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Abstract 
This paper introduces a novel and faster approach to finding the optimal feasible solution of assignment 

problem in maximization scenarios. The proposed method, termed ’Jha’s Method’ offers a more practical 

alternative over the long-known Hungarian method. It eliminates the need for the calculation of the 

opportunity loss matrix while maintaining computational efficiency. The Jha’s method, it’s optimality 

test, and its computer code using Python language are unique till now. 
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1. Introduction 
In this note we attempt to present the salient features of a new assignment technique designed 
to reach optimal feasible solution. Keeping the prime objective of efficiency in mind, we aim 
towards sharing this new approach that focuses on real-life situational problems. 
The assignment problem (minimization type) is fundamentally an optimization problem in 
operations research, where the objective is to assign 𝑀 agents to 𝑀 tasks such that the total 
cost of the assignment is minimized (or profit is maximized) and ensuring that each agent is 
assigned exactly one of the M tasks. 
 

1.1 Traditional Algorithm - The Hungarian Method 
In 1955, the Hungarian method, refined by Harold Kuhn, was developed to find the optimal 
solution for assignment problems, primarily dealing with minimization cases. However, by 
applying the opportunity loss (or regret) technique, it can solve maximization problems on 
converting all cell entries of the given maximization assignment problem to opportunity loss 
matrix and applying the standard minimization algorithm to the resulting matrix. 
In this framework, both minimization and maximization assignments fall under the same 
general structure of the Hungarian Method, though this conversion to opportunity loss matrix 
adds computational overhead. 
 

1.2 Mathematical Foundation 
The Hungarian Method solves an assignment problem represented by an 𝑀 × 𝑀 matrix (where 

𝑀 ∈ ℕ) with 𝑀2 entries - each entry denotes the cost (or profit) of assigning a task to an agent. 
In the assignment problem, a linear programming model, has 𝑀 row and 𝑀 column 

constraints. With one dependent constraint, this leaves 2𝑀 − 1 independent equality 

constraints. Therefore, a basic feasible solution (B.F.S) has exactly 2𝑀 − 1 basic variables. In 
the B.F.S, exactly 𝑀 cells are assigned, often resulting in a highly degenerate solution. 
A positive feature of the traditional method is its ability to identify multiple optimal solutions 
when they exist. 
 

2. The New Approach - Jha’s Method 

In this section, we describe the complete procedure for finding a basic feasible solution to the 

assignment problem (maximization type) 
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2.1 Initial Basic Feasible Solution 

We describe the procedure to obtain the Basic Feasible 

Solution (B.F.S.). Given an 𝑀 × 𝑀 assignment matrix with 

rows denoted as 𝑅1, 𝑅2, … , 𝑅𝑀 and columns as 𝐶1, 𝐶2, … , 𝐶𝑀, 

the steps are as follows: 

1. Identify the maximum entry in the matrix, denoted by 𝑥𝑖𝑗 . 

Mark this entry and eliminate the corresponding 𝑖th row 

and 𝑗th column 

2. The elimination results in a reduced square matrix of 

order (𝑀 − 1). Determine the maximum entry in this 

reduced matrix and eliminate its corresponding row and 

column. 

3. Repeat this procedure iteratively until all rows and 

columns are eliminated. 

 

2.2 Key Observation 

On completion of the above operations, we observe that 

exactly one entry is marked in each row and each column. 

This procedure yields a basic feasible solution (each agent has 

been assigned a marked entry in its respective column), which 

serves as the starting point for applying Jha’s optimality test. 

the above procedure ends up int the following I.B.F.S 

 
Row Entry

𝑅1 𝑥1𝑗

𝑅2 𝑥2𝑞

⋮ ⋮
𝑅𝑀 𝑥𝑀𝑧

 

 

As shown above, the result leads to an initial basic feasible 

solution (I.B.F.S). 

 

3. Jha’s Optimality Test 

Upon finding the I.B.F.S as mentioned, we describe the 

procedure that leads to optimal basic feasible solution. The 

optimality test examines each marked entry and determines 

whether improvements are possible. 

