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Abstract
We study the second order differential equation

(@' (s)) = k(s,v(s),v'(s)), a.e.s €[0,¢]

Submitted to nonlinear Neumann-Steklov boundary conditions on [0,&] where k:[0,§] X R?2 > R a
L' —Carathéodory function. ¢: R — R, is initially considered as an increasing homeomorphism such that
¢(0) = 0. In a second step ¢ is considered as a continuous function on Dom(¢) c R and strictly
increasing on [a,b] € Dom(¢). We show the existence of at least one solution using some sign
conditions and lower and upper solution method. No Nagumo-like growth condition for the dependence
of f(s,w, z) with respect to v is required.

Keywords: ¢ — Laplacian; L' —Carathéodory function, nonlinear Neumann-Steklov problem, Leray-
Schauder degree, Brouwer degree, lower and upper solutions

Introduction
This paper aims to study the existence of solutions for the differential equation

(p(v'() = k(t.v(),v'()), .5 €[0,€] (1)
Subject to Neumann-Steklov type conditions

d@'(0)) = Lo(v(0)), p('(§)) = Le(W(§)), (2
Where:

e Iyl R - Rare continuous functions,
e k:[0,&] x R? > Ra L' —Carathéodory function,
o ¢:R - Riseither:
e Anincreasing homeomorphism with ¢(0) = 0, or
e A continuous function strictly increasing on [a, b] € Dom(¢).

The study of equation (1) is a classical topic with significant applications, attracting extensive
research. A ¢ — Laplacian operator is classified as:

e Singular if ¢ has a finite domain (i.e., ¢:] — d,d[= R, with0 < d < +00),

e Regular otherwise.

Recent work has explored both singular and regular operators. Notably, Cristian B. and Jean
M. [ 2 established existence and multiplicity results for (1) under various boundary
conditions, where ¢ is an increasing homeomorphism on | — d, d[ with (d > 0).

In 2008, Cristian B. and Jean M. B studied (1) —(2) with:
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o ¢:]—d,d[— R(d €]0,+o0]) an increasing homeomorphism satisfying ¢(0) = 0,
e k:[0,é] Xx R x R — R continuous.

Their key findings include:

1) Ford < +oo, problem (1) —(2) admits at least one solution under Villari-type sign conditions on k, I, I (4.

2) Ford < +oo, existence is guaranteed if lower and upper solutions exist (ordered or not).

3) Ford = +oo, asolution exists when |l,] is bounded, ¢ is bounded above and k(s,u,v) < t(s) forsome z € C([0,¢]).

In 2015 and 2017, Eienne G. and Assohoun A. [> 8 extended somes results of Cristian B. and Jean M. to L' —Carathéodory
function k.

The paper is structured as follows:

In section 2, we some preliminary. In section 3, we prove that the problem (1) —(2) admits at least one solution when [, is
bounded from below, [, is bounded from above and there exists 7 € L'(0,¢) such that k(s,u,v) = t(s) for a.e. s € [0,¢] and
V(u,v) € R* or when [, is bounded from above, I; is bounded from below and there exists 7 € L'(0,¢) satisfying
f(s,u,v) <t(s) for ae. s € [0,¢] and V(u,v) € R?. After that, in section 4 we apply section 3’s results to nonlinear beam
equations. Finally, in section 5, we extend the study to the generalized problem

(Cb(v’(s)))’ = k(s,v(s),v’(s)),a.e.s € [0,¢] 3)
®(v'(0)) = Lo(v(0)), P(v'(9)) = L:(v(E)) 4)

where ®: Dom(®) c R — R is continuous and strictly increasing on [a, b] € Dom(®),
ly, l: R = R are two continuous functions and k: [0,¢] x R x R — R a L' —Carathéodory function.

Preliminary

Definition 2.1. k: [0,¢] x R X R - R is a L' —Carathéodory function if:

1. k(.,,w,2):[0,é] — Ris measurable for all (w,z) € R?

2. k(s,.,.):Rx R — Ris continuous for a.e.s € [0,&];

3. For each compact set A c R? there is a function n, € L*(0,£) such that |f(s,w,z)| < n, for a.e.s € [0,£] and all
(w,z) € A.

Let us consider the problem

(¢(v’(s))>’= k(s,v(s),v'(s)),a.e.te[o,f]

(v (0))=1o(v(0).0(v' ()=l (v(©)), )

with k:[0,T] x R x R — R is a L' —Carathéodory function, l,, ;: R - R are two continuous functions and ¢:] —d,d[-> R (d €
10, +o[), an increasing homeomorphism such that ¢ (0) = 0.

