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Abstract 
This study employed multivariate modeling techniques to explore the relationship between platelet 

parameters and demographic factors. Assumptions such as normality, multicollinearity, and covariance 

matrix equality were rigorously assessed. Data normalization using the Box-Cox method improved 

normality, facilitating more robust analyses. Multivariate analysis of Variance revealed significant 

variations in platelet parameters across demographic groups. Furthermore, linear discriminant analysis 

demonstrated the capacity to classify individuals based on platelet parameters, particularly concerning 

gender. The findings underscore the importance of platelet parameters in understanding population 

characteristics and their potential implications for medical research and clinical practice. 
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1. Introduction  

Platelets, crucial blood components, play a fundamental role in various physiological 

processes, including clotting and immune response. Understanding platelet parameters and 

their associations with demographic factors is essential for medical research and clinical 

practice. Platelet parameters, such as distribution width, volume, large cell ratio, and count, 

reflect platelet morphology and function, providing valuable insights into an individual's 

health status. Discriminant analysis, a multivariate technique, has been widely employed to 

explore relationships between platelet parameters and demographic variables. This method 

allows for classifying individuals based on observed characteristics, facilitating the 

identification of factors influencing platelet biology.  

Discriminant analysis (DA) is one of the methods used in multivariate analysis, along with the 

dependency method. It is used in cases where the independent variable is matrix data and the 

dependent variable is non-metric data. DA undertakes the same task as multiple linear 

regression by predicting an outcome, and it is used to build a predictive model of group 

membership based on the observed characteristics of each case.  

 

The main objectives of the study are 

 To identify linear combinations of platelet parameters that effectively discriminate 

between demographic groups. 

 To identify most significant platelet parameters contribute to the discrimination between 

demographic categories. 

 To assess the statistical significance of the discriminant functions and ascertain whether 

significant differences exist among demographic groups based on platelet parameters. 

 

2. Review of literature 

Durrant and Kaban (2010) [7] utilized a novel approach incorporating random projections with 

Fisher's Linear Discriminant (FLD) classifier for classification tasks. Unlike previous methods 

focusing solely on preserving pairwise distances under projection, the authors' approach 

emphasizes leveraging the inherent class structure within the data. 
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Ramayah et al. (2010) [19] present a step-by-step example, 

making it easier for readers to comprehend the intricacies of 

discriminant analysis. They carefully explain the necessary 

assumptions and procedures involved in discriminant analysis, 

including data preparation, model estimation, and interpretation 

of results. 

Nainggolan et al. (2018) [15] used discriminant analysis and 

classified Hypertension women aged 27 to 54 years living in the 

village in the central district of Bogor. The results of the 

multivariate discriminant analysis showed that the level of Vo2 

max is the only distinction maker in the incidence of 

hypertension. 

ALKubaisi et al. (2019) [1] used discriminant analysis with three 

criteria to test the developed model, producing excellent 

projecting precision. The discriminant function properly 

assessed and classified about 67% of the cases in the analysis. 

Also, the analysis produced two discriminant functions: the first 

explained 77% and the second explained 23% of the Variance. 

Dibal and Abraham (2020) [5] applied Fisher’s linear 

Discriminant Analysis (FLDF) to health data on diabetic patients 

from the University of Port Harcourt Teaching Hospital, Rivers, 

Nigeria. He created a predictive discriminant model that 

classifies patients into one of two groups (Diabetic and Non-

Diabetic). Fisher’s linear discriminant function correctly 

classifies 65.4% of the total observation. 

Ndako et al. (2020) [16] investigated if hematological 

measurements could differentiate between typhoid-positive and -

negative pediatric patients. Using Fisher's Linear Discriminant 

Method, 200 patients were analyzed. A discriminant score 

threshold of -0.0067 was established, with patients above 

classified as harmful and below as positive. Classification 

efficacy was assessed using retribution estimate and leaving-

one-out approaches, indicating a 75.8% and 74.7% prevalence 

for typhoid-positive patients, respectively. These findings 

suggest a high prevalence of typhoid fever among pediatric 

patients, emphasizing the need for improved point-of-care 

diagnostics with robust positive predictive value. 

