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Abstract 
We study the second order differential equation  
 

(𝜙(𝑣′(𝑠)))′ =  𝑘(𝑠, 𝑣(𝑠), 𝑣′(𝑠)), 𝑎. 𝑒. 𝑠 ∈ [0, 𝜉] 
 

Submitted to nonlinear Neumann-Steklov boundary conditions on [0, 𝜉] where 𝑘: [0, 𝜉] × ℝ2 → ℝ a 

𝐿1 −Carathéodory function. 𝜙:ℝ → ℝ, is initially considered as an increasing homeomorphism such that 

𝜙(0) = 0. In a second step 𝜙 is considered as a continuous function on 𝐷𝑜𝑚(𝜙) ⊂ ℝ and strictly 

increasing on [𝑎, 𝑏] ⊂  𝐷𝑜𝑚(𝜙). We show the existence of at least one solution using some sign 
conditions and lower and upper solution method. No Nagumo-like growth condition for the dependence 

of 𝑓(𝑠, 𝑤, 𝑧) with respect to 𝑣 is required. 
 

Keywords: 𝜙 − Laplacian; 𝐿1 −Carathéodory function, nonlinear Neumann-Steklov problem, Leray-
Schauder degree, Brouwer degree, lower and upper solutions 

 
Introduction 
This paper aims to study the existence of solutions for the differential equation 
 

(𝜙(𝑣′(𝑠)))
′

=  𝑘(𝑡, 𝑣(𝑠), 𝑣′(𝑠)), 𝑎. 𝑒. 𝑠 ∈ [0, 𝜉]  (1) 

 
Subject to Neumann-Steklov type conditions 
 

𝜙(𝑣′(0)) = 𝑙0(𝑣(0)), 𝜙(𝑣′(𝜉)) = 𝑙𝜉(𝑣(𝜉)),  (2) 

 
Where: 

 𝑙0, 𝑙𝜉: ℝ → ℝ are continuous functions, 

 𝑘: [0, 𝜉] × ℝ2 → ℝ a 𝐿1 −Carathéodory function, 

 𝜙:ℝ → ℝ is either: 

 An increasing homeomorphism with 𝜙(0) = 0, or 

 A continuous function strictly increasing on [𝑎, 𝑏] ⊂  𝐷𝑜𝑚(𝜙). 
 
The study of equation (1) is a classical topic with significant applications, attracting extensive 

research. A 𝜙 − Laplacian operator is classified as: 

 Singular if 𝜙 has a finite domain (i.e., 𝜙: ] − 𝑑, 𝑑[→ ℝ, with 0 < 𝑑 <  +∞), 

 Regular otherwise. 
 
Recent work has explored both singular and regular operators. Notably, Cristian B. and Jean 
M. [1, 2] established existence and multiplicity results for (1) under various boundary 

conditions, where 𝜙 is an increasing homeomorphism on ] − 𝑑, 𝑑[ with (𝑑 >  0). 

In 2008, Cristian B. and Jean M. [3] studied (1) −(2) with:
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 𝜙: ] − 𝑑, 𝑑[→ ℝ (𝑑 ∈ ]0, +∞]) an increasing homeomorphism satisfying 𝜙(0) = 0, 

 𝑘: [0, 𝜉] × ℝ × ℝ → ℝ continuous. 

 

Their key findings include: 

1) For 𝑑 <  +∞, problem (1) −(2) admits at least one solution under Villari-type sign conditions on 𝑘, 𝑙0, 𝑙𝜉  [4]. 

2) For 𝑑 <  +∞, existence is guaranteed if lower and upper solutions exist (ordered or not). 

3) For 𝑑 =  +∞, a solution exists when |𝑙0| is bounded, 𝑙𝜉 is bounded above and 𝑘(𝑠, 𝑢, 𝑣)  ≤  𝜏(𝑠) for some 𝜏 ∈  𝐶([0, 𝜉]). 

 

In 2015 and 2017, Eienne G. and Assohoun A. [5, 6] extended somes results of Cristian B. and Jean M. to 𝐿1 −Carathéodory 

function 𝑘. 

The paper is structured as follows: 

In section 2, we some preliminary. In section 3, we prove that the problem (1) −(2) admits at least one solution when 𝑙0 is 

bounded from below, 𝑙𝜉 is bounded from above and there exists 𝜏 ∈  𝐿1(0, 𝜉) such that 𝑘(𝑠, 𝑢, 𝑣)  ≥  𝜏(𝑠) for a.e. 𝑠 ∈  [0, 𝜉] and 

∀(𝑢, 𝑣) ∈  ℝ2 or when 𝑙0 is bounded from above, 𝑙𝜉 is bounded from below and there exists 𝜏 ∈  𝐿1(0, 𝜉) satisfying 

𝑓(𝑠, 𝑢, 𝑣) ≤ 𝜏(𝑠) for a.e. 𝑠 ∈  [0, 𝜉] and ∀(𝑢, 𝑣) ∈  ℝ2. After that, in section 4 we apply section 3’s results to nonlinear beam 

equations. Finally, in section 5, we extend the study to the generalized problem 

 

(Φ(𝑣′(𝑠)))
′

=  𝑘(𝑠, 𝑣(𝑠), 𝑣′(𝑠)), 𝑎. 𝑒. 𝑠 ∈ [0, 𝜉]  (3) 

 

Φ(𝑣′(0)) = 𝑙0(𝑣(0)),Φ(𝑣
′(𝜉)) = 𝑙𝜉(𝑣(𝜉))  (4) 

 

where Φ: 𝐷𝑜𝑚(Φ) ⊂ ℝ → ℝ is continuous and strictly increasing on [𝑎, 𝑏] ⊂  𝐷𝑜𝑚(Φ), 
𝑙0, 𝑙𝜉: ℝ → ℝ are two continuous functions and 𝑘: [0, 𝜉] × ℝ × ℝ → ℝ a 𝐿1 −Carathéodory function. 

