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Pushpa Ghiyal and Joginder Kumar 

 
Abstract 

In this paper, Seasonal Autoregressive Integrated Moving Average (SARIMA), Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) and Hybrid (SARIMA-GARCH) models have 

been used for modelling the prices of tomato in Panipat APMC (Agricultural Produce Market 

Committee) market of Haryana. Akaike information criteria (AIC) and Bayesian information criteria 

(BIC) have been used as model selection criteria. And, forecasting performance measure such as relative 

percentage deviation (RD (%)), mean absolute deviation error (MAPE) and standard error of prediction 

(SEP) have also been used to check the accuracy of the fitted models. The results of present study 

showed that the performance of Hybrid models was more appropriate as compared to SARIMA and 

GARCH models for predicting the price of agricultural product (tomato). The findings of the present 

study will help in taking decisions in managing agricultural supplies. 

 

Keywords: SARIMA, GARCH, Hybrid, APMC, AIC and BIC 

 

Introduction 

Time series forecasting is an important area in which prediction of future values of a variable 

is made based on past values of the variable. Slutsky (1937) [11] and Yaglom (1955) [12] first 

formulated the concept of Autoregressive (AR) and Moving Average (MA) models. Box and 

Jenkins (1970) [2] integrated the existing knowledge in the book entitled “Time Series 

Analysis: Forecasting and Control” which has an enormous impact on the theory and practice 

of modern time series analysis and forecasting. Chandran and Pandey (2007) [3] forecasted the 

prices of potatoes for Delhi market using univariate seasonal model ARIMA (1, 1, 1), (1, 0, 0) 

and found that Short-term forecasts based on this model were close to the observed values. 

Hakan and Murat (2012) [5] studied seasonal price variation of tomato crops and created 

Seasonal ARIMA (SARIMA) model to forecast monthly tomato prices at the wholesale level 

for Antalya in Turkey. In that study SARIMA (1, 0, 0) (1, 1, 1) model was selected as the best 

model to forecast tomato prices. 

Modelling and forecasting of volatility by nonlinear models has emerged as an important tool 

for time-series analysis. For this, the most commonly used statistical models are 

Autoregressive Conditional Heteroscedastic (ARCH) models (Engle 1982) [4] and Generalized 

ARCH (GARCH) models (Bollerslev 1986) [1]. Jordaan et al. (2007) studied the volatility in 

the prices of white maize, yellow maize & sunflower seed using GARCH approach. The 

volatility in the prices of wheat and soybeans was found constant over time. 

Agriculture time series data usually contain both linear and nonlinear patterns. Therefore, no 

single (linear or nonlinear) model can be adequate to identify all the characteristics of time 

series data as linear (SARIMA) model cannot capture nonlinear pattern while nonlinear 

(GARCH) model cannot capture linear pattern. A hybrid time series models combine linear 

and nonlinear models to capture different patterns in time series data and to improve 

forecasting performance. SARIMA-GARCH hybrid models have been used in this study. 

Malik (2015) presented the modelling and forecasting performance of ARIMA, GARCH (1,1) 

and mixed ARIMA - GARCH (1,1) models using historical daily close price data from the 

NASDAQ stock exchange for GE company (USA). Shetty et al. (2018) [10] proposed the 

hybrid model of the linear seasonal autoregressive moving average (SARIMA) and the  
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non-linear generalized autoregressive conditional heteroscedasticity (GARCH) for forecasting the gold price. The goodness of fit 

of the model was measured AIC, while the performance measure was assessed by using RMSE, MAE and MAPE and concluded 

that SARIMA-GARCH was more appropriate model for forecasting the gold price. Mallikarjuna et al. (2019) [9] studied the 

forecasting performance of time-series models such as ARIMA and ARCH models for the prices of black pepper in one of the 

major markets of Karnataka state. Yollanda and Devianto (2020) [13] built SARIMA-ANN hybrid model to forecast tourist arrivals 

through Minangkabau International Airport.  