Explored Discriminant Function Analysis (DFA) to evaluate the 

effectiveness of Indigenous health-and-wellness programs, 

particularly in the Eeyou Istchee territory, Canada. By analyzing 

various health parameters, DFA models were developed to 

discriminate between individuals with and without Type 2 

Diabetes Mellitus (T2DM). The models exhibited high 

specificity (~97%) in classifying non-T2DM individuals. This 

research underscores the potential of DFA in point-of-contact 

evaluations for monitoring and assessing health interventions in 

rural and remote Indigenous communities, providing valuable 

insights for T2DM management and prevention strategies 

among the James Bay Cree population.  

Ding et al. (2023) [6] introduced the Sparse Variables Selection 

Exponential Local Fisher Discriminant Analysis (SELFDA) 

model to address shortcomings in fault classification using Local 

Fisher Discriminant Analysis (LFDA). By automatically 

identifying key faulty variables through the minor absolute 

shrinkage and selection operator, SELFDA enhances fault 

diagnosis performance and model interpretability. It overcomes 

the Small Sample Size (SSS) problem by employing a matrix 

exponential strategy, ensuring full-rank within-class scatter 

matrices. This approach, tested on the Tennessee Eastman 

process and a real-world diesel working process, outperforms 

existing methods, demonstrating its effectiveness in practical 

industrial applications.  

Rahamneh et al. (2023) [18] utilized discriminant analysis to 

distinguish between two types of Bowel and Esophageal cancer 

in Jordan, identifying significant variables such as sex, weight, 

and Platelets Count P.C. The correct classification rates for the 

first and second groups were 62.8% and 77% respectively, with 

misclassification rates of 37.2% and 23%. The proper 

classification ratio was 71.6%, with a false classification ratio of 

28.4%. The method effectively identified vital independent 

variables for diagnosing both cancer types, with correct 

classification probabilities of 66.4% and 77.6% for the first and 

second groups, respectively. 

Henry et al. (2023) [10] investigated the spectral differences of 

tobacco leaves under macronutrient deficiencies. They employed 

information entropy and spectral derivatives methods to identify 

the most effective wavelengths for discrimination. Principal 

Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA) algorithms were utilized to reduce data dimensionality 

and classify the symptoms. The study's findings revealed that the 

overall accuracy for classifying young, intermediate, and mature 

plants was 92%, 82%, and 75%, respectively. The results also 

indicated that nitrogen, sulfur, and magnesium deficiencies 

significantly impacted the classification accuracy. In contrast, 

deficiencies in phosphorus and potassium had minimal effect on 

the classification outcomes. 

 

3. Materials and Methods 

3.1 Materials 

The dataset under investigation is collected through Mendeley 

Data (https://data.mendeley.com/datasets/5t8dr6d73f/1). The 

dataset comprises comprehensive information on platelet 

parameters and red cell distribution width (RDW) for 1883 

samples. It includes measurements obtained from individuals 

across various demographics, encompassing platelet distribution 

width, mean platelet volume, platelet large cell ratio, plateletcrit, 

total platelet count, and RDW values. Each entry in the dataset 

provides specific values for these parameters, allowing for a 

detailed analysis of their distributions, variability, and potential 

interrelationships. 

 

3.2 Methods 

3.1.1 Box-Cox method 

The Box-Cox method is used in statistics and econometrics to 

transform non-normal data into approximately normal data. It is 

named after statisticians George Box and Sir David Cox and was 

introduced in 1964. Let  be the date on which 

the Box-Cox transformation is applied. Box and Cox (1964) 

defined their transformation as 

 

      (1) 

 

Such that for unknown   

 

          (2) 

 

Where is the  transformed data, X is the design matrix 

(possible covariates of interest),  is the set of parameters 

associated with the  transformed data, and 
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        (3) 

 

The transformation in Equation (1) is only valid 

for  modifications to be made when 

negative observations are present (Vélez et al., (2015)).  

 

3.2.1 Multivariate Analysis of Variance 

A MANOVA technique (Johnson & Wichern, (1998)) [12] is 

employed to test the significance of variation among all the five 

parameters considered simultaneously. The MANOVA model 

for comparing the population means vectors is as follows: 

 

         (4) 

 

Where, is a vector of random error distributed as . 