 

Preliminary 

Definition 2.1. 𝑘: [0, 𝜉] × ℝ × ℝ → ℝ is a 𝐿1 −Carathéodory function if: 

1. 𝑘(. , 𝑤, 𝑧): [0, 𝜉]  → ℝ is measurable for all (𝑤, 𝑧)  ∈ ℝ2; 
2. 𝑘(𝑠, . , . ): ℝ × ℝ → ℝ is continuous for 𝑎. 𝑒. 𝑠 ∈  [0, 𝜉]; 
3. For each compact set 𝐴 ⊂ ℝ2 there is a function 𝜂𝐴  ∈  𝐿

1(0, 𝜉) such that |𝑓(𝑠, 𝑤, 𝑧)|  ≤  𝜂𝐴 for 𝑎. 𝑒. 𝑠 ∈ [0, 𝜉] and all 

(𝑤, 𝑧)  ∈  𝐴. 

 

Let us consider the problem 

 

(𝜙(𝑣′(𝑠)))
′
= 𝑘(𝑠,𝑣(𝑠),𝑣′(𝑠)),𝑎.𝑒.𝑡∈[0,𝜉] 

𝜙(𝑣′(0))=𝑙0(𝑣(0)),𝜙(𝑣
′(𝜉))=𝑙𝜉(𝑣(𝜉)),

 (3) 

 

with 𝑘: [0, 𝑇] × ℝ × ℝ → ℝ is a 𝐿1 −Carathéodory function, 𝑙0, 𝑙𝜉: ℝ → ℝ are two continuous functions and 𝜙: ] − 𝑑, 𝑑[→ ℝ (𝑑 ∈

]0, +∞[), an increasing homeomorphism such that 𝜙(0) = 0. 

 

Definition 2.2. 𝑣 ∈ 𝐶1([0, 𝜉]) is a solution of problem (5) if 𝜙(𝑣′) ∈  𝐴𝐶([0, 𝜉]), ||𝑢′||∞ < 𝑑 and 𝑣 satisfies (5). 𝐴𝐶([0, 𝜉]) is the 

set of absolutely continuous functions on [0, 𝜉]. 
 

Definition 2.3. A lower-solution of the problem (5) is a function 𝛼 ∈ 𝐶1([0, 𝜉]) such that 

 

||𝛼′||∞ < 𝑑, 𝜙(𝛼′) ∈  𝐴𝐶([0, 𝜉]) and 

 

(𝜙(𝛼′(𝑠)))
′

≥  𝑘(𝑠, 𝛼(𝑠), 𝛼′(𝑠)), 𝑎. 𝑒. 𝑠 ∈ [0, 𝜉], 

 

𝜙(𝛼′(0)) ≥ 𝑙0(𝛼(0)) 𝑎𝑛𝑑 𝜙(𝛼
′(𝜉)) ≤ 𝑙𝜉(𝛼(𝜉)). 

 

Definition 2.4. A lower-solution of the problem (5) is a function 𝛽 ∈ 𝐶1([0, 𝜉]) such that 

 

||𝛽′||∞ < 𝑑, 𝜙(𝛽′) ∈  𝐴𝐶([0, 𝜉]) and 

 

(𝜙(𝛽′(𝑠)))
′

≤  𝑘(𝑠, 𝛽(𝑠), 𝛽′(𝑠)), 𝑎. 𝑒. 𝑠 ∈ [0, 𝜉], 

 

𝜙(𝛽′(0)) ≤ 𝑙0(𝛽(0)) 𝑎𝑛𝑑 𝜙(𝛽
′(𝜉)) ≥ 𝑙𝜉(𝛽(𝜉)). 

 

Theorem 2.1. The existence of a lower solution α and an upper solution β for (5) implies that the problem (5) has at least one 

solution. 
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Proof. See [5] and [6]. 

Theorem 2.2. The existence of a lower-solution 𝛼 and an upper-solution 𝛽 of (5) such that ∀ 𝑠 ∈  [0, 𝜉], 𝛼(𝑠) ≤  𝛽(𝑠), implies 

that the problem (5) admits at least one solution 𝑢 such that ∀ 𝑠 ∈  [0, 𝜉], 𝛼(𝑠) ≤ 𝑢(𝑠) ≤  𝛽(𝑠). 
 

Proof. See [5] and [6]. 

 

Existence result 

To prove an analogous result for d = +∞, we will apply Theorem 2.1. With this goal in mind, let us consider the problem 

 

(𝜙(𝑣′(𝑠)))
′
= 𝑘(𝑡,𝑣(𝑠),𝑣′(𝑠)),𝑎.𝑒.𝑠∈[0,𝜉] 

𝜙(𝑣′(0))=𝑙0(𝑣(0)),𝜙(𝑣′(𝜉))=𝑙𝜉(𝑣(𝜉)),
  (10) 

 

Where k: [0, 𝜉] × ℝ × ℝ → ℝ is a 𝐿1 −Carathéodory function, 𝑙0, 𝑙𝜉: ℝ → ℝ are two continuous functions and 𝜙:ℝ → ℝ, an 

increasing homeomorphism such that 𝜙(0) = 0. 