 

Methodology 

Seasonal Autoregressive Integrated Moving Average Model 

Seasonal Autoregressive Integrated Moving Average (SARIMA) is a time series linear technique, based on traditional ARIMA 

technique, widely used for modelling of seasonality. In ARIMA (p, d, q) technique, future value of a variable is a linear function 

of several past observations and random errors. There are six parameters for fitting the Seasonal ARIMA (p, d, q), models: Order 

of autoregressive (p) and seasonal autoregressive (P), order of integration (d) and seasonal integration (D) & order of moving 

average (q) and seasonal moving average (Q) and s represents the season period length. The general expression of the model is 

given below. 

 

∅(𝐵)(1 − 𝐵)𝑑𝜙(𝐵𝑠)(1 − 𝐵𝑠)𝐷𝑦𝑡 = 𝑐 + 𝜃(𝐵)Θ(𝐵) … 1 

 

Autocorrelation Function (ACF)  

The autocorrelation function is most important tools for dependence in a series. If stationarity is assumed and autocorrelation 

function 𝜌𝑘 for a set of lags K = 1, 2. can be estimated by simply computing the sample correlation coefficient between the pairs, 

k units apart in time. The correlation coefficient between 𝑦𝑡  and 𝑦𝑡−𝑘is known as autocorrelation or serial correlation coefficient 

of 𝑦𝑡and represented by the symbol 𝜌𝑘, which is defined as. 

 

𝜌𝑘 =
∑ (𝑦𝑡−𝑦)(𝑦𝑡+𝑘−𝑦)𝑛−𝑘

𝑡=1

∑ (𝑦𝑡−𝑦)2𝑛
𝑡=1

 …2 

 

It ranges from -1 to +1. The maximum number of 𝜌𝑘 is approximately N/4, where N is the number of 𝑦𝑡  observations. 

 

Partial Autocorrelation Function (PACF) 

The correlation coefficient between two random variables 𝑦𝑡  and 𝑦𝑡−𝑘 after removing the effects of the intervening variables 

𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑡−𝑘+1 is known as partial autocorrelation and represented by 𝜙𝑘𝑘, which is defined as: 

 

𝜙𝑘𝑘 =
𝜌𝑘−∑ ∅𝑘−1,𝑗𝜌𝑘−𝑗

𝑘−1
𝑗=1

1−∑ ∅𝑘−1,𝑗𝜌𝑘−𝑗
𝑘−1
𝑗=1

 …3 

 

Ljung Box Test  

Ljung Box (1978) proposed a test statistic that is based on all residual autocorrelations with the following hypotheses: 

H0: the residuals are independently distributed 

H1: the residuals are not independently distributed 

The test statistic is 

 

𝑄 = 𝑛(𝑛 + 2) ∑(𝑛 − 𝑘)−1𝑟𝑘
2(𝑎

∧

𝑡)

𝑃

𝑘=1

 … 4 

 

The statistic Q follows a Chi-squared distribution with (p-m) degrees of freedom where n is the total number of observations used 

to estimate the model, p is the number of residual autocorrelations and m is the number of estimated parameters of the model. The 

model is considered appropriate if Q statistic is significant at 5% level of significance. 

 

Generalized Autoregressive Conditional Heteroscedasticity Model  

The generalized autoregressive conditional heteroskedasticity (GARCH) model is widely used to model the volatility in time 

series data. Bollerslev (1986) [1] proposed the GARCH model as a generalization of ARCH model, which allows conditional 

variance to be dependent on previous own lags in the same way that in ARMA process. 

The GARCH (p, q) model for the series 𝜀𝑡 is given by 

 

Let AR (p) mean model 

 

𝑦𝑡 = 𝜃0 + 𝜃1𝑦𝑡−1 + ⋯ + 𝜃𝑝𝑦𝑡−𝑝 + 𝜀𝑡  … 5 

 

𝜀𝑡 = 𝜎𝑡
2𝜉𝑡 

 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2 + ∑ 𝛽𝑖𝜎𝑡−𝑖
2

𝑝

𝑖=1

𝑞

𝑖=1

 … 6 
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Jarque-Bera (JB) Test 

The Jarque-Bera (1980) [6] test determines whether sample data have skewness and kurtosis that match a normal distribution. J.B. 

statistic is defined as: 

 

𝐽. 𝐵. =  
𝑁

6
(𝑆2 +

1

4
(𝐾 − 3)2) … 7 

 

The Jarque-Bera statistic is distributed as chi-square with 2 degrees of freedom with the following hypotheses: 

H0: Time series is normally distributed 

H1: Time series is not normally distributed 

 

Hybrid Models 

Time series models can also be used as a composition of linear autocorrelation structure and a non-linear component which is 

given in mathematical form. 