Here, the parameter vector is the overall mean and  

represents the model's status in (4); each component of the 

observation vector satisfies the univariate model, and the 

variance-covariance matrix is the same for all populations. 

 

3.2.2 Variance Inflation Factor 

The variance inflation factor is used to measure how much the 

Variance of the estimated regression coefficient is inflated if the 

independent variables are correlated. VIF is calculated as  

 

          (5) 

 

Where the tolerance is simply the inverse of the VIF; the lower 

the tolerance, the more likely the multicollinearity among the 

variables. The value of VIF=1 indicates that the independent 

variables are not correlated. If the value of VIF is 1 < VIF < 5, it 

specifies that the variables are moderately correlated. If the VIF 

value is above 5, there will be multicollinearity among the 

predictors in the regression model (Goldstein, (1993) [9] and 

Shrestha, (2020) [21]. Another one is the scatterplot graphical 

method, which signifies the linear relationship between pairs of 

independent variables. It is essential to look for scatterplots that 

indicate a linear relationship between pairs of independent 

variables. The correlation coefficient is calculated using the 

formula: 

 

    (6) 

 

Where, r is the correlation coefficient, n is the number of 

observations, X represents the first variable in the context, and Y 

is the second variable in the context. If the correlation 

coefficient value is higher with the pairwise variables, it 

indicates the possibility of collinearity. 

 

3.2.3 Box’s-M test 

The Test for homogeneity of covariance matrices, introduced in 

1949, examines the covariance matrices derived from 

multivariate normal data considering one or more classification 

factors. This test assesses the similarity between the separate 

covariance matrices by comparing the product of their log 

determinants to the log determinant of the combined covariance 

matrix, similar to a likelihood ratio test. The test statistic 

employs a chi-square approximation. 

 

3.2.4 Wilk’s lambda 

In discriminant analysis, Wilk's lambda is utilized to assess the 

contribution of each level of an independent variable to the 

model. This scale ranges from 0 to 1, where a value of 0 

indicates complete discrimination, while a value of 1 signifies 

no discrimination. To test the impact of each independent 

variable, it is successively included and excluded from the 

model, generating a Λ statistic. The significance of the change in 

Λ is evaluated using an F-test; if the computed F-value exceeds 

the critical value, the variable is retained in the model 

(Onwukwe, (2014) [17]. Thus, a non-significant Wilks’ lambda 

value is always preferred.  

 

        (7) 

 

B is the between-groups matrix, and W is the within-group 

matrix. The Eigenvalue can be explained as the ratio of the 

between-groups sum of squares to the within-group sum of 

squares (McGarigal et al., (2000) [14]. 

 

3.2.5 Multiple Discriminant Analysis 

Multiple Discriminant Analysis (MDA) is an extension of 

discriminant analysis; it shares ideas and techniques with 

various analyses of Variance (MANOVA). MDA aims to 

classify cases into three or more categories using continuous or 

dummy categorical variables as predictors (Cramer, (2003) [4], 

Jang et al., (2015) [11]. The term DA refers to numerous types of 

analyses. DA is the most popular statistical technique to classify 

individuals or observations into non-overlapping groups based 

on scores derived from a suitable "statistical decision function" 

constructed from one or more continuous predictor variables. 

While investigating the differences between the groups or 

categories, the necessary step is to identify the attributes with the 

most contributions to maximum reparability between known 

groups or categories to classify a given observation into one of 

the groups. For that purpose, DA successively identifies the 

linear combination of attributes known as canonical discriminant 

functions (equations) that contribute maximally to group 

separation. Predictive DA addresses the question of how to 

assign new cases to groups. 

The form of the Equation or function is: 

 

 
 

Where D is an independent variable and is the value of 

discriminant score from the ith category (i=1,2,…n), is the 

discriminant coefficient of jth attributes (j=0,1,2,…,k), and is 

the kth independent variable of the ith category. This function is 

similar to a regression equation or function. The re are 

unstandardized discriminant coefficients analogous to the ones 

in the regression equation. These maximize the distance 

between the means of the dependent variable, and the 
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weight in regression.  

