑒̂𝑌𝑎𝑚𝑢𝑛𝑎𝑛𝑎𝑔𝑎𝑟,𝑡−1

𝑒̂𝑃𝑎𝑛𝑖𝑝𝑎𝑡,𝑡−1

𝑒̂𝐾𝑢𝑟𝑢𝑘𝑠ℎ𝑒𝑡𝑟𝑎,𝑡−1

𝑒̂𝑃𝑎𝑛𝑐ℎ𝑘𝑢𝑙𝑎,𝑡−1

𝑒̂𝐾𝑎𝑟𝑛𝑎𝑙,𝑡−1 ]
 
 
 
 
 
 

 

‘*’ significant at 5% level of significance 

‘**’ significant at 1% level of significance 

 

Out of seventy-eight estimated parameters, only twenty-five parameters were found to be significant in this model. So, the non-

significant parameters were restricted to zero because non-significant parameters reduce the accuracy of model and the following 

VARMA (1,1) model is obtained. 

 

∆ŶGurugram,t  =  −0.44∆ŶPanipat,t−1 − 0.74êGurugram,t−1 + 0.21êPanipat,t−1 − 0.59êKarnal,t−1 

 

∆𝑌̂𝑌𝑎𝑚𝑢𝑛𝑎𝑛𝑎𝑔𝑎𝑟,𝑡 =  13.09 − 0.53∆𝑌̂𝐾𝑢𝑟𝑢𝑘𝑠ℎ𝑒𝑡𝑟𝑎,𝑡−1 + 0.53êGurugram,t−1 + 0.70êKurukshetra,t−1 + 0.37êPanchkula,t−1 

 

∆𝑌̂𝑃𝑎𝑛𝑖𝑝𝑎𝑡,𝑡  =  19.06 + 0.49∆𝑌̂𝐾𝑎𝑟𝑛𝑎𝑙,𝑡−1 + 0.47êPanipat,t−1 − 0.72êKarnal,t−1 

 

∆𝑌̂𝐾𝑢𝑟𝑢𝑘𝑠ℎ𝑒𝑡𝑟𝑎,𝑡  =  0.78∆𝑌̂𝐺𝑢𝑟𝑢𝑔𝑟𝑎𝑚,𝑡−1 + 0.55∆𝑌̂𝑌𝑎𝑚𝑢𝑛𝑎𝑛𝑎𝑔𝑎𝑟,𝑡−1 − 0.33∆𝑌̂𝑃𝑎𝑛𝑖𝑝𝑎𝑡,𝑡−1 − 0.07êYamunanagar,t−1 

 

+0.05êPanipat,t−1 + 0.64êKurukshetra,t−1 − 0.46êKarnal,t−1 

 

∆𝑌̂𝑃𝑎𝑛𝑐ℎ𝑘𝑢𝑙𝑎,𝑡  =  0.06êKurukshetra,t−1 − 0.41êPanchkula,t−1 + 0.48êKarnal,t−1 

 

∆𝑌̂𝐾𝑎𝑟𝑛𝑎𝑙,𝑡  =  0.01∆𝑌̂𝐺𝑢𝑟𝑢𝑔𝑟𝑎𝑚,𝑡−1 − 0.35êPanchkula,t−1 

 

Table 3: Multivariate Ljung-Box Q statistic for VAR (1) and VARMA (1,1) models 
 

Lag 
VAR (1) VARMA (1,1) 

Q Statistic Df p-value Q Statistic df p-value 

1 16.88 36 0.97 22.6 36 0.96 

2 69.25 72 0.56 56.6 72 0.91 

3 109.88 108 0.43 89.3 108 0.95 

4 137.68 144 0.63 117.6 144 0.81 

5 175.29 180 0.58 163.3 180 0.84 

6 204.93 216 0.69 195.2 216 0.82 

 

The multivariate Ljung-Box test used to check the autocorrelation of residuals from selected VAR (1) and VARMA (1,1) models. 