 

Definition 3.1. 𝑢 ∈ 𝐶1([0, 𝜉]) is a solution of problem (10) if 𝜙(𝑢′) ∈  𝐴𝐶([0, 𝜉]) and satisfies (10). 

We need the following results. 

 

Lemma 3.1. Suppose that: 

a) There exists 𝑔 ∈  𝐿1(0, 𝜉) such that 𝑘(𝑠, 𝑤, 𝑧) ≤𝑔(𝑠) for a.e. 𝑠 ∈  [0, 𝜉 ] and ∀(𝑤, 𝑧) ∈  ℝ2. 

b) There exists (𝜗0, 𝜗𝜉) ∈  ℝ
2 such that ∀𝑠 ∈ [0, 𝑇], 𝑙0(𝑠) ≤ 𝜗0 and 𝑙𝜉(𝑠) ≥  𝜗𝜉. 

 

If 𝑣 is a solution of (10), then ||𝑣′||∞ ≤ 𝑒 where 

 

𝑒 = max{|𝜙−1[−(max{|𝜗0|, |𝜗𝜉|} + ||𝑔||𝐿1(0,𝜉))]|, |𝜙
−1[max{|𝜗0|, |𝜗𝜉|} + ||𝑔||𝐿1(0,𝜉)] |}. 

 

Proof. Let 𝑢 be a solution of (10). Then we have: ∀𝑠 ∈  [0, 𝜉], 
 

𝜙(𝑣′(𝑠)) = 𝜙(𝑣′(0)) + ∫ 𝑘(𝑧, 𝑣(𝑧), 𝑣′(𝑧))𝑑𝑧
𝑠

0

 = 𝑙0(v(0)) + ∫ 𝑘(𝑧, 𝑣(𝑧), 𝑣′(𝑧))𝑑𝑧
𝑠

0

≤ 𝜗0 +∫ 𝑔(𝑧)𝑑𝑧
𝑠

0

 

 

 

and 

 

𝜙(𝑣′(𝑡)) = 𝜙(𝑣′(𝜉)) − ∫ 𝑘(𝑧, 𝑣(𝑧), 𝑣′(𝑧))𝑑𝑧
𝜉

𝑠

 = 𝑙𝜉(v(𝜉)) + ∫ 𝑘(𝑧, 𝑣(𝑧), 𝑣′(𝑧))𝑑𝑧
𝜉

𝑠

≥ 𝜗𝜉 −∫ 𝑔(𝑧)𝑑𝑧
𝜉

𝑠

 

 

 

Hence, ∀𝑠 ∈  [0, 𝜉 ], 𝜗𝜉 − ∫ 𝑔(𝑧)𝑑𝑧
𝜉

𝑠
≤ 𝜙(𝑣′(𝑠)) ≤  𝜗0 + ∫ 𝑔(𝑧)𝑑𝑧

𝑠

0
. 

Moreover ∀𝑠 ∈  [0, 𝜉 ], 
 

|𝜙(𝑣′(𝑠))|  ≤ max {|𝜗0| + ||𝑔||𝐿1(0,𝜉), |𝜗𝜉| + |
|𝑔||

𝐿1(0,𝜉)
}. 

 

max {|𝜗0| + ||𝑔||𝐿1(0,𝜉), |𝜗𝜉| + |
|𝑔||

𝐿1(0,𝜉)
} = max{|𝜗0|, |𝜗𝜉|} + ||𝑔||𝐿1(0,𝜉) 

 

It follows that ∀𝑡 ∈  [0, 𝜉], 
 

|𝑣′(𝑡)| ≤ max{|𝜙−1[−(max{|𝜗0|, |𝜗𝜉|} + ||𝑔||𝐿1(0,𝜉))]|, |𝜙
−1[max{|𝜗0|, |𝜗𝜉|} +  ||𝑔||𝐿1(0,𝜉)]|} = 𝑒. 

 

Lemma 3.2. Suppose that: 

a) There exists 𝑔 ∈  𝐿1(0, 𝜉) such that 𝑘(𝑠, 𝑤, 𝑧)  ≥  𝑔(𝑠) for a.e. 𝑠 ∈  [0, 𝜉 ] and 

 

∀(𝑤, 𝑧) ∈  ℝ2. 

https://www.mathsjournal.com/
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b) There exists (𝜗0, 𝜗𝜉) ∈  ℝ
2 such that ∀𝑠 ∈ [0, 𝜉], 𝑙0(𝑠) ≥ 𝜗0 and 𝑙𝜉(𝑠) ≤  𝜗𝜉. 

 

If 𝑣 is a solution of (10), then ||𝑣′||∞ ≤ 𝑒, where 

 

𝑒 = max{|𝜙−1[−(max{|𝜗0|, |𝜗𝜉|} + ||𝑔||𝐿1(0,𝜉))]|, |𝜙
−1[max{|𝜗0|, |𝜗𝜉|} + ||𝑔||𝐿1(0,𝜉)] |}. 

 

Proof: One can prove this by adapting the proof of Lemma 3.1 

 

Definition 3.2. 𝛼 ∈ 𝐶1([0, 𝜉]) is a lower-solution of the problem (5) if 𝜙(𝛼′) ∈  𝐴𝐶([0, 𝜉]) and 

 

(𝜙(𝛼′(𝑠)))
′

≥  𝑘(𝑠, 𝛼(𝑠), 𝛼′(𝑠)), 𝑎. 𝑒. 𝑠 ∈ [0, 𝜉], 

 

𝜙(𝛼′(0)) ≥ 𝑙0(𝛼(0)) 𝑎𝑛𝑑 𝜙(𝛼
′(𝜉)) ≤ 𝑙𝜉(𝛼(𝜉)). 