 

4. Results and Discussion 
The results presented in Table 1 reveal a population's (N=1883) 

age and platelet-related parameters. With an average age of 

37.73 years and a standard deviation of 13.68, there's notable 

age diversity. Platelet distribution width (mean: 11.65, SD: 1.51) 

shows moderate variability, while mean platelet volume (mean: 

10.28, SD: 0.72) exhibits less. Platelet large cell ratio (mean: 

27.00, SD: 5.95) suggests significant diversity, unlike 

Plateletcrit (mean: 0.27, SD: 0.04), indicating consistency. Total 

platelet count (mean: 264.39, SD: 46.10) varies notably. 

Skewness and kurtosis imply generally symmetrical 

distributions, barring slight negative skewness for platelet large 

cell ratio and high kurtosis for plateletcrit. These insights are 

crucial for medical research and clinical evaluations. 

 
Table 1: Characteristics of summary statistics for platelet parameters 

 

 Mean Std. Deviation Variance Skewness Kurtosis 

Age 37.73 13.68 187.01 0.67 -0.22 

Platelet distribution width 11.65 1.51 2.27 0.64 -0.10 

Mean platelet volume 10.28 0.72 0.52 0.46 -0.44 

Platelet large cell ratio 27.00 5.95 35.39 0.44 -0.54 

Plateletcrit 0.27 0.04 0.00 -0.04 -0.70 

Total platelet count 264.39 46.10 2124.96 0.06 -0.62 

 

The Kolmogorov-Smirnov and Shapiro-Wilk tests were 

conducted (Table 2) to assess the normality of the distributions 

for platelet parameters before and after applying the Box-Cox 

transformation. Before the transformation, all variables 

exhibited statistically significant deviations from normality 

(p<0.05), with varying degrees of skewness. However, after 

applying the Box-Cox transformation, there was an 

improvement in the normality of the distributions for most 

variables, as indicated by non-significant p-values (p>0.05) in 

both tests. Specifically, platelet distribution width, mean platelet 

volume, large cell ratio, and plateletcrit showed notable 

improvements in normality post-transformation. Total platelet 

count also exhibited improved normality, although to a lesser 

extent. These results suggest that the Box-Cox transformation 

effectively normalized the distributions of platelet parameters, 

making them more suitable for subsequent statistical analyses 

that assume normality, such as parametric tests. 

 
Table 2: Characteristics of normality test for platelet parameters 

 

Before Box-Cox 

Variables 
Kolmogorov-Smirnov Shapiro-Wilk 

Statistic DF Sig. Statistic DF Sig. 

Platelet distribution width 0.08 1883 0.00 0.96 1883 0.08 

Mean platelet volume 0.08 1883 0.00 0.97 1883 0.08 

Platelet large cell ratio 0.06 1883 0.00 0.97 1883 0.06 

Plateletcrit 0.06 1883 0.00 0.98 1883 0.06 

Total platelet count 0.03 1883 0.00 0.99 1883 0.03 

 

In Figure 1, the histogram black curve shows the Gaussian 

distribution, while the histogram shows the distribution of 1882 

platelet cells of different parameters. The top bars in the 

histogram match nicely with the Gaussian distribution; 

therefore, after the Box-Cox method, the dataset was perfectly 

normally distributed. The points in the histogram plot form a 

bell-shaped line since the dataset's quantiles nearly match the 

dataset's quantiles, which would theoretically be the customarily 

distributed dataset. 

 

 
 

Fig 1: Normality plot for platelet parameters 
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Table 3: Characteristics of multivariate Analysis of Variance for 

platelet parameters 
 

Statistics Value Error DF Sig. 

Pillai's Trace 0.09 1872 0.00 

Wilks' Lambda 0.91 1872 0.00 

Hotelling's Trace 0.10 1872 0.00 

Roy's Largest Root 0.10 1872 0.00 

 

Various multivariate tests, such as Pillai's trace, Wilks' lambda, 

Hotelling's trace, and Roy's most significant root tests, were 

utilized to assess the collective variation of all five platelet 

parameters across the gender groups. The outcomes of these 

tests are presented in the Table 3. These MANOVA statistics 

provide insights into the multivariate effects of the analysis. 