Definition 2.2. v € C1([0, &]) is a solution of problem (5) if p(v") € AC([0,&]), ||v'|| < d and v satisfies (5). AC([0, £]) is the
set of absolutely continuous functions on [0, £].

Definition 2.3. A lower-solution of the problem (5) is a function a € €([0, £]) such that

lla'|le < d, Pp(a’) € AC([0,£]) and

(#(@'®)) = k(s a(s)a'(9)),a.e.s € [0,€],

P(a'(0)) = lp(a(0)) and ¢(a’(§)) < ls(a(®)).

Definition 2.4. A lower-solution of the problem (5) is a function § € C*([0, €]) such that
18l < d, ¢(B") € AC([0,£]) and

(6(8's)) < k(s.B©)B'®))ae.s € [0,8],

¢(B'(0) < 1,(B(0)) and ¢(B'(§)) = Le(B(&).

Theorem 2.1. The existence of a lower solution o and an upper solution B for (5) implies that the problem (5) has at least one
solution.
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Proof. See [ and [,
Theorem 2.2. The existence of a lower-solution @ and an upper-solution 8 of (5) such that Vs € [0,¢], a(s) < B(s), implies
that the problem (5) admits at least one solution u such thatv s € [0,¢], a(s) < u(s) < B(s).

Proof. See 51 and [6.

Existence result
To prove an analogous result for d = +oo, we will apply Theorem 2.1. With this goal in mind, let us consider the problem

(qb(v’(s)))lz k(t,v(s),v’(s)),a.e.se[o,f]

10
B (v'(0))=1o(v(0)).p (W ()= W(5)), (10)

Where k:[0,{] x Rx R - R is a L' —Carathéodory function, [, ls: R — R are two continuous functions and ¢: R - R, an
increasing homeomorphism such that ¢(0) = 0.

Definition 3.1. u € C*([0, £]) is a solution of problem (10) if ¢p(u") € AC([0,&]) and satisfies (10).
We need the following results.

Lemma 3.1. Suppose that:
a) Thereexistsg € L'(0,&) suchthat k(s,w,z) <g(s) forae.s € [0, ]and V(w,z) € RZ
b) There exists (9y,9;) € R? such that Vs € [0,T], [o(s) < 9y and l¢(s) = V.

If v is a solution of (10), then ||v'||. < e Where

e = max{|$~" [~ (max{|9,|, [9¢|} + |IgI|L1(0,5))]I, |~ [max{| 9], 191} + 11g11120,6)] 13-
Proof. Let u be a solution of (10). Then we have: Vs € [0, £],

d(v'(s)) = d(v'(0)) + f k(z,v(2),v'(2))dz

0
= ly(v(0)) +f k(z,v(2),v'(2))dz
0
<9+ d
0 -fo g9(2)dz

and

3
B(v'©®) = (' ©) - [ kv, v@)dz
3
=1z (v(¢)) +f k(z,v(z),v'(2))dz
3
= U¢ —f g(z)dz

Hence, Vs € [0,¢ ],9; — fjg(z)dz <p(v'(s)) < 9, + fosg(z)dz.
Moreover Vs € [0,¢ ],

|6 (v' ()| < max {181 + 191116, 9] + 119111, }

max{lﬁol + ||g||L1(0,f)’ |19$| + ||g||L1(0,f)} = maX{lﬂol' |19$|} + ||g||L1(0,f)
It follows that vt € [0, ],
1V (6)] < maxd|¢~ [~ (max{18o], [9[} + 19111 )11, 167 Imax{ 9], 1913 + [1g1] 2,11} = e-

Lemma 3.2. Suppose that:
a) Thereexistsg € L1(0,¢) such that k(s,w,z) = g(s) fora.e.s € [0,€]and

v(w,z) € R2,
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b) There exists (9, 9¢) € R? such that Vs € [0, €], [,(s) = 9, and le(s) < ;.

If v is a solution of (10), then ||v'|| < e, where
e = max{|¢~" [~ (max{|9 ], [9¢[} + [191] 1 o )1 167" [max{[Dol, [91} + 191112 0)] -
Proof: One can prove this by adapting the proof of Lemma 3.1

Definition 3.2. a € C([0, £]) is a lower-solution of the problem (5) if ¢ (a’) € AC([0,&]) and
(d)(a’(s)))’ > k(s,a(s),a'(s)),a.e.s €[0,&],
¢(a'(0)) > lo(a(O)) and d)(a’(g‘)) < lf(a(g‘)).

Definition 3.3. B € C([0, £]) is an upper-solution of the problem (5) if ¢(B8") € AC([0,&]) and
(#(8')) < k(5,86 ae.s €08,
d(B'(0)) < 1,(B(0)) and p(B'(5)) = L:(B(&)).

