

~29~

International Journal of Statistics and Applied Mathematics 2025; 10(9): 29-32

ISSN: 2456-1452

NAAS Rating (2025): 4.49

Maths 2025; 10(9): 29-32

© 2025 Stats & Maths

https://www.mathsjournal.com

Received: 13-08-2025

Accepted: 15-09-2025

Dr. Pradeep Jha

Visiting Faculty, Department of

Mathematics, LJ Institute of

Engineering and Technology,

Ahmedabad, Gujarat, India

Shivansh N Jha

Student, Department of

Computer Science and

Engineering, Semester 7, LJ

Institute of Engineering and

Technology, Ahmedabad,

Gujarat, India

Corresponding Author:

Dr. Pradeep Jha

Visiting Faculty, Department of

Mathematics, LJ Institute of

Engineering and Technology,

Ahmedabad, Gujarat, India

Assignment problem (maximization): A new approach

Pradeep Jha and Shivansh N Jha

DOI: https://www.doi.org/10.22271/maths.2025.v10.i10a.2176

Abstract
This paper introduces a novel and faster approach to finding the optimal feasible solution of assignment

problem in maximization scenarios. The proposed method, termed ’Jha’s Method’ offers a more practical

alternative over the long-known Hungarian method. It eliminates the need for the calculation of the

opportunity loss matrix while maintaining computational efficiency. The Jha’s method, it’s optimality

test, and its computer code using Python language are unique till now.

Keywords: Assignment problem, jha’s method, optimization, maximization, python

1. Introduction
In this note we attempt to present the salient features of a new assignment technique designed
to reach optimal feasible solution. Keeping the prime objective of efficiency in mind, we aim
towards sharing this new approach that focuses on real-life situational problems.
The assignment problem (minimization type) is fundamentally an optimization problem in
operations research, where the objective is to assign 𝑀 agents to 𝑀 tasks such that the total
cost of the assignment is minimized (or profit is maximized) and ensuring that each agent is
assigned exactly one of the M tasks.

1.1 Traditional Algorithm - The Hungarian Method
In 1955, the Hungarian method, refined by Harold Kuhn, was developed to find the optimal
solution for assignment problems, primarily dealing with minimization cases. However, by
applying the opportunity loss (or regret) technique, it can solve maximization problems on
converting all cell entries of the given maximization assignment problem to opportunity loss
matrix and applying the standard minimization algorithm to the resulting matrix.
In this framework, both minimization and maximization assignments fall under the same
general structure of the Hungarian Method, though this conversion to opportunity loss matrix
adds computational overhead.

1.2 Mathematical Foundation
The Hungarian Method solves an assignment problem represented by an 𝑀 × 𝑀 matrix (where

𝑀 ∈ ℕ) with 𝑀2 entries - each entry denotes the cost (or profit) of assigning a task to an agent.
In the assignment problem, a linear programming model, has 𝑀 row and 𝑀 column

constraints. With one dependent constraint, this leaves 2𝑀 − 1 independent equality

constraints. Therefore, a basic feasible solution (B.F.S) has exactly 2𝑀 − 1 basic variables. In
the B.F.S, exactly 𝑀 cells are assigned, often resulting in a highly degenerate solution.
A positive feature of the traditional method is its ability to identify multiple optimal solutions
when they exist.

2. The New Approach - Jha’s Method

In this section, we describe the complete procedure for finding a basic feasible solution to the

assignment problem (maximization type)

https://www.mathsjournal.com/
https://www.doi.org/10.22271/maths.2025.v10.i10a.2176

~30~

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com

2.1 Initial Basic Feasible Solution

We describe the procedure to obtain the Basic Feasible

Solution (B.F.S.). Given an 𝑀 × 𝑀 assignment matrix with

rows denoted as 𝑅1, 𝑅2, … , 𝑅𝑀 and columns as 𝐶1, 𝐶2, … , 𝐶𝑀,

the steps are as follows:

1. Identify the maximum entry in the matrix, denoted by 𝑥𝑖𝑗 .

Mark this entry and eliminate the corresponding 𝑖th row

and 𝑗th column

2. The elimination results in a reduced square matrix of

order (𝑀 − 1). Determine the maximum entry in this

reduced matrix and eliminate its corresponding row and

column.