Pillai's Trace, Wilks' Lambda, Hotelling's Trace, and Roy's 

Largest Root are all measures of the significance of the overall 

model. In this case, the extremely low p-value (0.00) indicates 

that the model has a significant overall effect. The values of 

these statistics (ranging from 0.09 to 0.10) suggest the 

proportion of Variance in the dependent variables explained by 

the independent variables in the model. 

 

 
 

Fig 2: Correlation matrix for platelet parameters association 

 

The Pearson correlation between the study variables’ platelet 

parameters has been calculated. It is depicted in Figure 3.2. The 

upper triangular matrix shows the Pearson correlation and its 

significance level (as stars). Each significance level is associated 

with a symbol: p-values 0.001 (***), 0.01 (**), and 0.05 (*). 

The result reveals that the Platelet large cell ratio is highly 

positively correlated (0.98) with platelet volume and platelet 

distribution significance (p<0.01). Plateletcrit has a positive 

correlation with platelet total count. The platelet total count 

negatively correlated with platelet volume and platelet 

distribution. Figure 2 provides evidence of no strong correlation 

among the independent variables; hence, multicollinearity 

doesn't occur in this problem. 
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Table 4: Characteristics of multicollinearity for platelet parameters 
 

Model 
Unstandardized Coefficients Standardized Coefficients 

t Sig. 
Collinearity Statistics 

B Std.Err Beta Tolerance VIF 

(Constant) -1.874 0.629  -2.979 0.003   

Platelet distribution width -0.136 0.022 -0.422 -6.223 0.000 0.106 4.462 

Mean platelet volume 0.277 0.080 0.408 3.461 0.001 0.035 2.593 

Platelet large cell ratio 0.010 0.010 0.129 1.025 0.306 0.031 3.429 

Plateletcrit 2.707 1.558 0.236 1.738 0.082 0.026 3.907 

Total platelet count 0.000 0.002 -0.012 -0.082 0.935 0.022 4.445 

 

These coefficients in Table 4 represent the relationship between 

the model's independent variables (platelet parameters) and the 

dependent variable. The standardized coefficients (Beta) indicate 

the strength and direction of the relationship, while the t-values 

and significance levels (Sig.) indicate the statistical significance 

of each coefficient. Collinearity statistics such as Tolerance and 

VIF assess multicollinearity among the independent variables. In 

this model, platelet distribution width and mean platelet volume 

show significant negative and positive relationships with the 

dependent variable. However, platelet large cell ratio, 

plateletcrit, and total platelet count do not show statistically 

significant relationships. Furthermore, all variables exhibit 

acceptable levels of multicollinearity because the Variance 

inflation factor values are below 5. 

 
Table 4: Characteristics of Box’s M method 

 

Box's M 88.441 

Approx. 5.878 

DF1 15 

DF2 8662237.732 

Sig. 0.210 

 

Box's M test statistics reported in Table 4 is a diagnostic test 

used to assess the equality of covariance matrices across groups 

in multivariate analysis of Variance (MANOVA). The test 

evaluates whether the assumption of homogeneity of covariance 

matrices (homoscedasticity) is violated. In this case, the p-value 

(Sig.) of 0.210 suggests no significant violation of this 

assumption, indicating that the covariance matrices are 

approximately equal across groups. Therefore, the assumption of 

homogeneity of covariance matrices is met, and the MANOVA 

results can be interpreted reliably. 

 
Table 5: Characteristics of Wilk’s Lambda test statistics 

 

Test of Function(s) Wilks' Lambda Chi-square DF Sig. 

Function 1 0.908 182.114 5 0.000 

 

In Table 5 results, "Function 1" refers to the specific function 

being tested. The Wilks' Lambda value of 0.908 indicates the 

proportion of Variance in the dependent variables not accounted 

for by the independent variables. The associated Chi-square 

statistic of 182.114 and the degrees of freedom (DF) of 5 results 

in a highly significant p-value (Sig.) of 0.000, suggesting that 

the overall model or the specific function being tested 

significantly affects the dependent variables. 