 

3.1 Test Procedure 

Beginning with the first marked entry in the 1st row and 𝑗th 

column; that is 𝑥1𝑗. 

 

1. Identify potential improvements 

Search for all values numerically higher than 𝑥1𝑗 in the 1st 

row. If no higher values exist, then 𝑥1𝑗, as of now, remains 

optimal for the 1st row. 

 

2. Calculate improvement parameters 

For the first higher value 𝑥1𝑘 found in column 𝑘 (where 𝑘 ≠
𝑗), calculate: 

 

 𝐴1 = |𝑥1𝑘 − 𝑥1𝑗| 

 

3. Examining column impact 

For this column 𝑘, identify the current marked entry 𝑥𝑡𝑘 in 

column 𝑘 (row 𝑡) and calculate: 

 

𝐵1 = |𝑥𝑡𝑘 − 𝑥𝑡𝑗| 

 

4. Compute net benefit 
For each potential improvement, calculate the net benefit as: 

 

𝑍1 = 𝐴1 − 𝐵1 

5. Calculate Z values 

In the same way continue calculating 𝑍1, 𝑍2, 𝑍3, … for other 

numerically higher values than 𝑥1𝑗 

 

6. Optimality condition 

 If all 𝑍𝑘 ≤ 0 (𝑘 = 1,2,3 …) Keep 𝑥1𝑗 unchanged (when 

𝑍𝑘 = 0, multiple optimal solutions exist) 

 If 𝑍𝑘 > 0 For the column 𝑘 and row 𝑡 yielding maximum 

𝑍𝑘, replace 𝑥1𝑗 with 𝑥1𝑘 and replace 𝑥𝑡𝑘 with 𝑥𝑡𝑗 

 

3.2 Iteration Process 

we repeat the above steps for the marked entries of the 

remaining rows 𝑅2, 𝑅3, … , 𝑅𝑀 During this process if at least 

one swap occurs then we have to begin the procedure 

described above in Section 3.1 (Test Procedure). 

 

4. Convergence to Optimal Solution 

The above mentioned Jha’s optimality test is terminated if 

there is no swap executed (checking on from 𝑅1 to 𝑅𝑀) After 

completing Jha’s optimality test for each entry in the initial 

basic feasible solution, the algorithm converges to an optimal 

basic feasible solution. The test ensures that there are no 

further beneficial exchanges and yields optimality. It has been 

concluded that the final marked enteries for each row 

constitutes the optimal basic feasible Solution. We sound this 

logic by an illustration 

 

5 Illustration 

Consider the given square matrix 𝑴 of order 5: 

 

𝑀 =

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓

𝑹𝟏 10 18 17 20 24
𝑹𝟐 24 25 15 22 19
𝑹𝟑 17 20 19 24 21
𝑹𝟒 19 22 16 17 21
𝑹𝟓 14 18 20 17 16

 

 

Step 1 

Following the prescribed method in 2.1, we systematically 

identify the maximum entries. Maximum entry = 25 at cell 

position (2,2). Mark and eliminate Row 2 and Column 2. 

 

[
 
 
 
 
10 × 17 20 24

× 25 × × ×
17 × 19 24 21
19 × 16 17 21
14 × 20 17 16]

 
 
 
 

 

 

 

Step 2 

In the remaining matrix, maximum entry = 24 at cell position 

(1,5). Mark and eliminate Row 1 and Column 5. 

 

[
 
 
 
 
× × × × 24

× 25 × × ×
17 × 19 24 ×
19 × 16 17 ×
14 × 20 17 × ]

 
 
 
 

 

 

Step 3 

Similarly, we get the final matrix with all maximum marked 

entries in order: 
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[
 
 
 
 
 

× × × × 24

× 25 × × ×

× × × 24 ×

19 × × × ×

× × 20 × × ]
 
 
 
 
 

 

 

Initial Basic Feasible Solution depicted as follow: 
 

Agent Task Profit 

1 5 24 

2 2 25 

3 4 24 

4 1 19 

5 3 20 

Total Cost = 112... (𝑎) 

 

Initial Basic Feasible Solution: 112 

 

Step 4: Optimality test 

On the initial basic feasible solution denoted above (𝑎), we 

apply optimality test as follows 

Examining 1st row values, the marked value 𝑥15 = 24, There 

is no numerically higher entry than 24 in this row. Then Move 

to next row. 