 

Definition 3.3. 𝛽 ∈ 𝐶1([0, 𝜉]) is an upper-solution of the problem (5) if 𝜙(𝛽′) ∈  𝐴𝐶([0, 𝜉]) and 

 

(𝜙(𝛽′(𝑠)))
′

≤  𝑘(𝑠, 𝛽(𝑠), 𝛽′(𝑠)), 𝑎. 𝑒. 𝑠 ∈ [0, 𝜉], 

 

𝜙(𝛽′(0)) ≤ 𝑙0(𝛽(0)) 𝑎𝑛𝑑 𝜙(𝛽
′(𝜉)) ≥ 𝑙𝜉(𝛽(𝜉)). 

 

Theorem 3.1. Suppose that: 

a) There exists 𝑔 ∈  𝐿1(0, 𝜉) such that 𝑘(𝑠, 𝑤, 𝑧) ≤ 𝑔(𝑠) for a.e. 𝑠 ∈  [0, 𝜉 ] and ∀(𝑤, 𝑧) ∈  ℝ2. 

b) There exists (𝜗0, 𝜗𝜉) ∈  ℝ
2 such that ∀𝑠 ∈ [0, 𝜉], 𝑙0(𝑠) ≤ 𝜗0 and 𝑙𝜉(𝑠) ≥  𝜗𝜉. 

c) The problem (10) admits a lower-solution 𝛼 and an upper-solution 𝛽. 

 

It follows that problem (10) has at least one solution. 

 

Proof: Let 

𝑒 = max{|𝜙−1[−(max{|𝜗0|, |𝜗𝜉|} + ‖𝑔‖𝐿1(0,𝑇))]|, |𝜙
−1[max{|𝜗0|, |𝜗𝜉|} + ||𝑔||𝐿1(0,𝑇)]|}, 𝑑

′ = max{‖𝛼′‖∞, ‖𝛽
′‖∞, 𝑒}  +  1 and 

𝑑 =  𝑑′ +  1. 

Let Υ: ] − 𝑑, 𝑑[→ ℝ be an increasing homeomorphism such that 𝜙 =  Υ on [−𝑑′, 𝑑′]. It is clear that 𝛼 and 𝛽 are respectively 

lower-solution and upper-solution of problem 

 

(Υ(𝑣′(𝑠)))
′
=𝑘(𝑠,𝑣(𝑠),𝑣′(𝑠)),𝑎.𝑒.𝑠∈[0,𝜉] 

Υ(𝑣′(0))=𝑙0(𝑣(0)),Υ(𝑣′(𝜉))=𝑙𝜉(𝑣(𝜉)),
  (11) 

 

Then, using Theorem 2.2. we deduce that the problem (11) has a solution 𝑢 which is also a solution of problem (10) by Lemma 

3.1. 

 

Theorem 3.2. Suppose that: 

a) There exists 𝑔 ∈  𝐿1(0, 𝜉) such that 𝑘(𝑠,𝑤, 𝑧) ≥ 𝑔(𝑠) for a.e. 𝑠 ∈ [0, 𝜉 ] and ∀(𝑤, 𝑧) ∈ ℝ2. 

b) There exists (𝜗0, 𝜗𝜉) ∈  ℝ
2 such that ∀𝑠 ∈ [0, 𝜉], 𝑙0(𝑠) ≥ 𝜗0 and 𝑙𝜉(𝑠) ≤ 𝜗𝜉. 

c) The problem (10) admits a lower-solution 𝛼 and an upper-solution 𝛽. 

 

It follows that problem (10) has at least one solution. 

 

Proof: The proof is similar to the proof Theorem 3.1. 

 

Remark 3.1. In contrast to Theorem 5 in [3], |𝑔0| bounded is not necessary; 𝑔0 bounded above or 𝑔0 bounded below is sufficient 

when 𝑑 = +∞. 

 

Example 3.1. Consider the problem 

 

(|𝑣′(𝑠)|𝑝−2𝑣′(𝑠))
′
= −𝛾|𝑣′(𝑠)|𝑞 −

𝛿𝑚𝑎𝑥{0, 𝑣(𝑠)}

√𝑡
+ 𝑠, 𝑎. 𝑒. 𝑠 ∈  [0, 𝜉 ]

|𝑣′(0)|𝑝−2𝑣′(0) = −(𝑣(0))
2
𝑎𝑛𝑑 |𝑣′(𝜉)|𝑝−2𝑣′(𝜉) = (𝑣(𝜉))2

 

 

where 𝑝 ≥  2, γ > 0, δ > 0 and 𝑞 >0. 𝛼(𝑠) =
𝜉√𝜉

δ
 and 𝛽(𝑠)  =  0 are lower and upper solutions. Taking ℎ(𝑠) = 𝑠 and 𝜗0  = 𝜗𝜉 =

0, by Theorem 3.1, we deduce that the problem has at least one solution. 
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Application to some nonlinear beam equations 

In 2006, P. Pablo A. and Pedro Pablo Cardenas A. prove in [7] that the problem 

 

u′′(s) +  h(s, u(s), u′(s))  =  0, 0 <  s <  𝜉,

u′(0)  =  −l(u(0)), u′(T)  =  l(u(𝜉))
 (12) 

 

with ℎ: [0, 𝜉] × ℝ2 → ℝ, and l: ℝ → ℝ continuous, admits at least one solution, if ℎ satisfies a Nagumo type condition and there 

exists an ordered couple of a lower and an upper solution of (12). The following result gives us some existence results without 

Nagumo type condition, when ℎ is a 𝐿1 −Carathéodory function and no ordering is assumed between the lower and upper 

solutions. 