3. Repeat this procedure iteratively until all rows and

columns are eliminated.

2.2 Key Observation

On completion of the above operations, we observe that

exactly one entry is marked in each row and each column.

This procedure yields a basic feasible solution (each agent has

been assigned a marked entry in its respective column), which

serves as the starting point for applying Jha’s optimality test.

the above procedure ends up int the following I.B.F.S

Row Entry

𝑅1 𝑥1𝑗

𝑅2 𝑥2𝑞

⋮ ⋮
𝑅𝑀 𝑥𝑀𝑧

As shown above, the result leads to an initial basic feasible

solution (I.B.F.S).

3. Jha’s Optimality Test

Upon finding the I.B.F.S as mentioned, we describe the

procedure that leads to optimal basic feasible solution. The

optimality test examines each marked entry and determines

whether improvements are possible.

3.1 Test Procedure

Beginning with the first marked entry in the 1st row and 𝑗th

column; that is 𝑥1𝑗.

1. Identify potential improvements

Search for all values numerically higher than 𝑥1𝑗 in the 1st

row. If no higher values exist, then 𝑥1𝑗, as of now, remains

optimal for the 1st row.

2. Calculate improvement parameters

For the first higher value 𝑥1𝑘 found in column 𝑘 (where 𝑘 ≠
𝑗), calculate:

 𝐴1 = |𝑥1𝑘 − 𝑥1𝑗|

3. Examining column impact

For this column 𝑘, identify the current marked entry 𝑥𝑡𝑘 in

column 𝑘 (row 𝑡) and calculate:

𝐵1 = |𝑥𝑡𝑘 − 𝑥𝑡𝑗|

4. Compute net benefit
For each potential improvement, calculate the net benefit as:

𝑍1 = 𝐴1 − 𝐵1

5. Calculate Z values

In the same way continue calculating 𝑍1, 𝑍2, 𝑍3, … for other

numerically higher values than 𝑥1𝑗

6. Optimality condition

 If all 𝑍𝑘 ≤ 0 (𝑘 = 1,2,3 …) Keep 𝑥1𝑗 unchanged (when

𝑍𝑘 = 0, multiple optimal solutions exist)

 If 𝑍𝑘 > 0 For the column 𝑘 and row 𝑡 yielding maximum

𝑍𝑘, replace 𝑥1𝑗 with 𝑥1𝑘 and replace 𝑥𝑡𝑘 with 𝑥𝑡𝑗

3.2 Iteration Process

we repeat the above steps for the marked entries of the

remaining rows 𝑅2, 𝑅3, … , 𝑅𝑀 During this process if at least

one swap occurs then we have to begin the procedure

described above in Section 3.1 (Test Procedure).

4. Convergence to Optimal Solution

The above mentioned Jha’s optimality test is terminated if

there is no swap executed (checking on from 𝑅1 to 𝑅𝑀) After

completing Jha’s optimality test for each entry in the initial

basic feasible solution, the algorithm converges to an optimal

basic feasible solution. The test ensures that there are no

further beneficial exchanges and yields optimality. It has been

concluded that the final marked enteries for each row

constitutes the optimal basic feasible Solution. We sound this

logic by an illustration

5 Illustration

Consider the given square matrix 𝑴 of order 5:

𝑀 =

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓

𝑹𝟏 10 18 17 20 24
𝑹𝟐 24 25 15 22 19
𝑹𝟑 17 20 19 24 21
𝑹𝟒 19 22 16 17 21
𝑹𝟓 14 18 20 17 16

Step 1

Following the prescribed method in 2.1, we systematically

identify the maximum entries. Maximum entry = 25 at cell

position (2,2). Mark and eliminate Row 2 and Column 2.