 Step 5: Examining 2nd row values, the marked value 

𝑥22 = 25, There is no numerically higher entry than 24 in 

this row. Move to next row. 

 Step 6: Examining 3rd row values, the marked value 

𝑥34 = 24, There is no numerically higher entry than 24 in 

this row. Move to next row. 

 Step 7: Examining 4th row values, marked value is 𝑥41 =
19. Entries numerically higher than 19 exist, which are 

22, and 21 

 

We now calculate new profit for each of them 

i) Current 𝑥41 = 19, potential candidate 𝑥42 = 22 

 

𝐴1 = |𝑥42 − 𝑥41| = 3 

 

Impact on Column 2: currently assigned maximum entry 

𝑥22 = 25, candidate if swap occurs 𝑥21 = 24 

𝐵1 = |𝑥22 − 𝑥21| = 1 

𝑍1 (Net gain) = 𝑋 − 𝑌 = 3 − 1 = 2 

 

ii) Current 𝑥41 = 19, potential candidate 𝑥45 = 21 

𝐴2 = |𝑥45 − 𝑥41| = 2 

 

Impact on Column 5: currently assigned maximum entry 

𝑥15 = 24, candidate if a swap occurs 𝑥11 = 10 

𝐵2 = |𝑥15 − 𝑥11| = 14 

𝑍2 (Net gain) = 𝐴 − 𝐵 = 2 − 14 = −12 

 

The maximum net gain possible is 2, 𝑍1 swap is 

comparatively beneficial. 

Make the swap in marked entries: 

 𝑥42 becomes the new marked entry for Row 4 

 𝑥21 becomes the new marked entry for Row 2 

 

[
 
 
 
 
 

× × × × 24

𝟐𝟒 × × × ×

× × × 24 ×

× 𝟐𝟐 × × ×

× × 20 × × ]
 
 
 
 
 

 

Step 8: Since a swap occurred before completion of one full 

iteration, we check again from Row 1. 

Examining 1st row values, the marked value 𝑥15 = 24, There 

is no numerically higher entry than 24 in this row. Then Move 

to next row. 

 

Step 9: Examining 2nd row values, marked value is 𝑥21 = 24. 

Entry numerically greater than 24 exists, which is 25 

i) Current 𝑥21 = 24, potential candidate 𝑥22 = 25 

𝐴1 = |𝑥22 − 𝑥21| = 1 

 

Impact on Column 2: currently assigned 𝑥42 = 22, candidate 

if swap occurs 𝑥41 = 19 

𝐵1 = |𝑥42 − 𝑥41| = 3 

𝑍1 (Net gain) = 𝐴 − 𝐵 = 1 − 3 = −2 

 

The maximum net gain is -2, but since it’s negative, there are 

no beneficial swaps for row 2. We keep the current 

assignment 𝑥21. 

 

Step 10: Examining 3rd row values, marked value is 𝑥34 =
24, no entries numerically greater than 24 exist.We Move to 

next row. 

 

Step 11: Similarly after examining the remaining rows, we 

can see that one full full iteration completed without any 

swaps. Hence, we have reached optimality. 

 

Final Optimal Solution 

 
𝑥15 = 24
𝑥21 = 24
𝑥34 = 24
𝑥42 = 22
𝑥53 = 20

 

 

Optimal solution = 114 

 

Conclusion 

The method we have found and exemplified above has many 

salient features: 

 It is simpler than the original method 

 It quickly approaches to optimality through our 

optimality test 

 It is a general method that can be applied to any 𝑀 × 𝑀 

matrix (Maximization type) 

 It is more practical and amenable to computer 

programming (shown in Appendix) 

 It is open to further research 

 

References 

1. Dr. Pradeep J Jha. Operations Research. McGraw Hill 

Education (India) Private Limited. 2014. ISBN: 978-1-

25-902673-7. 