 

Theorem 4.1. Suppose that: 

a) There exists 𝑔 ∈  𝐿1(0, 𝜉) such that for a.e. 𝑠 ∈  [0, 𝜉 ] and ∀(𝑤, 𝑧) ∈  ℝ2, 

ℎ(𝑠, 𝑤, 𝑧) ≥  𝑔(𝑠) (𝑟𝑒𝑠𝑝 ℎ(𝑠, 𝑤, 𝑧) ≤  𝑔(𝑠)) . 
b) There exists 𝜗, ∈  ℝ such that ∀𝑠 ∈ [0, 𝜉], 𝑙(𝑠) ≥ 𝜗 and (resp 𝑙(𝑠) ≤  𝜗). 
c) The problem (12) admits a lower-solution 𝛼 and an upper-solution 𝛽. 

 

Then the problem (12) admits at least one solution. 

 

Proof: Application of Theorem 3.1. (resp Theorem 3.2.) with 𝑘 = −ℎ, 𝑙0 = −𝑙, 𝑙𝜉 = 𝑙 and 𝜙(𝑥)  =  𝑥. 

 

5. Existence result for problem (3) −(4). 

In this section we study the problem (3) −(4), where Φ: 𝐷𝑜𝑚(Φ) ⊂ ℝ → ℝ is continuous and strictly increasing on [𝑎, 𝑏] ⊂
 𝐷𝑜𝑚(Φ), 𝑙0, 𝑙𝜉: ℝ → ℝ are two continuous functions, and 𝑘: [0, 𝑇] × ℝ2 → ℝ a 𝐿1 −Carathéodory function. 

 

Let 𝜃:ℝ → ℝ given by 𝜃(𝑠) = {

𝑎 𝑖𝑓 𝑠 < 𝑎 
𝑠 𝑖𝑓 𝑎 ≤ 𝑠 ≤ 𝑏
𝑏 𝑖𝑓 𝑠 > 𝑏

 

 

Definition 5.1. 𝛼 ∈ 𝐶1([0, 𝜉]) is a lower-solution of the problem (3) −(4) if: 𝛼′([0, 𝜉]) ⊂  𝐷𝑜𝑚(Φ), Φ(𝛼′) ∈  𝐴𝐶([0, 𝜉]) and 

 

(Φ(𝛼′(𝑠)))
′

≥  𝑓(𝑠, 𝛼(𝑠), 𝛼′(𝑠)), 𝑎. 𝑒. 𝑠 ∈ [0, 𝜉], 

 

Φ(𝛼′(0)) ≥ 𝑙0(𝛼(0)) 𝑎𝑛𝑑 Φ(𝛼
′(𝜉)) ≤ 𝑙𝜉(𝛼(𝜉)). 

 

Definition 5.2. 𝛽 ∈ 𝐶1([0, 𝜉]) is an upper-solution of the problem (3) −(4) if: 𝛽′([0, 𝜉]) ⊂  𝐷𝑜𝑚(Φ), Φ(𝛽′) ∈  𝐴𝐶([0, 𝜉]) and 

 

(Φ(𝛽′(𝑠)))
′

≤  𝑘(𝑠, 𝛽(𝑠), 𝛽′(𝑠)), 𝑎. 𝑒. 𝑠 ∈ [0, 𝜉], 

 

Φ(𝛽′(0)) ≤ 𝑙0(𝛽(0)) 𝑎𝑛𝑑 Φ(𝛽
′(𝜉)) ≥ 𝑙𝜉(𝛽(𝜉)). 

 

Theorem 3.1. Assume that: 

1. There exist a lower-solution 𝛼 and an upper-solution 𝛽 of (3) −(4) such that ∀ 𝑠 ∈  [0, 𝑇], 𝑎 ≤ 𝛼′(𝑠) ≤  𝑏, 𝑎 ≤ 𝛽′(𝑠) ≤
 𝑏 𝑎𝑛𝑑 𝛼(𝑠) ≤  𝛽(𝑠); 

2. There exists 𝑔 ∈  𝐿1(0, 𝜉) such that, for a.e. 𝑠 ∈  [0, 𝜉], and all (𝑤, 𝑧) with (𝑠, 𝑤, 𝑧) ∈ {(𝑠, 𝑤, 𝑧) ∈ [0, 𝜉] × ℝ2, 𝛼(𝑠) ≤  𝑤 ≤
 𝛽(𝑠), 𝑎 ≤ 𝑧 ≤  𝑏}, 𝑘(𝑠, 𝑤, 𝑧) ≤  𝑔(𝑠); 

3. max
[𝛼(0),𝛽(0)]

𝑙0  + ‖𝑔‖𝐿1(0,𝜉) ≤ Φ(b) and min
[𝛼(𝜉),𝛽(𝜉)]

𝑙𝜉 − ‖𝑔‖𝐿1(0,𝜉) ≥ Φ(a). 

 

Then, the problem (3) −(4) admits at least one solution 𝑈, with 

 

𝛼(𝑠) ≤  𝑈(𝑠) ≤ 𝛽(𝑠) 𝑎𝑛𝑑 𝑎 ≤  𝑈′(𝑠) ≤  𝑏, ∀ 𝑠 ∈ [0, 𝜉]. 
 