[

10 × 17 20 24

× 25 × × ×
17 × 19 24 21
19 × 16 17 21
14 × 20 17 16]

Step 2

In the remaining matrix, maximum entry = 24 at cell position

(1,5). Mark and eliminate Row 1 and Column 5.

[

× × × × 24

× 25 × × ×
17 × 19 24 ×
19 × 16 17 ×
14 × 20 17 ×]

Step 3

Similarly, we get the final matrix with all maximum marked

entries in order:

https://www.mathsjournal.com/

~31~

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com

[

× × × × 24

× 25 × × ×

× × × 24 ×

19 × × × ×

× × 20 × ×]

Initial Basic Feasible Solution depicted as follow:

Agent Task Profit

1 5 24

2 2 25

3 4 24

4 1 19

5 3 20

Total Cost = 112... (𝑎)

Initial Basic Feasible Solution: 112

Step 4: Optimality test

On the initial basic feasible solution denoted above (𝑎), we

apply optimality test as follows

Examining 1st row values, the marked value 𝑥15 = 24, There

is no numerically higher entry than 24 in this row. Then Move

to next row.

 Step 5: Examining 2nd row values, the marked value

𝑥22 = 25, There is no numerically higher entry than 24 in

this row. Move to next row.

 Step 6: Examining 3rd row values, the marked value

𝑥34 = 24, There is no numerically higher entry than 24 in

this row. Move to next row.

 Step 7: Examining 4th row values, marked value is 𝑥41 =
19. Entries numerically higher than 19 exist, which are

22, and 21

We now calculate new profit for each of them

i) Current 𝑥41 = 19, potential candidate 𝑥42 = 22

𝐴1 = |𝑥42 − 𝑥41| = 3

Impact on Column 2: currently assigned maximum entry

𝑥22 = 25, candidate if swap occurs 𝑥21 = 24

𝐵1 = |𝑥22 − 𝑥21| = 1

𝑍1 (Net gain) = 𝑋 − 𝑌 = 3 − 1 = 2

ii) Current 𝑥41 = 19, potential candidate 𝑥45 = 21

𝐴2 = |𝑥45 − 𝑥41| = 2

Impact on Column 5: currently assigned maximum entry

𝑥15 = 24, candidate if a swap occurs 𝑥11 = 10

𝐵2 = |𝑥15 − 𝑥11| = 14

𝑍2 (Net gain) = 𝐴 − 𝐵 = 2 − 14 = −12

The maximum net gain possible is 2, 𝑍1 swap is

comparatively beneficial.

Make the swap in marked entries:

 𝑥42 becomes the new marked entry for Row 4

 𝑥21 becomes the new marked entry for Row 2

[

× × × × 24

𝟐𝟒 × × × ×

× × × 24 ×

× 𝟐𝟐 × × ×

× × 20 × ×]

Step 8: Since a swap occurred before completion of one full

iteration, we check again from Row 1.

Examining 1st row values, the marked value 𝑥15 = 24, There

is no numerically higher entry than 24 in this row. Then Move

to next row.

Step 9: Examining 2nd row values, marked value is 𝑥21 = 24.

Entry numerically greater than 24 exists, which is 25

i) Current 𝑥21 = 24, potential candidate 𝑥22 = 25

𝐴1 = |𝑥22 − 𝑥21| = 1

Impact on Column 2: currently assigned 𝑥42 = 22, candidate

if swap occurs 𝑥41 = 19

𝐵1 = |𝑥42 − 𝑥41| = 3

𝑍1 (Net gain) = 𝐴 − 𝐵 = 1 − 3 = −2

The maximum net gain is -2, but since it’s negative, there are

no beneficial swaps for row 2. We keep the current

assignment 𝑥21.

Step 10: Examining 3rd row values, marked value is 𝑥34 =
24, no entries numerically greater than 24 exist.We Move to

next row.

Step 11: Similarly after examining the remaining rows, we

can see that one full full iteration completed without any

swaps. Hence, we have reached optimality.