Table 3 displays the results of multivariate Ljung-Box Q statistic is not significant at the 5% level of significance, then residuals 

series are not autocorrelated. As a result, the series may be categorized as white noise. As a result, the VAR (1) and VARMA 

(1,1) models are selected as an appropriate model for forecasting tomato prices. Tables 4, 5 and 6 show forecasting performance 

of selected as appropriate VAR and VARMA models in terms of relative deviation (RD (%)) for prices of tomato in Gurugram & 

Yamunanagar, Panipat & Kurukshetra and Panchkula & Karnal markets respectively. 
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Table 4: Forecasting performance of VAR (1) model for prices of tomato in Gurugram and Yamunanagar markets of Haryana 
 

Months 
Gurugram Yamunanagar 

Observed VAR RD (%) VARMA RD (%) Observed VAR RD (%) VARMA RD(%) 

Jan-20 1614.10 1292.00 19.955 1248.00 22.68 1992.36 1549.00 22.253 1235.00 38.01 

Feb-20 1388.38 1085.00 21.851 1351.00 2.69 1527.39 1282.00 16.066 1340.00 12.27 

March-20 1669.24 1062.00 36.378 1665.00 0.25 1543.43 1169.00 24.260 1322.00 14.35 

April-20 1814.90 1146.00 36.856 2062.00 -13.62 1604.29 1169.00 27.133 1880.00 -17.19 

May-20 937.56 1171.00 -24.899 1121.00 -19.57 857.97 1030.00 -20.051 959.00 -11.78 

June-20 937.56 1092.00 -16.473 1137.00 -21.27 366.02 1011.00 -176.214 923.00 -152.17 

July-20 2671.11 1488.00 44.293 1995.00 25.31 2806.55 1386.00 50.616 2074.00 26.10 

Aug-20 2217.97 1551.00 30.071 1860.00 16.14 2635.12 1443.00 45.240 1913.00 27.40 

Sept-20 3050.00 1587.00 47.967 1791.00 41.28 3430.55 1680.00 51.028 2825.00 17.65 

Oct-20 3050.00 1602.00 47.475 1769.00 42.00 2929.84 1500.00 48.803 2268.00 22.59 

Nov-20 2054.60 1605.00 21.883 1793.00 12.73 2928.72 1508.00 48.510 2066.00 29.46 

Dec-20 1322.00 1601.00 -21.104 1821.00 -37.75 2126.59 1508.00 0.29 1788.00 15.92 

 
Table 5: Forecasting performance of VAR (1) model for prices of tomato in Panipat and Kurukshetra markets of Haryana 

 

Months 
Panipat Kurukshetra 

Observed VAR RD (%) VARMA RD (%) Observed Predicted RD (%) VARMA RD (%) 

Jan-20 2274.09 1711.00 24.76 1075.00 52.73 2104.86 1465.00 30.40 1307.00 37.91 

Feb-20 1334.74 1384.00 -3.69 1043.00 21.86 1176.79 1200.00 -1.97 1317.00 -11.91 

March-20 1422.76 1225.00 13.90 1259.00 11.51 1616.69 1096.00 32.21 1339.00 17.18 

April-20 1422.76 1202.00 15.52 1810.00 -27.22 1616.69 1106.00 31.59 1677.00 -3.73 

May-20 691.46 1260.00 -82.22 942.00 -36.23 923.85 1175.00 -27.19 784.00 15.14 

June-20 668.42 1349.00 -101.82 978.00 -46.32 491.27 1261.00 -156.68 848.00 -72.61 

July-20 2006.78 1436.00 28.44 2004.00 0.14 2287.73 1339.00 41.47 1797.00 21.45 

Aug-20 2001.09 1505.00 24.79 1878.00 6.15 1970.67 1398.00 29.06 1698.00 13.84 

Sept-20 2712.35 1552.00 42.78 1790.00 34.01 3131.43 1435.00 54.17 1632.00 47.88 

Oct-20 2740.49 1578.00 42.42 1732.00 36.80 2581.26 1455.00 43.63 1591.00 38.36 

Nov-20 2658.78 1589.00 40.24 1734.00 34.78 2469.07 1463.00 40.75 1592.00 35.52 

Dec-20 1598.77 1591.00 0.49 1754.00 -9.71 2208.14 1463.00 33.75 1609.00 27.13 

 

Table 6: Forecasting performance of VAR (1) model for prices of tomato in Panchkula and Karnal markets of Haryana 
 

Months 
Panchkula Karnal 

Observed VAR RD (%) VARMA RD (%) Observed VAR RD (%) VARMA RD (%) 