Theorem 3.1. Suppose that:

a) Thereexistsg € L'(0,¢) such that k(s,w,z) <g(s) fora.e.s € [0,é ] and V(w,2z) € R2
b) There exists (9y,9¢) € R? such that Vs € [0,¢], [o(s) < 9 and l¢(s) = V.

c) The problem (10) admits a lower-solution a and an upper-solution S.

It follows that problem (10) has at least one solution.

Proof: Let

e = max{|¢ ™ [—(max{|9|, [9¢[} + lgll20m)]] |# 7 [max{|9,], [9¢ 1} + 191120 ]|} @' = max{lla’|lco, 18l €} + 1 and
d=d+ 1.

Let Y:] —d,d[— R be an increasing homeomorphism such that ¢ = Y on [—d',d']. It is clear that « and B are respectively
lower-solution and upper-solution of problem

(Y(v’(s))>’=k(s,v(s),v’(s)),a.e.sE[O,f]

(11)
Y(v'(0))=1o(v(0)), YW1 ())=Ls (v (£)),

Then, using Theorem 2.2. we deduce that the problem (11) has a solution u which is also a solution of problem (10) by Lemma
3.1

Theorem 3.2. Suppose that:

a) Thereexists g € L'(0,¢) such that k(s,w,z) = g(s) fora.e. s € [0, ] and V(w, z) € R2.

b) There exists (9y,9;) € R* such that Vs € [0,¢], [, (s) = 9, and l¢(s) < .

c) The problem (10) admits a lower-solution a and an upper-solution 8.

It follows that problem (10) has at least one solution.

Proof: The proof is similar to the proof Theorem 3.1.

Remark 3.1. In contrast to Theorem 5 in ¥, | g,| bounded is not necessary; g, bounded above or g, bounded below is sufficient
whend = +oo.

Example 3.1. Consider the problem

(W ©IP () = —ylv' () —w

v (0)P~2v'(0) = —(v(0)) " and |v'(©)P~2v'(€) = (¥(£))?

+s,a.e.s € [0,¢&]

wherep = 2,y > 0,6 > 0and g >0. a(s) = % and B(s) = 0 are lower and upper solutions. Taking h(s) = sand ¥, = 9J; =
0, by Theorem 3.1, we deduce that the problem has at least one solution.
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Application to some nonlinear beam equations
In 2006, P. Pablo A. and Pedro Pablo Cardenas A. prove in [ that the problem

u”’(s) + h(s,u(s),u’(s)) = 0,0 < s < ¢,

W(0) = —1u(0)),w(T) = 1(u(é) (12)

with h: [0,€] X R? - R, and I: R —» R continuous, admits at least one solution, if h satisfies a Nagumo type condition and there
exists an ordered couple of a lower and an upper solution of (12). The following result gives us some existence results without
Nagumo type condition, when h is a L' —Carathéodory function and no ordering is assumed between the lower and upper
solutions.

Theorem 4.1. Suppose that:
a) Thereexistsg € L'(0,£) such that fora.e.s € [0,& ] and V(w,2) € R?,
h(s,w,z) = g(s) (resp h(s,w,z) < g(s)).
b) Thereexists 9, € Rsuchthat Vs € [0,&], I(s) = ¥ and (resp I(s) < 9).
c) The problem (12) admits a lower-solution a and an upper-solution 8.
Then the problem (12) admits at least one solution.
Proof: Application of Theorem 3.1. (resp Theorem 3.2.) with k = —h, [, = =1, [ = land ¢(x) = «x.

5. Existence result for problem (3) —(4).
In this section we study the problem (3) —(4), where ®: Dom(®) c R — R s continuous and strictly increasing on [a, b] €
Dom(®), Iy, ls: R — R are two continuous functions, and k: [0, T] x R?> - R a L' —Carathéodory function.

aifs<a
Letd:R - Rgivenby 8(s) =<{sifa<s<b
bifs>b

Definition 5.1. a € C(]0, £]) is a lower-solution of the problem (3) —(4) if: &'([0,¢]) € Dom(®), ®(a’) € AC([0,£]) and
(CD(a’(s)))’ > f(s,a(s),a’(s)),a.e.s € [0,¢],
dJ(a’(O)) > lo((x(O)) and CD(a’(f)) < lf(a(f)).

Definition 5.2. 8 € C1([0, £]) is an upper-solution of the problem (3) —(4) if: 8'([0,¢]) € Dom(®), ®(B") € AC([0,£]) and
(CD([?’(S)))’ < k(s,B(s),B'(s)),a.e.s € [0,€],

O(B'(0) < 1,(B(0)) and @(B'(5)) = 1:(B(D)).

