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Analyzing topology induced by graph metrics on the 
vertex set of some special graphs 

 
Rafia Yoosuf and Limiya Aysha Poolakunnan 
 
Abstract 
This paper explores the construction of topologies on a graph's vertex set using open balls and eccentric 
neighbourhoods defined by graph metrics such as geodesic distance, detour distance, circular distance, 
and circular D-distance. We examine how these metric-induced topologies behave when applied to 
specific classes of graphs such as Friendship Graph, Bistar Graph, Pan Graph, Complete Bipartite Graph, 
Barbell Graph and Helm Graph. 
 
Keywords: Topology, graph metrics, geodesic distance, detour distance, circular distance, circular d-
distance, open ball, eccentric neighbourhood 
 
1. Introduction 
Graph theory and topology are powerful mathematical tools widely used to model and analyze 
complex systems across diverse fields such as computer science, engineering, transportation, 
and the biological sciences. Graphs provide a flexible structure for representing relationships 
and processes, while graph-based topologies help understand connectivity patterns, enabling 
advanced modeling in areas like medical diagnostics, biological networks, and infrastructure 
design. Graph metrics such as geodesic distance, detour distance and circular distance play a 
critical role in measuring connectivity, separation and reachability within networks. These 
metrics support essential applications like shortest path algorithms, clustering, optimization 
and navigation systems. In computer vision and image processing, distance measures guide 
object detection and pattern recognition, while in social network analysis, they reveal influence 
and community structures. 
A metric space is a non-empty set where a distance function (called a metric) is defined 
between every pair of its elements. The study of abstract topological spaces requires an 
understanding of topological features, such as open and closed sets, which are produced by a 
metric defined on a set. A subbasis for the metric topology can be constructed using the 
metric. Furthermore, machine learning models performance can be maximized by utilizing the 
topologies obtained from significant distance measures. Biological systems, often represented 
as networks, benefit from graph-based models to describe complex interactions between 
biological entities. Topologies derived from vertex relations aid in analyzing these networks 
for purposes like disease detection and diagnosis. In logistics, circular distance metrics help 
optimize delivery routes by balancing coverage and return efficiency. Similarly, detour 
distance becomes useful in modeling scenarios such as delivery networks, where visiting 
multiple destinations and minimizing travel costs are crucial. 
 
2. Preliminaries 
The following definitions are derived from references [1, 2, 3, 4, 5]. 
Graph metrics are ways of describing metric spaces that are defined over sets of vertices 
according to distances in a graph that is defined over those sets of vertices. When the graph is 
connected, the distance function and the collection of vertices can be transformed into a metric 
space. Here we are considering different graph metrics such as geodesic distance, detour 
distance, circular distance and circular D-distance.  
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The length of the shortest path between two vertices 𝑢𝑢 and 𝑣𝑣, in a connected graph G is the geodesic distance 𝑑𝑑(𝑢𝑢, 𝑣𝑣), where 
𝑑𝑑(𝑢𝑢, 𝑣𝑣)  =  0 if 𝑢𝑢 =  𝑣𝑣, while the length of the longest simple path between two vertices 𝑢𝑢 and 𝑣𝑣 is the detour distance 𝐷𝐷(𝑢𝑢,𝑣𝑣), 
where 𝐷𝐷(𝑢𝑢, 𝑣𝑣)  =  0 if 𝑢𝑢 =  𝑣𝑣. The maximum geodesic distance (or detour distance) from 𝑢𝑢 to any other vertices in the graph is 
called eccentricity 𝑒𝑒𝑑𝑑(𝑢𝑢) (or 𝑒𝑒𝐷𝐷(𝑢𝑢)) of a vertex 𝑢𝑢. The definitions of geodesic radius 𝑟𝑟𝑑𝑑(𝐺𝐺) (or detour radius 𝑟𝑟𝐷𝐷(𝐺𝐺)) and geodesic 
diameter 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑(𝐺𝐺) (or detour diameter 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝐷𝐷(𝐺𝐺)) of a graph 𝐺𝐺 are as follows: 
𝑟𝑟𝑑𝑑(𝐺𝐺) = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑒𝑒𝑑𝑑(𝑢𝑢):𝑢𝑢 ∈ 𝑉𝑉(𝐺𝐺)} (or 𝑟𝑟𝐷𝐷(𝐺𝐺) = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑒𝑒𝐷𝐷(𝑢𝑢):𝑢𝑢 ∈ 𝑉𝑉(𝐺𝐺)}), 
𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑(𝐺𝐺) = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑒𝑒𝑑𝑑(𝑢𝑢):𝑢𝑢 ∈ 𝑉𝑉(𝐺𝐺)} (or 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝐷𝐷(𝐺𝐺) = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑒𝑒𝐷𝐷(𝑢𝑢):𝑢𝑢 ∈ 𝑉𝑉(𝐺𝐺)}). 
The circular distance 𝑐𝑐𝑐𝑐(𝑢𝑢, 𝑣𝑣) between two distinct vertices 𝑢𝑢 and 𝑣𝑣 in a connected graph 𝐺𝐺 is defined as the sum of the geodesic 
distance 𝑑𝑑(𝑢𝑢, 𝑣𝑣) and the detour distance 𝐷𝐷(𝑢𝑢, 𝑣𝑣). i. e. 𝑐𝑐𝑐𝑐(𝑢𝑢, 𝑣𝑣) = 𝑑𝑑(𝑢𝑢, 𝑣𝑣) + 𝐷𝐷(𝑢𝑢, 𝑣𝑣). The circular eccentricity 
𝑒𝑒𝑐𝑐𝑐𝑐(𝑢𝑢) of the vertex 𝑢𝑢 is defined as the maximum circular distance to any other vertex from the vertex 𝑢𝑢 and the circular radius 
𝑟𝑟𝑐𝑐𝑐𝑐(𝐺𝐺) and circular diameter 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑐𝑐𝑐𝑐(𝐺𝐺) of a graph 𝐺𝐺 are defined as: 
𝑟𝑟𝑐𝑐𝑐𝑐(𝐺𝐺) = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑒𝑒𝑐𝑐𝑐𝑐(𝑢𝑢):𝑢𝑢 ∈ 𝑉𝑉(𝐺𝐺)} and 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑐𝑐𝑐𝑐(𝐺𝐺) = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑒𝑒𝑐𝑐𝑐𝑐(𝑢𝑢):𝑢𝑢 ∈ 𝑉𝑉(𝐺𝐺)}. 
If 𝑢𝑢,𝑣𝑣 are vertices of a connected graph 𝐺𝐺, then the D-length of a 𝑢𝑢 −  𝑣𝑣 path 𝑃𝑃 is defined as 𝐷𝐷𝐷𝐷(𝑃𝑃) = 𝑙𝑙(𝑃𝑃) + 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢) +
𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣) + ∑𝑑𝑑𝑑𝑑𝑑𝑑(𝑤𝑤) where the summation is taken over all the internal vertices 𝑤𝑤 of 𝑃𝑃. The geodesic D-distance 𝑑𝑑𝐷𝐷(𝑢𝑢, 𝑣𝑣) 
between distinct two vertices 𝑢𝑢 and 𝑣𝑣 of a connected graph 𝐺𝐺 is defined as 𝑑𝑑𝐷𝐷(𝑢𝑢, 𝑣𝑣) = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐷𝐷𝐷𝐷(𝑃𝑃)} where the minimum is taken 
over all 𝑢𝑢 −  𝑣𝑣 paths 𝑃𝑃 in 𝐺𝐺 and zero if 𝑢𝑢 =  𝑣𝑣. The detour D-distance 𝐷𝐷𝐷𝐷(𝑢𝑢, 𝑣𝑣) between two distinct vertices 𝑢𝑢 and 𝑣𝑣 of a 
connected graph 𝐺𝐺 is defined as 𝐷𝐷𝐷𝐷(𝑢𝑢, 𝑣𝑣) = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐷𝐷𝐷𝐷(𝑃𝑃)} where maximum is taken over all 𝑢𝑢 −  𝑣𝑣 paths 𝑃𝑃 in 𝐺𝐺 and zero if 𝑢𝑢 =
 𝑣𝑣. The circular D-distance 𝑐𝑐𝑑𝑑𝐷𝐷(𝑢𝑢, 𝑣𝑣) between two distinct vertices 𝑢𝑢 and 𝑣𝑣 in a connected graph G is defined as the sum of the 
geodesic D-distance 𝑑𝑑𝐷𝐷(𝑢𝑢,𝑣𝑣) and the detour D-distance 𝐷𝐷𝐷𝐷(𝑢𝑢, 𝑣𝑣). i. e. 𝑐𝑐𝑑𝑑𝐷𝐷(𝑢𝑢, 𝑣𝑣) = 𝑑𝑑𝐷𝐷(𝑢𝑢, 𝑣𝑣) + 𝐷𝐷𝐷𝐷(𝑢𝑢, 𝑣𝑣).The circular D-radius 
rcdD (G) and circular D-diameter diamcd

