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Abstract

Tomato prices in Jabalpur exhibit significant seasonal fluctuations and high volatility, necessitating
accurate detection of price patterns to inform effective policy and market interventions. Seasonal indices
reveal peak prices during June (1.23) & July (1.48), driven by high perishability and monsoon
disruptions, and troughs from December (0.91) to February (0.81) due to post-harvest supply. The fitted
linear trend model (R? = 0.5304) evidenced a statistically significant upward trajectory, indicating an
average increase of 10.42/quintal per month (Z125.04/quintal annually), higher-order polynomial
models like quadratic (R? = 0.5504) and cubic (R? = 0.5599) yielded only marginal improvements in
model fit, and overall, all deterministic trend models failed to adequately capture the pronounced
stochastic behaviour inherent in agricultural commodity prices. A log-linear model (adj. R? = 0.7311),
estimating a Compound Annual Growth Rate (CAGR) of 15.83%, highlights both long-term price growth
and the importance of variance stabilization. Structural breaks, notably in April-May 2020 and April
2022, correspond with COVID-19 related disruptions and market realignments after COVID
respectively. Given the superior variance stabilization with logarithmic transformation and the
inadequacy of deterministic models, stochastic trend approaches such as ARIMA are recommended for
precise forecasting.

Keywords: Compound Annual Growth Rate (CAGR), Cuddy-Della Valle Index, structural breaks,
tomato price, seasonal indices, trend analysis, log-linear model

1. Introduction

The essential vegetable staples-tomatoes, onions, and potatoes-collectively known as 'TOP'
commodities, serve as primary drivers of India's food price inflation and Consumer Price
Index movements. These commodities exhibit pronounced seasonal patterns with respect to
price fluctuations. This seasonality, primarily driven by crop production and harvesting cycles,
significantly contributes to food price inflation in India. The "TOP' commodity group has been
found to account for a large proportion, ranging from 50 to 70%, of the overall variance in
food inflation, underscoring its importance in India's inflationary dynamics (Pratap et al.,
2021) [0 This volatility through its effects on overall inflation figures has far-reaching
implications for both consumers and producers in the agricultural sector. Tomato (Solanum
lycopersicum) is a horticultural crop of family Solanaceae, which is a culinary staple in all
parts of the world. Tomatoes are a good source of several vitamins and minerals, such as
vitamin C, potassium, vitamin K, and folate. As per historical data, tomatoes show higher price
volatility (0.21) compared to onions (0.19) and potatoes (0.10), (NABARD, 2023) [,
Tomatoes, being highly perishable with short crop duration, demonstrate substantial seasonal
price fluctuations, though these episodes tend to be transient. Tomato prices are particularly
volatile, often influenced by environmental factors such as irregular rainfall patterns and
droughts, which can lead to supply shortages. Tomato price hikes have consistently made
headlines in newspapers across several years. For instance, tomato prices skyrocketed by
352% in one month (Business Standard, July 7, 2023), tomato prices soared to Rs 250 per kg
in Delhi, Rs 200 in Mumbai (The Economic Times, July 10, 2023) and tomato prices crashed
to Rs 2 per kg in Maharashtra's Narayangaon market (The Indian Express, September 20,
2023).
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While in 2021, Tomato prices in Tamil Nadu soared past
%100, govt stepped in with subsidised variety (Hindustan
Times, November 24, 2021).

Within this context, tomato price fluctuations have been
particularly impactful, illustrating the dual challenges faced
by consumers and farmers. For consumers, sudden spikes in
tomato prices can lead to increased food expenditure,
potentially forcing households to adjust their consumption
patterns or reduce spending in other areas. India holds the
position of the world’s second-largest producer of tomatoes,
following China. As of 2021, the country’s annual tomato
production is approximately 21 million tonnes, which
accounts for roughly 11% of global tomato output. Madhya
Pradesh boasts the highest production of tomatoes in India,
often competing with states like Andhra Pradesh and
Karnataka for the top spot. According to the Directorate of
Marketing and Inspection (2021), Madhya Pradesh held the
top position in tomato production, with production of
2,805.07 thousand metric tonnes in the year 2020-21,
followed by Andhra Pradesh (2,450.67 thousand metric
tonnes). The tomato market in Jabalpur, Madhya Pradesh,
plays an essential role in the regional and national supply
chain due to its production volume and distribution
capabilities. Understanding and analysing the temporal
patterns in the tomato price series of the Jabalpur market
facilitates the prediction of broader trends in the Indian
tomato market, while offering valuable insights into
underlying inflationary dynamics. This is particularly vital for
meeting the demands of modern times and ensuring
sustainable incomes for farmers. Strategic policies aimed at
improving tomato production can enable farmers to schedule
production effectively, optimize harvesting techniques, and
develop efficient storage plans, ultimately stabilising price.
Various studies have emphasized the importance of detecting
price patterns for effective policy formulation and agricultural
market management. Vasciaveo et al. (2013) [l examined
price co-movement between U.S. and Italian markets for
wheat, corn, and soybean. Using cointegration and structural
break tests, they find U.S. agri-prices drive Italian markets,
with oil prices influencing U.S. trends. Anoopkumar (2014) 2
investigated intra-year price instability in Indian crops like
cardamom and rubber, linking short-term volatility to
seasonal supply cycles that adversely affect farmer incomes.
Sendhil et al. (2023) 4 assessed rice and wheat market
integration in India using cointegration and error correction
models. The study reveals moderate wholesale-retail linkage
and inefficiencies in price transmission. Santhosh Kumar et
al. (2024) 31 explored soybean price dynamics in
Gautampura using trend analysis, seasonal indices, CAGR,
and CDVI. Findings highlight notable price instability and
structural shifts driven by climatic and policy factors.