Theorem 3.1. Assume that:

1. There exist a lower-solution a and an upper-solution g of (3) —(4) such thatVs € [0,Tl,a < a'(s) < b,a<pB'(s) <
band a(s) < B(s);

2. There exists g € L'(0,&) such that, for a.e. s € [0,¢], and all (w, z) with (s,w,z) € {(s,w,z) € [0,{] X R%,a(s) < w <
B(s),a <z < b}, k(s,w,z) < g(s);

I, + <®(b)and min Iz — > @(a).
0 ||g||L1(o,§) (b) (OB & ||g||L1(o,§) @

() A0
Then, the problem (3) —(4) admits at least one solution U, with
a(s) < U(s) <PB(s)anda < U'(s) < b,Vs €]0,€].

Proof: We have three possible cases: 0 € [a,b],a > 0 and b < 0.

Let 190 = [a(r[}}%)((o)] lo and 197' =

min_ I .
[a().B(5)]
Case 1: 0 € [a, b].

Let p € R be such that ®(0) + p = 0. Let @’ = max{|a|, |b|} + 1.
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¢(a)—\/ﬁ+\/ﬁ +pif —a'<s<a
Let A:] —a’,a’[-» Rgiven by A(s) = D(s) +pifa <s<b

k <D(b)+\/_ J— +pifb<s<a
A is an increasing homeomorphism such that A (0) = 0. Consider the functions
Go: R = Rand Gg: R - Rgiven by Go(s) = ly(s) + p and G¢(s) = l¢(s) + p.
We introduce the problem

(A(v’(s)))lz k(s,v(s),e(v’(s))),a.e.se[o,f]

13
A(' (0))=6o(v(0) AW (E)=G¢(w(£)), (13)

We have:

(A(a’(s)))’ = ((D(a’(s)))’ > k(s,a(s),a’(s)), a.e.s € [0,€];

A(@'(0)) = @(a'(0)) +p = Lo ((0)) + p = Go(a(0))
A(@'(§) = (@' (§) +p < L(a(®) +p = Ge(a(S)

and

(A(ﬁ’(s)))’ = (CD(ﬁ’(s))), < f(s,B(s),B'(s)),a.e.s € [0,€];

A(B'(0)) = @(B'(0)) +p < [,(B(0)) + p = Go(B(0))
AB'(§) = P(B'()) +p = L(B(T) +p = G:(B(E))

Hence « is a lower-solution and g an upper-solution of problem (13) such that v s € [0, &], a(s) < B(s). Using Theorem 2.1.,
there is at least one solution U, with a(s) < U(s) < B(s),V s € [0, &]. Therefore we have,

Vs [0,6LA0U') = Go(U®) + [ 1 (n V06U’ 0))ay
0
<Y +p+ [y h@)dy < 8 +p +lIgllicg < PO) +p,
and A(U'()) = 6r(U(©) = [Fk (3, U),6(U'))) ds
20 +p— ff h(y)dy =97 +p = llgll 2 0,6) = P(a) + p,
Hence, Vs € [0,¢],A(a) < A(U'(s)) < A(b). Moreover Vs € [0,é],a< U'(s) < b.
It follows that ¥ s € [0, ], A(U'(s)) = ®(U'(s)) + p and 8(U'(s)) = U’'(s), hence U is also a solution of problem (3) —(4).

Case2:a > 0.

Let g € R be such that ®(a) + g > 0. Leta’ = b + 1.

—a'<s<-b

(_ 1 +1— b(®(a)+q) if
Y a

@if—bgs<a

d(s)+qifas<s<b

1 : !
Cb(b)+\/T__s—1+qlfb<s<a

LetT:]—a’,a'[-» Rgiven by I'(s) =

I is an increasing homeomorphism such that I'(0) = 0. Consider the functions

Go: R = Rand Gg: R > Rgiven by Go(s) = lo(s) + q and G¢(s) = l:(s) + q.

~)~


https://www.mathsjournal.com/

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com

Consider the problem

(F(v’(s))),= k(s,v(s),e(v'(s))),a.e.se[o,f]

14
(v’ (0))=6o(v(0)). T (v (§))=G¢(W(£)), (14)

As in the proof of previous case, we can prove that « is a lower-solution and 8 an upper-solution of problem (14) such that vV s €
[0,€], a(s) < B(s). Using Theorem (2.1), there is at least one solution V, with a(s) < V(s) < B(s),Vs € [0, €].
We have,

Vs €[0,&,T(V'(s)) = Go(V(0)) + j k(y.v),6(V' (1)) dy
0
<0 +q + [y h@)dy < 0 +q + gl < @) +q

and T(V'(©) = 6r(V(©) - [k (y, V), H(V’(y))) dy

> 9 +q— [h(dy = % + 4~ lgllpes = P@) +4q,

Hence, Vs € [0,¢],T(a) < T(V'(s)) < T'(b). Moreover Vs € [0,¢],a < V'(s) <b.
It follows that v s € [0, &],T(V'(s)) = ®(V'(s)) + qand 8(V'(s)) = V'(s), hence V is also a solution of problem (3) —(4).