𝐷𝐷 (G)of a graph 𝐺𝐺 are defined as follows: 
𝑟𝑟cd
 𝐷𝐷(𝐺𝐺) = min {ecdD (u): u ∈ 𝑉𝑉(G)} and diamcd

 𝐷𝐷(𝑣𝑣) = max  { ecdD (u): u ∈ 𝑉𝑉(G)}. 
 
3. Topology Induced by Open Balls and Eccentric Neighbour- hoods 
This section examines how graph metrics such as geodesic, detour, circular, and circular D-distances are used to generate 
topologies caused by open balls and eccentric neighborhoods on graphs like Friendship, Bistar, Pan, Complete Bipartite, Barbell, 
and Helm Graphs. References [1, 6, 7] provide the definitions in this section. 
 
Definition 1. Let 𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢, 𝑣𝑣) denote a distance metric. According to metric dis, the open balls in a graph 𝐺𝐺 are defined as 
 
𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑�𝑣𝑣, 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺)� = 𝑢𝑢 ∈ 𝑉𝑉(𝐺𝐺):𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢,𝑣𝑣) < 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺) 
 
Therefore, to form the topology 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 on G's vertex set, 𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑�𝑣𝑣, 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺)� forms a subbasis. 
 
Definition 2. The eccentric neighbourhoods in a graph 𝐺𝐺 are defined as follows in terms of the metrics such as geodesic distance 
𝑑𝑑(𝑢𝑢, 𝑣𝑣), detour distance 𝐷𝐷(𝑢𝑢, 𝑣𝑣), circular distance 𝑐𝑐𝑐𝑐(𝑢𝑢, 𝑣𝑣) and circular D-distance 𝑐𝑐𝑑𝑑𝐷𝐷(𝑢𝑢, 𝑣𝑣): 
𝑁𝑁𝑑𝑑(𝑣𝑣) = {𝑢𝑢 ∈ 𝑉𝑉(𝐺𝐺):𝑑𝑑(𝑢𝑢, 𝑣𝑣) = 𝑒𝑒𝑑𝑑(𝑣𝑣)}, 
 
𝑁𝑁𝐷𝐷(𝑣𝑣) = {𝑢𝑢 ∈ 𝑉𝑉(𝐺𝐺):𝐷𝐷(𝑢𝑢, 𝑣𝑣) = 𝑒𝑒𝐷𝐷(𝑣𝑣)}, 
 
𝑁𝑁𝑐𝑐𝑐𝑐(𝑣𝑣) = {𝑢𝑢 ∈ 𝑉𝑉(𝐺𝐺): 𝑐𝑐𝑐𝑐(𝑢𝑢, 𝑣𝑣) = 𝑒𝑒𝑐𝑐𝑐𝑐(𝑣𝑣)}, 
 
𝑁𝑁cd
 𝐷𝐷(𝑣𝑣) = {u ∈ 𝑉𝑉(𝐺𝐺): cd𝐷𝐷(𝑢𝑢, 𝑣𝑣) = 𝑒𝑒cd

𝐷𝐷(𝑣𝑣)}. 
 