2. Materials and Methodology

2.1 Data

The secondary time series data analysed in this study pertains
to computed monthly tomato prices and arrivals from
agricultural markets (Mandis) in Jabalpur district, Madhya
Pradesh, India, spanning the period from June 2011 to June
2024. The dataset was sourced from the AGMARKNET
platform, an official initiative by the Department of
Agricultural Marketing and Inspection under the Ministry of
Agriculture, Government of India, accessible at
https://fagmarknet.gov.in. The study focuses on the Jabalpur
district, encompassing key agricultural markets such as
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Sihora, Shahpura, Patan, and the Jabalpur Fruits and
Vegetables Market.

2.2 Time Series Decomposition

A time series is conceptualized as a realization of a stochastic
process { X, t € Z }, where each observation X, represents a
random variable indexed by discrete time. The comprehensive
decomposition of time series reveals multiple interacting
components through two fundamental approaches: additive
and multiplicative decomposition models. In the additive
decomposition model, the time series is represented as a linear
combination of components, where the trend component T;
captures long-term directional movement, typically modeled
as a deterministic or stochastic function of time. The seasonal
component S, represents periodic recurring variations,
mathematically expressed as a periodic function with fixed
frequency. Cyclical components C, capture medium-term
fluctuations, while the irregular component I, encapsulates
residual randomness. This model is mathematically expressed
as:

Xt:Tf+St+Ct+1f

Alternatively, the multiplicative decomposition model
presents a more complex interaction between components,
where the time series is represented as a product of its
constituent elements:

Xe =T -S¢-Co - I

The multiplicative model becomes particularly useful when
the magnitude of seasonal and cyclical variations changes
proportionally with the trend. Unlike the additive model,
which assumes constant variance, the multiplicative model
allows for dynamic scaling of components, capturing more
nuanced patterns of change.

2.3 Seasonal Index

Seasonal Index is a statistical method used to quantify
periodic variations in time series data. The core objective is to
decompose a time series into its trend, seasonal, and irregular
components. The methodology begins by calculating a
centered moving average to smooth out seasonal fluctuations,
represented by the equation.

n/2

Where M A, represents the moving average at time t and n is
the number of periods in the moving average window.
Subsequently, seasonal ratios are computed by dividing the
original time series values by their corresponding moving
averages, expressed as.

X
MA,

SRt =

These ratios are then aggregated by seasonal period,
calculating the average seasonal index using the formula,

_ 2t SR [s]

SI, ;

Where, k represents the number of years in the dataset and
SR;[s] is the seasonal ratio for season s at time t. To ensure
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the seasonal indices are meaningful, they are normalized to
sum to the total number of seasons, using the equation

NSI, = SI. X =
s = S ZSIS

Where m is the number of seasons. This process effectively
explains seasonal variations, revealing the underlying
seasonality and allowing for more accurate forecasting and
removal of seasonal effects for analysis of long term patterns
in the time series data.

2.4 Trend Models

Trend models such as Linear trend model Y; = B, + B1t + &,
where €, ~ i.i.d.WN(0,c?) capture constant rates of change
using ordinary least squares estimation. Polynomial models
such as quadratic Y; = By + Bit + B,t? + & and cubic Y, =
Bo + Bit + Bot? + Bst3 + &, forms accommodate non-linear
relationships with turning points and complex S-shaped
curves respectively. Exponential growth models of form, Y, =
BoePite, are linearized through logarithmic transformation
(log-lin form) to capture exponential growth patterns with
constant percentage rates (Hamilton, 1994).

2.5 Compound Annual Growth Rate (CAGR)
Compound Annual Growth Rate (CAGR) measures the mean
annual growth rate over specified period longer than one year
via an exponential growth model expressed as,

P, =ag(1+b)t
where P, represents the price at time t, a, denotes the
constant term, and b represents the growth rate. To facilitate
estimation using ordinary least squares, the equation was
transformed into specified log-lin form, InP, =Ina, +
tIn(1 + b). This logarithmic transformation enables linear
regression analysis while preserving the exponential nature of
price growth patterns.

2.6 Time Series Instability Index

To evaluate price series instability, the Cuddy-Della Valle
Index (CDVI) methodology was employed. This approach
quantifies instability through the formula:

CDVI = CV x /(1 — R?)