Proof: We have three possible cases: 0 ∈ [𝑎, 𝑏], 𝑎 > 0 and 𝑏 < 0. 

 

Let 𝜗0 = max
[𝛼(0),𝛽(0)]

𝑙0  and 𝜗𝑇 = min
[𝛼(𝜉),𝛽(𝜉)]

𝑙𝜉  . 

 

Case 1: 0 ∈ [𝑎, 𝑏]. 
 

Let 𝑝 ∈ ℝ be such that Φ(0) + 𝑝 = 0. Let 𝑎′ = max{|𝑎|, |𝑏|} + 1. 

https://www.mathsjournal.com/


 

~22~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

Let Λ: ] − a′, a′[→ ℝ given by Λ(𝑠) =

{
 
 

 
 Φ(a) −

1

√a′+s
+

1

√a′+a
 + p 𝑖𝑓 − a′ < s < a 

Φ(s) + 𝑝 𝑖𝑓 𝑎 ≤ 𝑠 ≤ 𝑏

Φ(b) +
1

√a′−s
−

1

√a′−b
 + p 𝑖𝑓 b < s < a′

 

 

Λ is an increasing homeomorphism such that Λ (0)  =  0. Consider the functions 

 

𝐺0: ℝ → ℝ 𝑎𝑛𝑑 𝐺𝜉: ℝ → ℝ given by 𝐺0(𝑠) = 𝑙0(𝑠) + 𝑝 𝑎𝑛𝑑 𝐺𝜉(𝑠) = 𝑙𝜉(𝑠) + 𝑝. 

 

We introduce the problem 

 

(Λ(𝑣′(𝑠)))
′
= 𝑘(𝑠,𝑣(𝑠),𝜃(𝑣′(𝑠))),𝑎.𝑒.𝑠∈[0,𝜉] 

Λ(𝑣′(0))=𝐺0(𝑣(0)),Λ(𝑣′(𝜉))=𝐺𝜉(𝑣(𝜉)),
  (13) 

 

We have: 

 

(Λ(𝛼′(s)))
′

= (Φ(𝛼′(s)))
′

≥ k(s, 𝛼(s), 𝛼′(s)), a. e. s ∈  [0, 𝜉]; 

Λ(𝛼′(0)) = Φ(𝛼′(0)) + p ≥ 𝑙0(𝛼(0)) + p = 𝐺0(𝛼(0))

Λ(𝛼′(𝜉)) = Φ(𝛼′(𝜉)) + p ≤ 𝑙𝜉(𝛼(𝜉)) + p = 𝐺𝜉(𝛼(𝜉))

 

 

and  

 

(Λ(𝛽′(s)))
′

= (Φ(𝛽′(s)))
′

≤ f(s, 𝛽(s), 𝛽′(s)), a. e. s ∈  [0, 𝜉]; 

Λ(𝛽′(0)) = Φ(𝛽′(0)) + p ≤ 𝑙0(𝛽(0)) + p = 𝐺0(𝛽(0))

Λ(𝛽′(𝜉)) = Φ(𝛽′(𝜉)) + p ≥ 𝑙𝜉(𝛽(T)) + p = 𝐺𝜉(𝛽(𝜉))

. 

 

Hence 𝛼 is a lower-solution and 𝛽 an upper-solution of problem (13) such that ∀ 𝑠 ∈ [0, 𝜉], 𝛼(𝑠) ≤  𝛽(𝑠). Using Theorem 2.1., 

there is at least one solution 𝑈, with 𝛼(𝑠) ≤  𝑈(𝑠) ≤ 𝛽(𝑠), ∀ 𝑠 ∈ [0, 𝜉]. Therefore we have, 

 

∀ 𝑠 ∈ [0, 𝜉], Λ(𝑈′(𝑠)) = 𝐺0(𝑈(0)) + ∫ 𝑓 (𝑦, 𝑈(𝑦), 𝜃(𝑈′(𝑦))) 𝑑𝑦
𝑠

0

 

 

≤ 𝜗0 + 𝑝 + ∫ h(y)dy
𝑠

0
≤ 𝜗0 + 𝑝 + ‖𝑔‖𝐿1(0,𝜉) ≤ Φ(b) + p, 

 

and Λ(𝑈′(𝑠)) = 𝐺𝑇(𝑈(𝜉)) − ∫ 𝑘 (𝑦, 𝑈(𝑦), 𝜃(𝑈′(𝑦))) 𝑑𝑠
𝜉

𝑠
 

 

≥ 𝜗𝜉 + 𝑝 − ∫ h(y)dy
𝜉

𝑠
≥ 𝜗𝑇 + 𝑝 − ‖𝑔‖𝐿1(0,𝜉) ≥ Φ(a) + p, 

 

Hence, ∀𝑠 ∈ [0, 𝜉], Λ(a) ≤ Λ(U′(s)) ≤ Λ(b). Moreover ∀ 𝑠 ∈ [0, 𝜉], a ≤ U′(s) ≤ b. 

 

It follows that ∀ 𝑠 ∈ [0, 𝜉], Λ(U′(s)) = Φ(U′(s)) + p and 𝜃(𝑈′(𝑠)) = 𝑈′(𝑠), hence 𝑈 is also a solution of problem (3) −(4). 

 

Case 2: 𝑎 > 0. 

 

Let 𝑞 ∈ ℝ be such that Φ(𝑎) + 𝑞 > 0. Let 𝑎′ = 𝑏 + 1. 