The complement of 𝑁𝑁𝑑𝑑(𝑣𝑣),𝑁𝑁𝐷𝐷(𝑣𝑣),𝑁𝑁𝑐𝑐𝑐𝑐(𝑣𝑣) and 𝑁𝑁cd

 𝐷𝐷(𝑣𝑣) should be 𝑀𝑀𝑑𝑑(𝑣𝑣),𝑀𝑀𝐷𝐷(𝑣𝑣),𝑀𝑀𝑐𝑐𝑐𝑐(𝑣𝑣) and  𝑀𝑀cd
 𝐷𝐷(𝑣𝑣) respectively. On a vertex set 

of 𝐺𝐺, these families of sets constitute subbases for the topologies τ𝑀𝑀−𝑑𝑑  , τ𝑀𝑀−𝐷𝐷 , τ𝑀𝑀−𝑐𝑐𝑐𝑐 and τ𝑀𝑀−𝑐𝑐𝑐𝑐𝐷𝐷 . 
 
Friendship Graph 
Definition 3. A Friendship graph 𝐹𝐹𝑛𝑛, 𝑛𝑛 ≥  1 is a graph made up of 𝑛𝑛 triangles with a common vertex, having 2𝑛𝑛 +  1 vertices and 
3𝑛𝑛 edges. 
 

 
 
Theorem 1. For a friendship graph 𝐹𝐹𝑛𝑛 with n ≥ 2, 
 
Bd �𝑣𝑣, 𝑟𝑟𝑑𝑑 (𝐹𝐹𝑛𝑛)� = BD �𝑣𝑣, 𝑟𝑟𝐷𝐷 (𝐹𝐹𝑛𝑛)� = Bcd �𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐 (𝐹𝐹𝑛𝑛)� = {𝑣𝑣}, 
 
for all v ∈ 𝑉𝑉(𝐹𝐹𝑛𝑛). 
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Proof. For any two vertices u  ≠  v in 𝐹𝐹𝑛𝑛, d(𝑢𝑢, 𝑣𝑣) = 1  or  2, D(𝑢𝑢, 𝑣𝑣) = 2 or 4 and cd(𝑢𝑢, 𝑣𝑣) = 3 or 6. Specifically, for every v ∈
𝑉𝑉(𝐹𝐹𝑛𝑛) − w, d(𝑤𝑤, 𝑣𝑣) = 1 and cd(𝑤𝑤, 𝑣𝑣) = 3 if w is the center vertex of 𝐹𝐹𝑛𝑛. This means that 𝑒𝑒𝑑𝑑(𝑤𝑤) = 1, 𝑒𝑒𝐷𝐷(𝑤𝑤) = 2 and 𝑒𝑒𝑐𝑐𝑐𝑐(𝑤𝑤) =
3. It follows that 𝑟𝑟𝑑𝑑(𝐹𝐹𝑛𝑛) = 1, 𝑟𝑟𝐷𝐷(𝐹𝐹𝑛𝑛) = 2 and 𝑟𝑟𝑐𝑐𝑐𝑐(𝐹𝐹𝑛𝑛) = 3.Therefore, for every v ∈ 𝑉𝑉(𝐹𝐹𝑛𝑛), 𝐵𝐵𝑑𝑑�𝑣𝑣, 𝑟𝑟𝑑𝑑(𝐹𝐹𝑛𝑛)� = 𝐵𝐵𝐷𝐷�𝑣𝑣, 𝑟𝑟𝐷𝐷(𝐹𝐹𝑛𝑛)� =
𝐵𝐵𝑐𝑐𝑐𝑐�𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐(𝐹𝐹𝑛𝑛)� = v. 
 
Observation 1. Let {𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛} be the outer vertices of a friendship graph 𝐹𝐹𝑛𝑛where 𝑛𝑛 ≥ 2 and 𝑤𝑤 be the central vertex of 𝐹𝐹𝑛𝑛. T 
hen for 𝑖𝑖 = 1, 2, … ,𝑛𝑛,𝑁𝑁𝑑𝑑(𝑣𝑣𝑖𝑖) = 𝑁𝑁𝐷𝐷(𝑣𝑣𝑖𝑖) = 𝑁𝑁𝑐𝑐𝑐𝑐(𝑣𝑣𝑖𝑖) = 𝑁𝑁𝑐𝑐𝑐𝑐𝐷𝐷 (𝑣𝑣𝑖𝑖), for every 𝑣𝑣 ∈ 𝑉𝑉(𝑃𝑃𝑛𝑛) and 𝑁𝑁𝑑𝑑(𝑤𝑤) = 𝑁𝑁𝐷𝐷(𝑤𝑤) = 𝑁𝑁𝑐𝑐𝑐𝑐(𝑤𝑤) = 𝑁𝑁𝑐𝑐𝑐𝑐𝐷𝐷 (𝑤𝑤) =
{𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛}. Also, τ𝑀𝑀−𝑑𝑑 = τ𝑀𝑀−𝐷𝐷 = τ𝑀𝑀−𝑐𝑐𝑐𝑐 = τ𝑀𝑀−𝑐𝑐𝑐𝑐𝐷𝐷 . 
 