2. Afrooz HD, Dr. Hossen MA. New Proposed Method for 

Solving Assignment Problem and Comparative Study 

with the Existing Methods. IOSR Journal of Mathematics 

(IOSR-JM). 2017;13(2):84-88. e-ISSN: 2278-5728, p-

ISSN: 2319-765X. 

3. Dr. Sharma VK, Sachdeva P. Comparative Study of 

Various Approaches for Solving the Assignment 

Problem, IJFANS International Journal of Food and 

Nutritional Sciences, UGC CARE Listed (Group -I) 

Journal. 2022;11:10. 

https://www.mathsjournal.com/


 

~32~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

4. Gothi MM, Patel RG, Patel BS. Optimal Solution to The 

Assignment Problem, Annals of Mathematics and 

Computer Science. 2023;16:112-122. ISSN: 2789-7206. 

5. Supian S, Wahyuni S, Nahar J, Subiyanto. "Optimization 

of Personnel Assignment Problem Based on Traveling 

Time by Using Hungarian Methods: Case Study on the 

Central Post Office Bandung", 4th International 

Conference on Operational Research (Interi OR), IOP 

Conf. Series: Materials Science and Engineering. 

2018;300:012005. Doi:10.1088/1757- 

899X/300/1/012005. 

6. Prof. Prajapati R, Dr. Haque A, Dr. Jain J, Prof. Singh S. 

A study on solving Assignment Problem, VIVA-Tech 

International Journal for Research and Innovation 

ISSN(Online): 2581-7280, 2021, 1(4). 

7. Kadhim HJ, Shiker MAK, Al-Dallal HAH. A New 

Technique for Finding the Optimal Solution to 

Assignment Problems with Maximization Objective 

Function, Journal of Physics: Conference Series. 

2021;1963:012104. 

 

Appendix: Python Implementation 

def Jhas_optimality_criterion(matrix): 

M = len(matrix) 

marked_entries = [] 

used_rows = set() 

used_cols = set() 

for i in range(M): 

max_val = -999999 

max_row = -1 

max_col = -1 

for r in range(M): 

if r in used_rows: 

continue 

for c in range(M): 

if c in used_cols: 

continue 

if matrix[r][c] > max_val: 

max_val = matrix[r][c] 

max_row = r 

max_col = c 

marked_entries.append((max_row, max_col, max_val)) 

used_rows.add(max_row) 

used_cols.add(max_col) 

while True: 

row_to_col = {} 

col_to_row = {} 

for row, col, val in marked_entries: 

row_to_col[row] = col 

col_to_row[col] = row 

swap_happened = False 

for current_row in range(M): 

current_col = row_to_col[current_row] 

current_val = matrix[current_row][current_col] 

best_profit = 0 

best_col = -1 

for k in range(M): 

if k == current_col: 

continue 

candidate_val = matrix[current_row][k] 

if candidate_val >= current_val: 

gain = candidate_val - current_val 

displaced_row = col_to_row[k] 

loss = (matrix[displaced_row][k] -  

matrix[displaced_row][current_col]) 

profit = gain - loss 

if profit > best_profit: 

best_profit = profit 

best_col = k 

if best_profit > 0: 

displaced_row = col_to_row[best_col] 

row_to_col[current_row] = best_col 

row_to_col[displaced_row] = current_col 

col_to_row[current_col] = displaced_row 

col_to_row[best_col] = current_row 

swap_happened = True 

if not swap_happened: 

break 

marked_entries = [] 

for row in range(M): 

col = row_to_col[row] 

val = matrix[row][col] 

marked_entries.append((row, col, val)) 

return marked_entries 
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