 

Let Γ: ] − a′, a′[→ ℝ given by Γ(𝑠) =

{
 
 

 
 −

1

√a′+s
+ 1 −

b(Φ(a)+q)

𝑎
 if − a′ < s < −b

(Φ(a)+q)𝑠

𝑎
 if − b ≤ s < a

Φ(s) + 𝑞 𝑖𝑓 𝑎 ≤ 𝑠 ≤ 𝑏

Φ(b) +
1

√a′−s
− 1 + q 𝑖𝑓 b < s < a′

 . 

 

Γ is an increasing homeomorphism such that Γ(0)  =  0. Consider the functions 

 

𝐺0: ℝ → ℝ 𝑎𝑛𝑑 𝐺𝜉: ℝ → ℝ given by 𝐺0(𝑠) = 𝑙0(𝑠) + 𝑞 𝑎𝑛𝑑 𝐺𝜉(𝑠) = 𝑙𝜉(𝑠) + 𝑞. 
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Consider the problem 

 

(Γ(𝑣′(𝑠)))
′
= 𝑘(𝑠,𝑣(𝑠),𝜃(𝑣′(𝑠))),𝑎.𝑒.𝑠∈[0,𝜉] 

Γ(𝑣′(0))=𝐺0(𝑣(0)),Γ(𝑣′(𝜉))=𝐺𝜉(𝑣(𝜉)),
  (14) 

 

As in the proof of previous case, we can prove that 𝛼 is a lower-solution and 𝛽 an upper-solution of problem (14) such that ∀ 𝑠 ∈
 [0, 𝜉], 𝛼(𝑠) ≤  𝛽(𝑠). Using Theorem (2.1), there is at least one solution 𝑉, with 𝛼(𝑠) ≤  𝑉(𝑠) ≤ 𝛽(𝑠), ∀𝑠 ∈ [0, 𝜉]. 
We have, 

 

∀ 𝑠 ∈ [0, 𝜉], Γ(𝑉′(𝑠)) = 𝐺0(𝑉(0)) + ∫ 𝑘 (𝑦, 𝑉(𝑦), 𝜃(𝑉′(𝑦))) 𝑑𝑦
𝑠

0

 

 

≤ 𝜗0 + 𝑞 + ∫ h(y)dy
𝑠

0
≤ 𝜗0 + 𝑞 + ‖𝑔‖𝐿1(0,𝑇) ≤ Φ(b) + q, 

 

and Γ(𝑉′(𝑡)) = 𝐺𝑇(𝑉(𝜉)) − ∫ 𝑘 (𝑦, 𝑉(𝑦), 𝜃(𝑉′(𝑦))) 𝑑𝑦
𝜉

𝑠
 

 

≥ 𝜗𝜉 + 𝑞 − ∫ h(y)dy
𝜉

𝑠
≥ 𝜗𝜉 + 𝑞 − ‖𝑔‖𝐿1(0,𝜉) ≥ Φ(a) + q, 

 

Hence, ∀ 𝑠 ∈ [0, 𝜉], Γ(a) ≤ Γ(V′(s)) ≤ Γ(b). Moreover ∀ 𝑠 ∈ [0, 𝜉], a ≤ V′(s) ≤ b. 

It follows that ∀ 𝑠 ∈ [0, 𝜉], Γ(V′(s)) = Φ(V′(s)) + q and 𝜃(𝑉′(𝑠)) = 𝑉′(𝑠), hence 𝑉 is also a solution of problem (3) −(4). 

 

Case 3: 𝑏 < 0. 

 

Let 𝑟 ∈ ℝ be such that Φ(𝑏) + 𝑟 < 0. Let 𝑎′ = −𝑎 + 1. 

 

Let Ψ: ] − a′, a′[→ ℝ given by Ψ(𝑠) =

{
 
 

 
 Φ(a) −

1

√a′+s
+ 1 + 𝑟 if − a′ < s < a

Φ(s) + 𝑟 𝑖𝑓 𝑎 ≤ 𝑠 ≤ 𝑏

 
(Φ(b)+r)𝑠

𝑏
 𝑖𝑓 𝑏 ≤ 𝑠 < −𝑎

1

√a′−s
− 1 −

a(Φ(b)+s)

𝑏
 𝑖𝑓 − a < s < a′

 . 

 

Ψ is an increasing homeomorphism such that Ψ(0)  =  0. Consider the functions 

 

𝐺0: ℝ → ℝ 𝑎𝑛𝑑 𝐺𝜉: ℝ → ℝ given by 𝐺0(𝑠) = 𝑙0(𝑠) + 𝑟 𝑎𝑛𝑑 𝐺𝜉(𝑠) = 𝑙𝜉(𝑠) + 𝑟. 

 

Consider the problem 

 

(Ψ(𝑣′(𝑠)))
′
=  𝑘 (𝑠, 𝑣(𝑠), 𝜃(𝑣′(𝑠))) , 𝑎. 𝑒. 𝑠 ∈ [0, 𝜉] 

Ψ(𝑣′(0)) = 𝐺0(𝑣(0)), Ψ(𝑣′(𝜉)) = 𝐺𝜉(𝑣(𝜉)),
 (15) 

 

As in the proof of the case 1, we can prove that 𝛼 is a lower-solution and 𝛽 an upper-solution of problem (15) such that ∀𝑠 ∈
[0, 𝜉], 𝛼(𝑠) ≤  𝛽(𝑠). By Theorem (2.1), there is at least one solution W, with 𝛼(𝑠) ≤  W(𝑠) ≤ 𝛽(𝑠), ∀ 𝑠 ∈ [0, 𝜉]. We have: 