Bistar Graph 
Definition 4. When two-star graphs 𝐾𝐾1,𝑛𝑛, have their central vertices joined by a single edge, the resulting graph is called a bistar 
graph 𝐵𝐵𝑚𝑚,𝑛𝑛. 
 

 
 
Theorem 2. For a bistar graph 𝐵𝐵𝑚𝑚,𝑛𝑛, with m, n ≥ 2, 
 
𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝐵𝐵𝑚𝑚,𝑛𝑛�� = 𝐵𝐵𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝐷𝐷�𝐵𝐵𝑚𝑚,𝑛𝑛�� = 𝐵𝐵𝑐𝑐𝑐𝑐 �𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐�𝐵𝐵𝑚𝑚,𝑛𝑛��, 
 
for all 𝑣𝑣 ∈ 𝑉𝑉�𝐵𝐵𝑚𝑚,𝑛𝑛�. 
 
Proof. In a bistar graph 𝐵𝐵𝑚𝑚,𝑛𝑛,, there exists exactly one path between any two vertices. Hence, for any 𝑣𝑣 ∈ 𝑉𝑉�𝐵𝐵𝑚𝑚,𝑛𝑛�,𝑑𝑑(𝑢𝑢, 𝑣𝑣) =
𝐷𝐷(𝑢𝑢, 𝑣𝑣), for all 𝑢𝑢 ∈ 𝑉𝑉�𝐵𝐵𝑚𝑚,𝑛𝑛�. So 𝑟𝑟𝑑𝑑�𝐵𝐵𝑚𝑚,𝑛𝑛� = 𝑟𝑟𝐷𝐷�𝐵𝐵𝑚𝑚,𝑛𝑛�, which implies 𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝐵𝐵𝑚𝑚,𝑛𝑛�� = 𝐵𝐵𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝐷𝐷�𝐵𝐵𝑚𝑚,𝑛𝑛��. 
Moreover, 𝑐𝑐𝑐𝑐(𝑢𝑢, 𝑣𝑣) = 2𝑑𝑑(𝑢𝑢, 𝑣𝑣) holds for any two vertices 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉�𝐵𝐵𝑚𝑚,𝑛𝑛�. Hence, 𝑟𝑟𝑐𝑐𝑐𝑐�𝐵𝐵𝑚𝑚,𝑛𝑛� = 2𝑟𝑟𝑑𝑑�𝐵𝐵𝑚𝑚,𝑛𝑛�. Now let 𝑢𝑢 ∈
𝐵𝐵𝑐𝑐𝑐𝑐 �𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐�𝐵𝐵𝑚𝑚,𝑛𝑛�� ⟺  𝑐𝑐𝑐𝑐(𝑢𝑢, 𝑣𝑣) < 𝑟𝑟𝑐𝑐𝑐𝑐�𝐵𝐵𝑚𝑚,𝑛𝑛� ⟺ 2𝑑𝑑(𝑢𝑢, 𝑣𝑣) < 2𝑟𝑟𝑑𝑑�𝐵𝐵𝑚𝑚,𝑛𝑛� ⟺ 𝑑𝑑(𝑢𝑢, 𝑣𝑣) < 𝑟𝑟𝑑𝑑�𝐵𝐵𝑚𝑚,𝑛𝑛� ⟺ 𝑢𝑢 ∈ 𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝐵𝐵𝑚𝑚,𝑛𝑛��. 

Therefore, 𝐵𝐵𝑐𝑐𝑐𝑐 �𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐�𝐵𝐵𝑚𝑚,𝑛𝑛�� = 𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝐵𝐵𝑚𝑚,𝑛𝑛��. 
 
Thus, 𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝐵𝐵𝑚𝑚,𝑛𝑛�� = 𝐵𝐵𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝐷𝐷�𝐵𝐵𝑚𝑚,𝑛𝑛�� = 𝐵𝐵𝑐𝑐𝑐𝑐 �𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐�𝐵𝐵𝑚𝑚,𝑛𝑛��, for all 𝑣𝑣 ∈ 𝑉𝑉�𝐵𝐵𝑚𝑚,𝑛𝑛�. 
 
Observation 2. In bistar graph 𝐵𝐵𝑚𝑚,𝑛𝑛 we have, 𝑁𝑁𝑑𝑑(𝑣𝑣) = 𝑁𝑁𝐷𝐷(𝑣𝑣) = 𝑁𝑁𝑐𝑐𝑐𝑐(𝑣𝑣) = 𝑁𝑁𝑐𝑐𝑐𝑐𝐷𝐷 (𝑣𝑣). 
 
Also, τ𝑀𝑀−𝑑𝑑 = τ𝑀𝑀−𝐷𝐷 = τ𝑀𝑀−𝑐𝑐𝑐𝑐 = τ𝑀𝑀−𝑐𝑐𝑐𝑐𝐷𝐷 . 
 
Pan Graph 
Definition 5. A Pan graph P_(n,1), n ≥ 3 is a graph formed by created by adding an edge from a cycle graph C_n to a singleton 
graph K_1. 
 

 
 
Theorem 3. For a pan graph Pn,1 with n ≥ 3, 
 
𝐵𝐵𝑑𝑑 (𝑣𝑣, 𝑟𝑟𝑑𝑑�𝑃𝑃𝑛𝑛,1�)  ∩ 𝐵𝐵𝐷𝐷 (𝑣𝑣, 𝑟𝑟𝐷𝐷�𝑃𝑃𝑛𝑛,1�)  =  𝐵𝐵𝑐𝑐𝑐𝑐(𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1�, for all 𝑣𝑣 ∈ 𝑉𝑉�𝑃𝑃𝑛𝑛,1�.  
 