 

𝑦𝑡 = 𝐿𝑡 + 𝑁𝑡  … 8 
 

Where, 𝑦𝑡is the observation at time tand 𝐿𝑡&𝑁𝑡 denote linear and nonlinear components, respectively. These two components can 

be estimated from the data. SARIMA model is fitted to the linear component and the corresponding forecast 𝐿𝑡

∧

at time tis 

obtained. So, the residual at time t is given by. 

 

𝑁𝑡 = 𝑒𝑡 = 𝑦𝑡 − 𝐿𝑡

∧

 … 9 
 

The residuals dataset after fitting SARIMA model contains only nonlinear component and that can be properly modelled through 

an GARCH model.  

 

𝑦𝑡

∧
= 𝐿𝑡

∧

+ 𝑁𝑡

∧

 𝑜𝑟 𝑦𝑡

∧
= 𝐿𝑡

∧

+ 𝑒𝑡

∧
 … 10 

 

Comparison and Validation of the Developed Models 

Model Selection 

Information criteria such as AIC and BIC are used to select an appropriate model.  

 

AIC =  −2𝐼𝑛(L) + 2𝑘 … 11 
 

BIC =  −2𝐼𝑛(L) + 𝐼𝑛(N)𝑘 … 12 

 

Where L is the value of the likelihood function evaluated at the parameter estimates, N is the number of observations and 𝑘 is the 

number of estimated parameters.  

 

Model Evaluations 

The model is evaluated quantitatively MAPE, SEP) (%), RMSE and RD%. The SEP is used for the comparison of forecast from 

different models because of its dimension less. 

 

MAPE =
100

n
× ∑ |

Oi − Ei

Oi

|

n

i=1

 … 13 

 

SEP =
100

y̅
RMSE where RMSE = [

1

n
∑(Oi − Ei)

2

n

i=1

]

1

2

 … 14 

 

𝑅𝐷 =
𝑂𝑖 − 𝐸𝑖

𝑂𝑖

× 100 … 15 

 

Where, Oi, y̅ and Ei are the observed, mean and predicted values and n is the number of observations in validation set.  

 

Results 

Seasonal Autoregressive Integrated Moving Average (SARIMA) model 

From Figures 1, it can be seen that the order of MA (q) and SMA (Q) is expected to be lie between 0 ≤ q ≤ 2 and 0 ≤ Q ≤ 1 and 

order of AR (p) and SAR (P) is expected to be lie between 0 ≤ p ≤ 2 and 0 ≤ P ≤ 1 for prices of tomato in Panipat market. From 

Figures 4.18, it can be seen that the order of MA (q) and SMA (Q) is expected to be lie between 0 ≤ q ≤ 3 and 0 ≤ Q ≤ 1 and order 

of AR (p) and SAR (P) is expected to be lie between 0 ≤ p ≤ 2 and 0 ≤ P ≤ 2 for arrivals of tomato in Panipat market. 
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Fig 1: ACF and PACF Plots of actual and stationary series 

 
Table 1: Selection criteria of SARIMA models 

 

SARIMA 
Criteria 

AIC RMSE MAPE 

(1,1,1)(1,1,1)12 1657.36 434.44 19.30 

(1,1,1)(0,1,1)12 1655.65 432.34 19.13 

(2,1,1)(0,1,1)12 1655.47 428.93 18.54 

(2,1,1)(1,1,1)12 1657.24 429.32 18.55 

(1,1,2)(0,1,1)12 1654.68 427.87 17.52 

(2,1,2)(0,1,1)12 1656.25 428.13 18.47 

 
Table 2: Estimated parameters of SARIMA (1, 1, 2), (0, 1, 1)12 model 

 