 
Table 6: Characteristics of eigenvalues for the first function 

 

Function Eigenvalue 
% of 

Variance 

Cumulative 

% 

Canonical 

Correlation 

Function 1 0.102 100 100 0.304 

 

In Table 6, the eigenvalue of 0.102 indicates the amount of 

variance explained by first discriminant function. Since the 

percentage of variance is 100.0%, function one accounts for the 

entire variance in the data. The cumulative % also reflects this, 

as it reaches 100.0%. The canonical correlation of 0.304 

represents the correlation between the observed and canonical 

variables derived from the function. 

 
Table 7: Characteristics of canonical discriminant function coefficients 

 

 
Platelet 

distribution 

width 

Mean 

platelet 

volume 

Platelet 

large cell 

ratio 

Plateletcrit 

Total 

platelet 

count 

Function 1 -1.434 1.531 0.411 0.526 0.259 

 

These coefficients presented in Table7 indicated the weights 

assigned to each variable in the canonical discriminant function. 

The coefficients signify the magnitude and direction of the 

relationship between each predictor variable (platelet 

parameters) and the discriminant function. Positive coefficients 

suggest a positive association with the function (mean platelet 

volume, platelet large cell ratio, Plateletcrit, and total platelet 

count). In contrast, negative coefficients (Platelet distribution 

width) imply a negative association. The values reflect the 

relative importance of each variable in discriminating between 

groups or explaining the variability in the data. 

 
Table 8: Characteristics of fisher linear discriminant function 

 

Variables 
Gender 

F M 

Platelet distribution width 10.834 11.467 

Mean platelet volume 401.953 400.522 

Platelet large cell ratio -38.343 -38.389 

Plateletcrit -352.782 -361.242 

Total platelet count 3.599 3.595 

(Constant) -1639.676 -1627.220 

 

Fisher linear discriminant results presented in the Table 8 

represents the relationship between each platelet parameter and 

gender in a linear discriminant analysis. Positive coefficients 

indicate an increase in the value of the platelet parameter 

associated with the specified gender, while negative coefficients 

indicate a decrease. The constant term represents the intercept of 

the linear discriminant function for each gender group. The 

equations representing the relationship between each platelet 

parameter and gender in the linear discriminant analysis are as 

follows: 

 

Female (F): 

YF=−1639.676+10.834Platelet distribution width+401.953Mean platelet volume

−38.343Platelet large cell ratio−352.782Plateletcrit+3.599Total platelet count 

 

Male (M): 

YM=−1627.220+11.467Platelet distribution width+400.522Mean platelet volume

−38.389Platelet large cell ratio−361.242Plateletcrit+3.595Total platelet count 

In these equations, YF and YM represent the discriminant scores 

for females and males based on the given platelet parameters. 
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Fig 3: Association between the different platelet parameters with the discriminant function 

 

The coefficients of each platelet parameter in the linear 

discriminant weights are depicted in the Figure 3. Platelet 

distribution width exhibits a notably high positive correlation 

with gender. Additionally, all platelet parameters demonstrate 

positive correlations with gender. Consequently, these four 

platelet parameters are significantly influenced by the gender. 

 

5. Conclusion 

In this study, the analysis of the platelet parameter dataset 

reveals valuable insights into population characteristics and 

their associations with platelet biology. The dataset represents 

a diverse population and includes comprehensive information 

on platelet parameters and red cell distribution width. 

Descriptive statistics highlight variability and distribution 

characteristics, while normality tests indicate the effectiveness 

of transformation methods. Multivariate analysis confirms 

significant overall effects of platelet parameters, and 

correlation analysis identifies potential interdependencies 

among variables. Fisher Linear discriminant analysis 

underscores the influence of platelet parameters on gender 

classification, with acceptable levels of multicollinearity 

ensuring reliability. Moreover, tests for covariance matrix 

equality and canonical analysis provide further insights. These 

findings contribute to a better understanding of platelet 

biology's importance in medical research and clinical practice. 

The Platelet parameters exhibit significant associations with 

population characteristics and gender, which are crucial for 

medical research and clinical applications. 
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