Proof. Let 𝑢𝑢 ∈ 𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝑃𝑃𝑛𝑛,1�� ∩ 𝐵𝐵𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝐷𝐷�𝑃𝑃𝑛𝑛,1�� ⇒ 𝑢𝑢 ∈ 𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝑃𝑃𝑛𝑛,1�� and 𝑢𝑢 ∈ 𝐵𝐵𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝐷𝐷�𝑃𝑃𝑛𝑛,1�� ⇒ 𝑑𝑑(𝑢𝑢, 𝑣𝑣) <
𝑟𝑟𝑑𝑑�𝑃𝑃𝑛𝑛,1� 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷(𝑢𝑢,𝑣𝑣) < 𝑟𝑟𝐷𝐷�𝑃𝑃𝑛𝑛,1�. 
 
We know that 𝑟𝑟𝑑𝑑�𝑃𝑃𝑛𝑛,1� < 𝑟𝑟𝐷𝐷�𝑃𝑃𝑛𝑛,1� < 𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1�. So 𝑑𝑑(𝑢𝑢, 𝑣𝑣)  <  𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1� and 𝐷𝐷(𝑢𝑢, 𝑣𝑣)  < 𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1� ⇒ 𝑑𝑑(𝑢𝑢, 𝑣𝑣)  +  𝐷𝐷(𝑢𝑢, 𝑣𝑣)  <
𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1�  ⇒  𝑐𝑐𝑐𝑐(𝑢𝑢, 𝑣𝑣)  <  𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1�  ⇒  𝑢𝑢  ∈ 𝐵𝐵𝑐𝑐𝑐𝑐(𝑣𝑣,  𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1�.  
 
Therefore, 𝐵𝐵𝑑𝑑  (𝑣𝑣, 𝑟𝑟𝑑𝑑�𝑃𝑃𝑛𝑛,1�)  ∩ 𝐵𝐵𝐷𝐷 (𝑣𝑣, 𝑟𝑟𝐷𝐷�𝑃𝑃𝑛𝑛,1�)  ⊆  𝐵𝐵𝑐𝑐𝑐𝑐 (𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1�. 
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Conversely, let 𝑢𝑢 ∈  𝐵𝐵𝑐𝑐𝑐𝑐(𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1� ⇒  𝑐𝑐𝑐𝑐(𝑢𝑢, 𝑣𝑣)  <  𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1� ⇒  𝑑𝑑(𝑢𝑢, 𝑣𝑣)  +  𝐷𝐷(𝑢𝑢, 𝑣𝑣)  <  𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1� ⇒  𝑑𝑑(𝑢𝑢, 𝑣𝑣) +  𝐷𝐷(𝑢𝑢, 𝑣𝑣) <
𝑟𝑟𝑑𝑑�𝑃𝑃𝑛𝑛,1� +  𝑟𝑟𝐷𝐷�𝑃𝑃𝑛𝑛,1� , since 𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1� < 𝑟𝑟𝑑𝑑�𝑃𝑃𝑛𝑛,1� + 𝑟𝑟𝐷𝐷�𝑃𝑃𝑛𝑛,1� ⇒ 𝑑𝑑(𝑢𝑢,𝑣𝑣) < 𝑟𝑟𝑑𝑑�𝑃𝑃𝑛𝑛,1� and 𝐷𝐷(𝑢𝑢, 𝑣𝑣) < 𝑟𝑟𝐷𝐷�𝑃𝑃𝑛𝑛,1� ⇒ 𝑢𝑢 ∈
𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝑃𝑃𝑛𝑛,1�� and 𝑢𝑢 ∈ 𝐵𝐵𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝐷𝐷�𝑃𝑃𝑛𝑛,1�� ⇒ 𝑢𝑢 ∈ 𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝑃𝑃𝑛𝑛,1�� ∩ 𝐵𝐵𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝐷𝐷�𝑃𝑃𝑛𝑛,1��.   
Therefore, 𝐵𝐵𝑐𝑐𝑐𝑐(𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1� ⊆ 𝐵𝐵𝑑𝑑 (𝑣𝑣, 𝑟𝑟𝑑𝑑�𝑃𝑃𝑛𝑛,1�)  ∩ 𝐵𝐵𝐷𝐷 (𝑣𝑣, 𝑟𝑟𝐷𝐷�𝑃𝑃𝑛𝑛,1�). 
 
Thus, 𝐵𝐵𝑑𝑑 (𝑣𝑣, 𝑟𝑟𝑑𝑑�𝑃𝑃𝑛𝑛,1�)  ∩ 𝐵𝐵𝐷𝐷 (𝑣𝑣, 𝑟𝑟𝐷𝐷�𝑃𝑃𝑛𝑛,1�)  = 𝐵𝐵𝑐𝑐𝑐𝑐(𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1�, for all 𝑣𝑣 ∈ 𝑉𝑉�𝑃𝑃𝑛𝑛,1�. 
 
Note 1. We consider the vertices such that neither 𝑑𝑑(𝑢𝑢, 𝑣𝑣) nor 𝐷𝐷(𝑢𝑢, 𝑣𝑣) exceeds their respective bounds 𝑟𝑟𝑑𝑑(𝐺𝐺) and 𝑟𝑟𝐷𝐷(𝐺𝐺).  
 
Note 2. For a pan graph 𝑃𝑃𝑛𝑛, we have 𝑟𝑟𝑐𝑐𝑐𝑐�𝑃𝑃𝑛𝑛,1� < 𝑟𝑟𝑑𝑑�𝑃𝑃𝑛𝑛,1� + 𝑟𝑟𝐷𝐷�𝑃𝑃𝑛𝑛,1�. 
Observation 3. Let {𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛} be the vertices of a pan graph 𝑃𝑃𝑛𝑛 and 𝑤𝑤 be the single vertex. Let 𝑣𝑣𝑚𝑚 be the vertex connected to 
𝑤𝑤. We have, 𝑁𝑁𝑐𝑐𝑐𝑐(𝑣𝑣𝑖𝑖) = 𝑁𝑁𝑐𝑐𝑐𝑐𝐷𝐷 (𝑣𝑣𝑖𝑖) = {𝑤𝑤} where 𝑖𝑖 ≠ 𝑚𝑚 and 𝑁𝑁𝑐𝑐𝑐𝑐(𝑣𝑣𝑚𝑚) = 𝑁𝑁𝑐𝑐𝑐𝑐𝐷𝐷 (𝑣𝑣𝑚𝑚) = 𝑁𝑁𝑐𝑐𝑐𝑐(𝑤𝑤) = 𝑁𝑁𝑐𝑐𝑐𝑐𝐷𝐷 (𝑤𝑤)  =
{𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑚𝑚−1,𝑣𝑣𝑚𝑚+1, … , 𝑣𝑣𝑛𝑛}. 
 