Estimate S.E. z-value p-value 

AR1 0.52 0.14 3.77 <0.01 

MA1 -0.71 0.23 -3.07 <0.01 

MA2 -0.27 0.14 -1.85 0.04 

SMA1 0.98 0.50 -1.96 0.04 

Ljung-Box Statistic 0.12 p-value 0.71 

 

Table 2 shows that the estimated parameters of the selected model for prices (AR1, MA1, MA2, SMA1) and arrivals (MA1, 

SMA1) of tomato in Panipat market, are found significant at 5% level of significance. It can also be observed that the coefficients 

of all parameters meet the condition of stationary and in vertibility for SARIMA model. The values of Ljung-Box "Q" statistic for 

all selected models are found non-significant as p-value is greater than 0.05 which indicating residuals have white noise (no 

autocorrelation). Thus, on the basis of above results, it is observed that the SARIMA (1, 1, 2), (0, 1, 1)12 model was appropriate 

price of tomato in Panipat market.  
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Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model 

 

 
 

Fig 2: Plots of returns and squared returns 

 

Figure 2 reveals that returns are not independent and volatility clustering is apparent. From, ACF and PACF plots of returns 

revealed that ACF is significant at lag 2, 11, 12, 21 & 24 and PACF is significant at lag 1, 11, 12 & 24. The ACF and PACF plots 

of squared returns are revealed that ACF is significant at lag 5, 7, 11, 16, 17 & 24 and PACF is significant at lag 5, 7, 9, 10, 11 & 

12. Hence, the returns and squared returns for prices of tomato in Panipat market are auto-correlated. As a result, GARCH model 

is applicable to this series. 

 
Table 3: Estimated parameters of ARMA (1,1)-GARCH (0,1) model for returns series 

 

Parameter Estimate S.E. t-value p-value 

µ 0.72 0.12 5.63 <0.01 

AR1 (∅1) 0.70 0.06 10.82 <0.01 

MA1 (𝜃1) -0.99 0.01 -156.95 <0.01 

𝛼0 0.01 0.01 0.01 <0.01 

𝛽1 0.96 0.02 383.47 <0.01 

Skew 1.52 0.16 9.07 <0.01 

Shape 5.99 2.53 2.36 <0.01 

Model selection criteria AIC 15.56 BIC 15.68 

Diagnostic checking 

Ljung-Box ARCH LM 

Statistic p-value Statistic p-value 

0.67 0.92 0.76 0.96 

 

The results of Ljung-Box and ARCH-LM tests are given for standardized residuals obtained from the selected ARMA (1, 1) - 

GARCH (0, 1) model for returns of price of tomato. It can be observed that the results of Ljung-Box and ARCH-LM tests are not 

significant at 5% level of significance as p-value for both statistic(s) is greater than 0.05. Hence, the null hypothesis is not rejected 

and it is concluded that there is no autocorrelation and no ARCH effect in standardized residuals. On the basis of results so 

obtained, ARMA (1, 1) - GARCH (0, 1) model is selected as appropriate model for prediction of price of tomato in Panipat 

market.  

 

Hybrid (SARIMA-GARCH) model 

The Hybrid model was built in a sequential fashion, first SARIMA model was applied to the original time series and then its 

residuals was analyzed using GARCH model. 
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Fig 3: Residuals and squared residuals plots 

 

Figure 3 shows the plots of residuals and squared residuals obtained from best fitted SARIMA model on prices of tomato in 

Panipat market. It indicates that residuals are not auto-correlated but squared residuals are auto-correlated that means volatility 

clustering is visible. ACF and PACF plots of residuals reveal that ACF and PACF are not significant at any lags. Also, ACF 

coefficients are significant at lags 4, 12 and 24, while PACF coefficients are significant at lags 4 and 12 for squared residuals. 

Thus, the residuals are not auto-correlated but squared residuals are auto-correlated. 