 

∀ 𝑠 ∈ [0, 𝜉], Ψ(𝑊′(𝑠)) = 𝐺0(𝑊(0)) + ∫ 𝑘 (𝑦,𝑊(𝑦), 𝜃(𝑊′(𝑦))) 𝑑𝑦
𝑠

0

 

 

≤ 𝜗0 + 𝑟 + ∫ h(y)dy
𝑠

0
≤ 𝜗0 + 𝑟 + ‖𝑔‖𝐿1(0,𝜉) ≤ Φ(b) + r, 

 

and Ψ(𝑊′(𝑠)) = 𝐺𝜉(𝑊(𝑇)) − ∫ 𝑘 (𝑦,𝑊(𝑦), 𝜃(𝑊′(𝑦))) 𝑑𝑦
𝜉

𝑠
 

 

≥ 𝜗𝑇 + 𝑟 − ∫ g(y)dy
𝜉

𝑠
≥ 𝜗𝑇 + 𝑟 − ‖𝑔‖𝐿1(0,𝜉) ≥ Φ(a) + r, 

 

Hence, ∀ 𝑠 ∈ [0, 𝜉], Ψ(a) ≤ Ψ(𝑊′(s)) ≤ Ψ(b). Moreover ∀ 𝑠 ∈ [0, 𝜉], a ≤ V′(s) ≤ b. 

 

It follows that ∀ 𝑠 ∈ [0, 𝜉], Ψ(𝑊′(s)) = Φ(𝑊′(s)) + r and 𝜃(𝑊′(𝑠)) = 𝑊′(𝑠), hence 𝑊 is also a solution of problem (3) −(4). 

 

Theorem 5.2. Assume that: 

1) There exist a lower-solution 𝛼 and an upper-solution 𝛽 of (3) −(4) such that ∀ 𝑠 ∈  [0, 𝜉], 𝑎 ≤ 𝛼′(𝑠) ≤  𝑏, 𝑎 ≤ 𝛽′(𝑠) ≤
 𝑏 𝑎𝑛𝑑 𝛼(𝑠) ≤  𝛽(𝑠); 
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2) There exists 𝑔 ∈  𝐿1(0, 𝜉) such that, for a.e. 𝑠 ∈  [0, 𝜉], and all (𝑤, 𝑧) with (𝑠, 𝑤, 𝑧) ∈ {(𝑠, 𝑤, 𝑧) ∈ [0, 𝜉] × ℝ2, 𝛼(𝑠) ≤  𝑢 ≤
 𝛽(𝑠), 𝑎 ≤  𝑣 ≤  𝑏}, 𝑘(𝑠, 𝑤, 𝑧) ≥  𝑔(𝑠); 

3) min
[𝛼(0),𝛽(0)]

𝑙0 − ‖ℎ‖𝐿1(0,𝜉) ≥ Φ(a) and max
[𝛼(𝜉),𝛽(𝜉)]

𝑙𝜉 + ‖ℎ‖𝐿1(0,𝜉) ≤ Φ(b). 

 

Then, the problem (3) −(4) admits at least one solution 𝑈, with 

 

𝛼(𝑠) ≤  𝑈(𝑠) ≤ 𝛽(𝑠) 𝑎𝑛𝑑 𝑎 ≤  𝑈′(𝑠) ≤  𝑏, ∀ 𝑠 ∈ [0, 𝜉]. 
 

Proof: The proof is similar to the proof of Theorem 5.1. 

 

Example 5 .1. Consider the problem 
(sin(v′(s)))

′

=
|v′(s)|

8√s
+ v(s) +

𝑠

3
 a. e. s ∈ [0,1]

sin(v′(0)) = (v(0))
3
 and sin(v′(1)) = −v(1)ev(1)

 

 

It is easy to see that 𝛼(𝑠) = −
1

2
 𝑎𝑛𝑑 𝛽(𝑠)  =  0 are respectively lower and upper solutions. Taking 𝑔(𝑠) =

1

3
+

𝜋

16√𝑠
, 𝑎 = −

𝜋

2
 and 

𝑏 =
𝜋

2
, from Theorem 5.1, we deduce the existence of a solution. 

 

Example 5 .2. Consider the problem 
((v′(s))

2
)
′

=
|v′(s)|

8√s
+ v(s) −

𝑠

3
 a. e. s ∈ [0,1]

(v′(0))2 = 4(v(0))3 and (v′(1))2 = |v(1) − 3| + 5
 

 

It is easy to see that 𝛼(𝑠) = 0 and 𝛽(𝑠)  =  2𝑠 + 1 are respectively lower and upper solutions. Taking 𝑔(𝑠) = 3 +
1

2√𝑠
, 𝑎 = 0 and 

𝑏 = 3, from Theorem 5.1, we deduce the existence of a solution. 

 

Example 5 .3. Consider the problem 

− (
1

v′(s)
)
′

=
1

24((v′(s))
2
+1)

+
v(s)

36√𝑠
−

√𝑠

12
 a. e. s ∈ [0,1]

− (
1

v′(0)
)
′

= −
1

3
𝑒−v(0) and − (

1

v′(1)
)
′

= −v(1) +
3

2

 

 

It is easy to see that 𝛼(𝑠) = 3𝑠 −
3

2
 and 𝛽(𝑠)  =  3𝑠 are respectively lower and upper solutions. Taking (𝑠) =

1

24
+

1

12√𝑠
, 𝑎 =

1

2
 and 

𝑏 = 9, from Theorem 5.1, we deduce the existence of at least one solution. 
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