Complete Bipartite Graph 
Definition 6. A bipartite graph is defined as a graph whose vertex set can be divided into two subsets, 𝑋𝑋 and 𝑌𝑌, such that every 
edge connects a vertex in 𝑋𝑋 to a vertex in 𝑌𝑌. This division (𝑋𝑋,𝑌𝑌 ) is referred to as the bipartition of the graph. Simple bipartite 
graphs with bipartition (𝑋𝑋,𝑌𝑌 ) in which every vertex of 𝑋𝑋 is connected to every vertex of 𝑌𝑌 are called complete bipartite graphs. If 
|𝑋𝑋 |  =  𝑚𝑚 and |𝑌𝑌 |  =  𝑛𝑛, then the graph is denoted as 𝐾𝐾𝑚𝑚,𝑛𝑛. 
 

 
 
Theorem 4. For a complete bipartite graph 𝐾𝐾𝑚𝑚,𝑛𝑛, 
 
 𝐵𝐵𝑐𝑐𝑐𝑐 �𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐�𝐾𝐾𝑚𝑚,𝑛𝑛�� = {𝑣𝑣}, for all 𝑣𝑣 ∈ 𝑉𝑉�𝐾𝐾𝑚𝑚,𝑛𝑛�. 
 
Proof. Case I: When 𝑚𝑚 =  𝑛𝑛, the sum of the length of geodesic path and detour path is 2𝑛𝑛. So 𝑐𝑐𝑐𝑐(𝑢𝑢, 𝑣𝑣) = 2𝑛𝑛, for all 𝑣𝑣 ∈
𝑉𝑉�𝐾𝐾𝑛𝑛,𝑛𝑛� ⇒ 𝑒𝑒𝑐𝑐𝑐𝑐(𝑣𝑣) = 2𝑛𝑛 ⟹ 𝑟𝑟𝑐𝑐𝑐𝑐(𝑣𝑣) = 2𝑛𝑛. Therefore, 𝐵𝐵𝑐𝑐𝑐𝑐 �𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐�𝐾𝐾𝑚𝑚,𝑛𝑛�� = {𝑣𝑣}. 
 
Case II: When 𝑚𝑚 ≠ 𝑛𝑛, we have 𝑐𝑐𝑐𝑐(𝑢𝑢, 𝑣𝑣) = 2𝑛𝑛 or 𝑐𝑐𝑐𝑐(𝑢𝑢, 𝑣𝑣) = 2𝑚𝑚, for all 𝑣𝑣 ∈ 𝑉𝑉�𝐾𝐾𝑚𝑚,𝑛𝑛�. If 𝑚𝑚 < 𝑛𝑛, then 𝑟𝑟𝑐𝑐𝑐𝑐�𝐾𝐾𝑚𝑚,𝑛𝑛� = 2𝑚𝑚 and if 
𝑚𝑚 > 𝑛𝑛, then 𝑟𝑟𝑐𝑐𝑐𝑐�𝐾𝐾𝑚𝑚,𝑛𝑛� = 2𝑛𝑛. Therefore, 𝐵𝐵𝑐𝑐𝑐𝑐 �𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐�𝐾𝐾𝑚𝑚,𝑛𝑛�� = {𝑣𝑣}. 
 
Theorem 5. For a complete bipartite graph 𝐾𝐾𝑚𝑚,𝑛𝑛, when 𝑚𝑚 =  𝑛𝑛, we have the following: 
 
(i) 𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝐾𝐾𝑛𝑛,𝑛𝑛�� ∪ 𝐵𝐵𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝐷𝐷�𝐾𝐾𝑛𝑛,𝑛𝑛�� = 𝑉𝑉�𝐾𝐾𝑛𝑛,𝑛𝑛�, for all 𝑣𝑣 ∈ 𝑉𝑉�𝐾𝐾𝑛𝑛,𝑛𝑛�. 𝐵𝐵𝑐𝑐𝑐𝑐𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐𝐷𝐷 �𝐾𝐾𝑛𝑛,𝑛𝑛�� = {𝑣𝑣}, for all 𝑣𝑣 ∈ 𝑉𝑉(𝐾𝐾𝑛𝑛,𝑛𝑛). 
 
Proof. (i) We have the length of geodesic path + length of detour path =  2𝑛𝑛. Also, 𝑒𝑒𝑑𝑑(𝑣𝑣) = 2 and 𝑒𝑒𝐷𝐷(𝑣𝑣) = 2𝑛𝑛 − 1, for all 𝑣𝑣 ∈
𝑉𝑉�𝐾𝐾𝑛𝑛,𝑛𝑛�. So 𝑟𝑟𝑑𝑑�𝐾𝐾𝑛𝑛,𝑛𝑛� = 2 and 𝑟𝑟𝐷𝐷�𝐾𝐾𝑛𝑛,𝑛𝑛� = 2𝑛𝑛 − 1. Clearly, 𝑣𝑣 ∈ 𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝐾𝐾𝑛𝑛,𝑛𝑛�� and 𝑣𝑣 ∈ 𝐵𝐵𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝐷𝐷�𝐾𝐾𝑛𝑛,𝑛𝑛��, for all 𝑣𝑣 ∈ 𝑉𝑉�𝐾𝐾𝑛𝑛,𝑛𝑛�. 