 
Table 4: Estimated parameters of SARIMA (0, 1, 0), (2, 1, 0)12-GARCH (1, 1) model 

 

Parameter Estimate S. E. t-value p-value 

SAR1 0.37 0.08 4.19 <0.01 

SAR2 0.24 0.09 2.69 <0.01 

𝛼0 224.10 454.23 0.89 0.23 

𝛼1 0.12 0.06 3.01 <0.01 

𝛽1 0.82 0.02 32.93 <0.01 

Model selection criteria AIC 15.56 BIC 15.68 

Diagnostic checking 

Ljung-Box ARCH LM 

Statistic p-value Statistic p-value 

14.98 0.45 10.68 0.55 

 

Table 4, the estimated parameters of selected model for prices (SAR1, SAR2, 𝛼1 and 𝛽1) and arrivals (AR1, AR2, 𝛼1 and 𝛽1) of 

tomato in Panipat market are given and are found significant at 5% level of significance. Coefficients of ARCH and GARCH (𝛼1 

and 𝛽1) are greater than zero and sum of these coefficients is less than one satisfied the sufficient condition of conditional variance 

for GARCH model. 

 
Table 5: Forecasting performance of SARIMA (1,1,2)(0,1,1)12, ARMA (1,1)-GARCH (0,1) and SARIMA (1,1,2)(0,1,1)12 - GARCH (1,1) models 

 

  SARIMA GARCH Hybrid 

Month Observed Predicted RD Predicted RD Predicted RD 

Jan-20 2274.09 2196.61 3.41 2056.61 9.56 1996.69 12.20 

Feb-20 1334.74 1425.37 -6.79 1158.60 13.20 1245.11 6.72 

March-20 1422.76 1506.02 -5.85 1161.87 18.34 1591.33 -11.85 

April-20 1422.76 1525.10 -7.19 1289.76 9.35 1421.20 0.11 

May-20 691.46 517.79 25.12 898.72 -29.97 807.59 -16.80 

June-20 668.42 555.20 16.94 716.02 -7.12 701.62 -4.97 

July-20 2006.78 2080.48 -3.67 2242.07 -11.72 2119.80 -5.63 

Aug-20 2001.09 2310.33 -15.45 2267.51 -13.31 2231.14 -11.50 

Sept-20 2712.35 2799.12 -3.20 2302.35 15.12 2730.34 -0.66 
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Oct-20 2740.49 2597.08 5.23 2306.72 15.83 2522.44 7.96 

Nov-20 2658.78 2752.43 -3.52 2309.38 13.14 2681.09 -0.84 

Dec-20 1598.77 2158.31 -35.00 2325.54 -45.46 1785.12 -11.66 

MAPE 10.95 16.84 7.57 

SEP 11.66 18.64 8.46 

 

The MAPE and SEP values for SARIMA, GARCH and Hybrid models shown in Table 5. The hybrid model provides better 

forecast accuracy in terms of smallest values for MAPE (7.57) and SEP (8.46) as compared to SARIMA (MAPE = 10.95 & SEP = 

11.66) and GARCH (MAPE = 16.84 &SEP = 18.64) models 
 

Conclusions 

 Time series forecasting is vital for predicting future values based on past data. 

 Autoregressive (AR) and Moving Average (MA) models were first formulated by Slutsky (1937) [11] and Yaglom (1955) [12], 

with Box and Jenkins (1970) [2] integrating these into the ARIMA framework. 

 SARIMA models are widely used for modeling seasonality in time series data. 

 GARCH models are effective for modeling volatility in time series data. 

 Hybrid models, combining SARIMA and GARCH, are valuable for capturing both linear and nonlinear patterns in data. 

 Model selection and evaluation are crucial, with criteria like AIC and BIC used for selection and metrics like MAPE and 

RMSE used for evaluation. 

 The selected SARIMA (1, 1, 2), (0, 1, 1)12 model was found appropriate for predicting tomato prices in Panipat market.  

 The ARMA (1, 1) - GARCH (0, 1) model was selected for predicting tomato price returns in Panipat market. 

 The hybrid SARIMA-GARCH model effectively combines linear and nonlinear components for forecasting. 
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