Jan-20 2116.62 1644.00 22.33 2282.00 -7.81 1599.15 2006.00 -25.44 1118.00 30.09 

Feb-20 1744.46 1325.00 24.05 2345.00 -34.43 1913.64 1523.00 20.41 1196.00 37.50 

March-20 2328.11 1175.00 49.53 2115.00 9.15 1913.64 1262.00 34.05 1662.00 13.15 

April-20 2313.11 1152.00 50.20 2445.00 -5.70 1699.05 1166.00 31.37 2070.00 -21.83 

May-20 1425.64 1206.00 15.41 2066.00 -44.92 771.70 1171.00 -51.74 1108.00 -43.58 

June-20 852.53 1291.00 -51.43 1162.00 -36.30 1586.34 1223.00 22.90 1328.00 16.29 

July-20 3454.00 1976.00 42.79 2431.00 29.62 2795.52 1287.00 53.96 2184.00 21.88 

Aug-20 3438.08 1846.00 46.31 2303.00 33.01 3613.59 1344.00 62.81 2036.00 43.66 

Sept-20 2988.79 1995.00 33.25 2240.00 25.05 3569.22 1386.00 61.17 2915.00 18.33 

Oct-20 3643.18 1924.00 47.19 2184.00 40.05 1834.54 1413.00 22.98 1864.00 -1.61 

Nov-20 4295.95 1537.00 64.22 2165.00 49.60 1976.39 1426.00 27.85 1863.00 5.74 

Dec-20 3059.26 1541.00 49.63 2162.00 29.33 1498.78 1431.00 4.52 1882.00 -25.57 

 
Table 7: Forecasting accuracy measures of selected models for price of tomato in all selected markets 

 

Models 
1 month 3 months 6 months 9 months 12 months 

MAPE SEP MAPE SEP MAPE SEP MAPE SEP MAPE SEP 

Gurugram 

VAR 19.96 17.01 26.06 22.90 26.07 22.51 30.97 39.65 30.77 41.61 

VARMA 22.68 19.33 8.54 11.22 13.35 11.20 18.09 27.49 21.27 31.97 

Yamunanagar 

VAR 22.25 21.50 20.86 17.64 47.66 20.11 48.10 44.37 46.61 48.45 

VARMA 38.01 36.72 21.54 22.70 40.96 20.32 35.21 25.45 32.07 27.20 

Panipat 

VAR 24.76 31.38 14.12 19.27 40.32 34.86 37.55 32.77 35.09 38.10 

VARMA 52.73 66.82 28.70 40.05 32.64 31.01 26.24 30.66 26.45 34.58 

Kurukshetra 

VAR 30.40 34.01 21.53 25.32 46.67 27.42 44.97 42.31 43.57 44.83 

VARMA 37.91 42.40 22.33 26.28 26.41 20.40 26.85 32.89 28.56 36.16 

Panchkula 

VAR 22.33 17.91 31.97 28.77 35.49 28.18 37.25 37.95 41.36 51.20 
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VARMA 7.81 6.27 17.13 14.41 23.05 15.13 25.11 24.80 28.75 36.83 

Karnal 

VAR 25.44 19.71 26.64 24.10 30.99 22.71 40.43 59.36 34.93 52.32 

VARMA 30.09 23.31 26.91 25.17 27.07 21.00 27.37 33.94 23.27 29.92 

 

Discussions 

Forecasting accuracy measures i.e., MAPE and SEP of VAR and VARMA models for forecasting horizons of 1, 3, 6, 9 and 12 

months was presented in Table 7 for prices of tomato in all selected markets. Table 7 shows the combined results of VAR and 

VARMA models at various forecasting horizons, indicate that VARMA model provides better forecast accuracy measures in 

terms of lower value of MAPE and SEP as compared to VAR model for various forecasting horizons except 1 month ahead. In 

Yamunanagar market, VAR model performed better than VARMA model for 1, 3 and 6 months ahead forecasting horizon but 

VARMA model better performed for 9 and 12 months ahead. VAR model performed better than VARMA model for 1 and 3 

months ahead forecasting horizon but VARMA model better performed for 6, 9 and 12 months ahead in Panipat, Kurukshetra and 

Karnal market. In Panchkula market, VARMA model performed better than VAR for each forecasting horizon. 
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