Let 𝑤𝑤 ∈ 𝑉𝑉�𝐾𝐾𝑛𝑛,𝑛𝑛� be arbitrary. If 𝑑𝑑(𝑣𝑣,𝑤𝑤) < 2, then 𝑤𝑤 ∈ 𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝐾𝐾𝑛𝑛,𝑛𝑛��, otherwise 𝐷𝐷(𝑣𝑣,𝑤𝑤) = 2𝑛𝑛 − 2 < 2𝑛𝑛 − 1 ⇒ 𝑤𝑤 ∈

𝐵𝐵𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝐷𝐷�𝐾𝐾𝑛𝑛,𝑛𝑛��. Thus, for all vertices 𝑤𝑤 ∈ 𝑉𝑉�𝐾𝐾𝑛𝑛,𝑛𝑛� will either be in 𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝐾𝐾𝑛𝑛,𝑛𝑛�� or in 𝐵𝐵𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝐷𝐷�𝐾𝐾𝑛𝑛,𝑛𝑛�� . Hence, 

𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝐾𝐾𝑛𝑛,𝑛𝑛�� ∪ 𝐵𝐵𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝐷𝐷�𝐾𝐾𝑛𝑛,𝑛𝑛�� = 𝑉𝑉�𝐾𝐾𝑛𝑛,𝑛𝑛�, for all 𝑣𝑣 ∈ 𝑉𝑉�𝐾𝐾𝑛𝑛,𝑛𝑛�. 
 
(ii) For any 𝐾𝐾𝑛𝑛,𝑛𝑛 graph, the degree of vertex is 𝑛𝑛. Therefore, 𝑐𝑐𝑑𝑑𝐷𝐷(𝑢𝑢, 𝑣𝑣) values are equal for 𝑢𝑢 ∈ 𝑉𝑉�𝐾𝐾𝑛𝑛,𝑛𝑛� − {𝑣𝑣}. Let 𝑐𝑐𝑑𝑑𝐷𝐷(𝑢𝑢, 𝑣𝑣) =

𝑘𝑘, for every 𝑢𝑢 ∈ 𝑉𝑉�𝐾𝐾𝑛𝑛,𝑛𝑛� − {𝑣𝑣}. Hence, 𝑒𝑒𝑐𝑐𝑐𝑐𝐷𝐷 (𝑣𝑣) = 𝑘𝑘. So, 𝑟𝑟𝑐𝑐𝑐𝑐𝐷𝐷 �𝐾𝐾𝑛𝑛,𝑛𝑛� = 𝑘𝑘. Therefore, 𝐵𝐵𝑐𝑐𝑐𝑐𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐𝐷𝐷 �𝐾𝐾𝑛𝑛,𝑛𝑛�� = {𝑣𝑣}, for all 𝑣𝑣 ∈
𝑉𝑉�𝐾𝐾𝑛𝑛,𝑛𝑛�. 

 
Theorem 6. In a complete bipartite graph K_(m, n), for all v∈V(K_(n, n) ), 
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M_d (v)=B_d (v,r_d (K_(m,n) )) 
 
Proof. In K_(m,n),e_d (v)=2, for all v∈V(K_(m,n) ) and r_d (K_(m,n) )=2.  
 
Now, u∈B_d (v,r_d (K_(m,n) ))⇒d(u,v)<r_d (K_(m,n) )=2=e_d (v)⇒u∉N_d (v)⇒u∈M_d (v)⇒B_d (v,r_d (K_(m,n) ))⊆M_d (v). 
 
Now, u∈M_d (v)⇒d(u,v)<e_d (v)⇒d(u,v)<r_d (K_(m,n) )⇒u ∈ B_d (v,r_d (K_(m,n) ))⇒ 𝑀𝑀𝑑𝑑(𝑣𝑣) ⊆ 𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝐾𝐾𝑚𝑚,𝑛𝑛��.  

Therefore, 𝑀𝑀𝑑𝑑(𝑣𝑣) = 𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝐾𝐾𝑚𝑚,𝑛𝑛��, for all 𝑣𝑣 ∈ 𝑉𝑉�𝐾𝐾𝑚𝑚,𝑛𝑛�. 
 
Observation 4. In a complete bipartite graph K_(m,n), we have, 
• When m=n, N_cd (v)=N_cd^D (v)=V(K_(n,n) )-\{v\} and M_D (v)=B_D (v,r_D (G)). 
• When m≠n, N_d (v)=N_cd^D (v) and M_cd^D (v)=B_cd^D (v,r_cd^D (G)). 
 
Barbell Graph 
Definition 7. A Barbell graph B_n, is a graph formed by joining two copies of a complete graph 
K_n by an edge. 
 

 
 
Observation 5. For a barbell graph Bn with n ≥ 3, 
 
𝐵𝐵𝑑𝑑�𝑣𝑣, 𝑟𝑟𝑑𝑑(𝐵𝐵𝑛𝑛)� = 𝐵𝐵𝐷𝐷�𝑣𝑣, 𝑟𝑟𝐷𝐷(𝐵𝐵𝑛𝑛)� = 𝐵𝐵𝑐𝑐𝑐𝑐�𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐(𝐵𝐵𝑛𝑛)� = 𝐵𝐵𝑐𝑐𝑐𝑐𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐𝐷𝐷 (𝐵𝐵𝑛𝑛)�, for all v ∈ V (Bn).  
 