Final Optimal Solution

𝑥15 = 24
𝑥21 = 24
𝑥34 = 24
𝑥42 = 22
𝑥53 = 20

Optimal solution = 114

Conclusion

The method we have found and exemplified above has many

salient features:

 It is simpler than the original method

 It quickly approaches to optimality through our

optimality test

 It is a general method that can be applied to any 𝑀 × 𝑀

matrix (Maximization type)

 It is more practical and amenable to computer

programming (shown in Appendix)

 It is open to further research

References

1. Dr. Pradeep J Jha. Operations Research. McGraw Hill

Education (India) Private Limited. 2014. ISBN: 978-1-

25-902673-7.

2. Afrooz HD, Dr. Hossen MA. New Proposed Method for

Solving Assignment Problem and Comparative Study

with the Existing Methods. IOSR Journal of Mathematics

(IOSR-JM). 2017;13(2):84-88. e-ISSN: 2278-5728, p-

ISSN: 2319-765X.

3. Dr. Sharma VK, Sachdeva P. Comparative Study of

Various Approaches for Solving the Assignment

Problem, IJFANS International Journal of Food and

Nutritional Sciences, UGC CARE Listed (Group -I)

Journal. 2022;11:10.

https://www.mathsjournal.com/

~32~

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com

4. Gothi MM, Patel RG, Patel BS. Optimal Solution to The

Assignment Problem, Annals of Mathematics and

Computer Science. 2023;16:112-122. ISSN: 2789-7206.

5. Supian S, Wahyuni S, Nahar J, Subiyanto. "Optimization

of Personnel Assignment Problem Based on Traveling

Time by Using Hungarian Methods: Case Study on the

Central Post Office Bandung", 4th International

Conference on Operational Research (Interi OR), IOP

Conf. Series: Materials Science and Engineering.

2018;300:012005. Doi:10.1088/1757-

899X/300/1/012005.

6. Prof. Prajapati R, Dr. Haque A, Dr. Jain J, Prof. Singh S.

A study on solving Assignment Problem, VIVA-Tech

International Journal for Research and Innovation

ISSN(Online): 2581-7280, 2021, 1(4).

7. Kadhim HJ, Shiker MAK, Al-Dallal HAH. A New

Technique for Finding the Optimal Solution to

Assignment Problems with Maximization Objective

Function, Journal of Physics: Conference Series.

2021;1963:012104.

Appendix: Python Implementation

def Jhas_optimality_criterion(matrix):

M = len(matrix)

marked_entries = []

used_rows = set()

used_cols = set()

for i in range(M):

max_val = -999999

max_row = -1

max_col = -1

for r in range(M):

if r in used_rows:

continue

for c in range(M):

if c in used_cols:

continue

if matrix[r][c] > max_val:

max_val = matrix[r][c]

max_row = r

max_col = c

marked_entries.append((max_row, max_col, max_val))

used_rows.add(max_row)

used_cols.add(max_col)

while True:

row_to_col = {}

col_to_row = {}

for row, col, val in marked_entries:

row_to_col[row] = col

col_to_row[col] = row

swap_happened = False

for current_row in range(M):

current_col = row_to_col[current_row]

current_val = matrix[current_row][current_col]

best_profit = 0

best_col = -1

for k in range(M):

if k == current_col:

continue

candidate_val = matrix[current_row][k]

if candidate_val >= current_val:

gain = candidate_val - current_val

displaced_row = col_to_row[k]

loss = (matrix[displaced_row][k] -

matrix[displaced_row][current_col])

profit = gain - loss

if profit > best_profit:

best_profit = profit

best_col = k

if best_profit > 0:

displaced_row = col_to_row[best_col]

row_to_col[current_row] = best_col

row_to_col[displaced_row] = current_col

col_to_row[current_col] = displaced_row

col_to_row[best_col] = current_row

swap_happened = True

if not swap_happened:

break

marked_entries = []

for row in range(M):

col = row_to_col[row]

val = matrix[row][col]

marked_entries.append((row, col, val))

return marked_entries

https://www.mathsjournal.com/