Case3: b <0.

Let r € R be suchthat ®(b) + r < 0. Leta’ = —a + 1.

®(a) — +1+rif —a'<s<a

1
va'+s
_ P(s)+rifas<s<bh
LetW:] —a’,a’'[-» Rgivenby ¥(s) = (d>(b;+r)s ifb<s<—a

1 _ g _aedis) if —a<s<a
!

a'-s b

Y is an increasing homeomorphism such that W¥(0) = 0. Consider the functions
Go: R = Rand Gg: R - Rgiven by Go(s) = ly(s) + 7 and Gz(s) = lz(s) + .

Consider the problem

(‘P(v’(s))), = k(s,v(s),@(v'(s))),a.e.s € [0,¢]

15
Y(v'(0) = Go(v(0)), ¥ (V' (§)) = Ge(v(E)), 4

As in the proof of the case 1, we can prove that a is a lower-solution and g an upper-solution of problem (15) such that Vs €
[0, €], a(s) < B(s). By Theorem (2.1), there is at least one solution W, with a(s) < W(s) < B(s),V s € [0, &]. We have:

Vs €[0,6, ¥(W'(s)) = Go(W(0)) + f k(v wm),6(W'()))dy
<Y +7+ [, h()dy <9+ 7+ llgllaogs < PD) +1,
and W(W'()) = Ge(W(D) - [* k (y, W), B(W’(y))) dy

> 9 +7— [ g)dy = 0 +7 = llglliee = @@ +r,

Hence, Vs € [0,¢], (@) < W(W'(s)) < W(b). Moreover Vs € [0,é],a<V'(s) <b.

It follows that V s € [0, &], W (W'(s)) = ®(W'(s)) + rand 6(W'(s)) = W'(s), hence W is also a solution of problem (3) —(4).
Theorem 5.2. Assume that:

1) There exist a lower-solution a and an upper-solution B of (3) —(4) such thatvVs € [0,é],a < a’'(s) < b,a<B'(s) <
band a(s) < B(s);

~)3~


https://www.mathsjournal.com/

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com

2) There exists g € L'(0,¢) such that, for a.e. s € [0,¢], and all (w, z) with (s,w,z) € {(s,w,2) € [0,¢] X R*,a(s) < u <
B(s),a < v < b}k(s,w,z) = g(s);

3 min I, — ||k >®(@)and max I+ |k < ®(b).
)« oyt T IMliop = *@and, g e+ Al < )

Then, the problem (3) —(4) admits at least one solution U, with
a(s) < U(s) <B(s)anda < U'(s) < b,Vs€]0,€].
Proof: The proof is similar to the proof of Theorem 5.1.

(sm(v (s))) |V (S)| +v(s) + a.e.s € [0,1]
sin(v'(0)) = (V(O)) and sin(v’ (1)) = —v(1)ev®

Example 5 .1. Consider the problem

It is easy to see that a(s) = —% and B(s) = 0 are respectively lower and upper solutions. Taking g(s) = §+ %\/E a= —% and

b= % from Theorem 5.1, we deduce the existence of a solution.

((v’(s))z) lv (S)| +v(s) — a. e.s € [0,1]
V'(0)? = 4(V(0))3 and ' (1))2 =|v(1)=3|+5

Example 5 .2. Consider the problem

It is easy to see that a(s) = 0 and B(s) = 2s + 1 are respectively lower and upper solutions. Taking g(s) =3 +-—, a = 0 and

\/_1
b = 3, from Theorem 5.1, we deduce the existence of a solution.
1 )’ 1 v(s) s
_(_ = - 4 —— a.e.s€[0,1]
. ! 1(s))? 36vs 12
Example 5 3. Consider the problem © , 24((v'©)"+1) ) )
() = 1V (1) =— 3
(v’(O)) =3¢ " and (v’(l)) =-v()+ 2
It is easy to see that a(s) = 3s — %and B(s) = 3s are respectively lower and upper solutions. Taking (s) = 12[, = %and

b =9, from Theorem 5.1, we deduce the existence of at least one solution.
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