Observation 6. In a barbell graph Bn with n ≥ 3, we have 𝑁𝑁𝑑𝑑(𝑣𝑣) = 𝑁𝑁𝐷𝐷(𝑣𝑣) = 𝑁𝑁𝑐𝑐𝑐𝑐(𝑣𝑣) = 𝑁𝑁𝑐𝑐𝑐𝑐𝐷𝐷 (𝑣𝑣). 
Helm Graph 
Definition 8. The Helm graph 𝐻𝐻𝑛𝑛 is a graph formed by connecting one vertex and one edge to each vertex of a wheel graph 𝑊𝑊𝑛𝑛's 
outer cycle. 
 

 
 
Observation 7. In a helm graph 𝐻𝐻𝑛𝑛, for all 𝑣𝑣 ∈ 𝑉𝑉(𝐻𝐻𝑛𝑛), 
(i) When 𝑛𝑛 =  3, 
 
𝐵𝐵𝑑𝑑�𝑣𝑣, 𝑟𝑟𝑑𝑑(𝐻𝐻𝑛𝑛)� = 𝐵𝐵𝐷𝐷�𝑣𝑣, 𝑟𝑟𝐷𝐷(𝐻𝐻𝑛𝑛)� = 𝐵𝐵𝑐𝑐𝑐𝑐�𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐(𝐻𝐻𝑛𝑛)� = 𝐵𝐵𝑐𝑐𝑐𝑐𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐𝐷𝐷 (𝐻𝐻𝑛𝑛)�. 
 
(ii) When n = 4, 
 
B_d (v,r_d (H_n ))=B_cd^D (v,r_cd^D (H_n )).  
 
 
(iii) When n =  5, 6, 
 
𝐵𝐵𝑐𝑐𝑐𝑐�𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐(𝐻𝐻𝑛𝑛)� ∩ 𝐵𝐵𝑐𝑐𝑐𝑐𝐷𝐷 �𝑣𝑣, 𝑟𝑟𝑐𝑐𝑐𝑐𝐷𝐷 (𝐻𝐻𝑛𝑛)� = 𝐵𝐵𝑑𝑑�𝑣𝑣, 𝑟𝑟𝑑𝑑(𝐻𝐻𝑛𝑛)�. 
 
Observation 8. In a helm graph , Hn with n ≥ 3,  Nd(v) = Ncd(v) = Ncd

D (v). Also, τM−d = 
 
τM−cd = τM−cdD . 
 
Based on the theorems above, we can conclude that: 
1. Except for complete bipartite graph and pan graph, 𝐵𝐵𝐷𝐷�𝑢𝑢, 𝑟𝑟𝐷𝐷(𝐺𝐺)� = 𝐵𝐵𝑐𝑐𝑐𝑐�𝑢𝑢, 𝑟𝑟𝑐𝑐𝑐𝑐(𝐺𝐺)�, for every graph 𝐺𝐺. 
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2. 𝜏𝜏𝐷𝐷 = 𝜏𝜏𝑐𝑐𝑐𝑐 for any graph G, except for complete bipartite graphs and pan graphs. 
3. 𝜏𝜏𝑑𝑑 , 𝜏𝜏𝐷𝐷, and 𝜏𝜏𝑐𝑐𝑐𝑐 are discrete topologies for friendship graphs. 
4. For a bistar graph, the topologies 𝜏𝜏𝑑𝑑 , 𝜏𝜏𝐷𝐷, and 𝜏𝜏𝑐𝑐𝑐𝑐 on its vertex set are discrete. 
5. In complete bipartite graph 𝐾𝐾𝑚𝑚,𝑛𝑛, 
 
(i)When 𝑚𝑚 ≠ 𝑛𝑛,  𝜏𝜏𝑐𝑐𝑐𝑐, 𝜏𝜏𝑐𝑐𝑐𝑐𝐷𝐷 , 𝜏𝜏𝑀𝑀−𝑐𝑐𝑐𝑐 and 𝜏𝜏𝑀𝑀−𝑐𝑐𝑐𝑐𝐷𝐷  are discrete topologies. 
 
(ii)When 𝑚𝑚 = 𝑛𝑛, 𝜏𝜏𝑐𝑐𝑐𝑐 and τ𝑐𝑐𝑐𝑐𝐷𝐷  on the vertex set are same and 𝜏𝜏𝑐𝑐𝑐𝑐  is discrete topology. 
 
Conclusion 
This study investigates the formation of topologies on graph vertex sets induced by open ballsand eccentric neighborhoods, 
utilizing various graph metrics. Specifically, geodesic, detour, circular, and circular D-distances are explored across several 
special graph classes, including friendship, bistar, pan, complete bipartite, barbell, and helm graphs. The resulting topologies are 
analyzed to emphasize the distinct topological characteristics inherent to each graph type. For any graph G, 𝐵𝐵𝐷𝐷�𝑢𝑢, 𝑟𝑟𝐷𝐷(𝐺𝐺)� =
𝐵𝐵𝑐𝑐𝑐𝑐�𝑢𝑢, 𝑟𝑟𝑐𝑐𝑐𝑐(𝐺𝐺)�, except for complete bipartite graphs and pan graphs. We also observed that for complete bipartite graph 𝐾𝐾𝑚𝑚,𝑛𝑛, 
𝑀𝑀𝑑𝑑(𝑣𝑣) = 𝐵𝐵𝑑𝑑 �𝑣𝑣, 𝑟𝑟𝑑𝑑�𝐾𝐾𝑚𝑚,𝑛𝑛��, for all 𝑣𝑣 ∈  𝑉𝑉 (𝐾𝐾𝑚𝑚,𝑛𝑛). This work serves as a foundational step in the topological study of graphs 
through metric-based approaches. This work can be further extended by developing topologies based on alternative graph metrics, 
such as those induced by closed balls and closed eccentric neighborhoods. These extensions hold promise for practical 
applications in areas such as net- work optimization, communication systems, and biological analysis, where understanding the 
underlying topological structure is crucial. 
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