Where CDVI represents the instability index (%), CV denotes
the coefficient of variation (%), and R? is the coefficient of
multiple determination. The index provides a comprehensive
assessment of market instability that accounts for both the
degree of variation and the explanatory power of the
underlying trend model, where lower values (< 15%) indicate
consistent trends and higher values suggest volatile patterns,
thereby determining the reliability of trend projections
throughout the study period.

2.7 Quantile-Quantile (Q-Q) plot

The Q-Q plot compares the quantiles of two datasets or
compares a dataset against a theoretical distribution (i.e.
Normal distribution). If the distributions are similar, the
points will approximately lie on a straight line.

2.8 Bai-Perron Methodology for Multiple Structural
Breaks Detection

The Bai-Perron methodology (Bai & Perron, 1998; 2003) Bl
identifies multiple structural breaks in time series data
through endogenous detection without prior specification of
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break locations. The method employs a linear regression
model with multiple structural breaks:
ye=XiBjtu, t=T_,+1,.,Tjandj = 1,..,m+1
Where y, is the dependent variable, X, is a vector of
explanatory variables, 3; are segment-specific coefficients, u,
is the i.i.d. error term, T; are unknown break dates, and m is
the number of structural breaks creating m + 1 regimes.
The estimation procedure minimizes the sum of squared
residuals (SSR) across all possible sample partitions subject to
minimum segment size constraints € € (0, 0.5) using dynamic
programming. The framework provides several tests including
the SupF test for no breaks (Hy: m = 0) usingsup sup F (m),
msM

sequential SupF(l + 1|I) tests, Double Maximum tests
(UDmax and WDmax), and employs BIC and Schwarz
Criterion for optimal number of breaks selection.

3. Results and Discussion

The time series plot of the monthly average tomato arrivals
and prices in Jabalpur district is illustrated in the Figure 1.
The time plot of the monthly tomato price series reveals a
clear upward trend, indicating a general increase in tomato
prices over the years. In contrast, the monthly tomato arrival
series exhibits a downward trend, possibly due to a reduction
in agricultural land area dedicated to tomato cultivation and
disruptions in weather patterns. The tomato price series
exhibits considerable temporal volatility, with heightened
fluctuations observed during the period spanning 2020 to
2024. Following a period of relative stability between 2011
and 2016, the tomato prices demonstrate significant volatility,
with pronounced peaks observed during the 2022-2023
period. The monthly tomato arrival quantities exhibit
temporal variability like the tomato price series. However, the
series demonstrates noteworthy peaks around 2011-2012,
suggesting periods of heightened arrival volumes and in the
post-2020 period, the arrival quantities are lower compared to
the earlier years. The tomato arrival quantities exhibit a
relatively stable pattern with strong seasonal patterns,
observed post-2020, indicative of consistent market
conditions due to planting and harvesting cycles and minimal
supply-side fluctuations. Notably, the post-2020 period is
characterized by stability in arrival quantities, coinciding with
the noted increase in price volatility.

The descriptive statistics presented in Table 1 and the
accompanying box plot in Figure 2 show that the average
monthly tomato price is Rs. 879.59 per quintal, with average
arrivals around 44.08 tonnes. The data demonstrates
substantial variability, with the highest recorded tomato price
being Rs. 3,630.43 per quintal in July 2023 and the lowest
being Rs. 299.63 per quintal in February 2017. Similarly, the
maximum tomato arrivals were 281.87 tonnes in September
2012, while the minimum was 0.2 tonnes in May 2024. The
data suggests an inverse relationship between tomato arrivals
and prices, where periods of high arrivals coincide with lower
prices, and vice versa. The monthly tomato arrival series
demonstrates a substantially greater relative dispersion
compared to the price series, as evidenced by the coefficient
of variation. The skewness value of price series of 1.668056
indicates significant positive asymmetry, suggesting the
presence of an extended right tail in the distribution. The
excess kurtosis measure of 2.97237 indicates that the
distribution is leptokurtic, with a sharper peak and thicker
tails compared to the normal distribution. This suggests a
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significant deviation from normality. The Jarque-Bera test
statistic of 135.04 strongly rejects the null hypothesis of
normality, providing robust evidence of a significant
departure from a normal distribution. The dataset's longer
right tail indicates the presence of frequent outliers, which is
further validated by the five outliers observed in the Box-plot
of the price series in Figure 2. The arrival series demonstrates
positive skewness (2.416) and leptokurtosis (excess kurtosis

https://www.mathsjournal.com

of 6.635), both indicative of a significant deviation of this
series as well from normality. This is further substantiated by
the elevated Jarque-Bera statistic of 454.67, strongly rejecting
the null hypothesis of normality. The high degree of
variability in the monthly tomato prices, as evidenced by the
substantial standard deviation of 650.3188, underscores the
need to apply logarithmic transformation to the price series in
order to stabilize the variance.

Arrivals
— Price
Monthly Tomato Arrival and Price Series
4000 - - 300
3500 -
- 250
3000 -
- 200
T 2500 - m
£ g
3 §
@ 2000 - -150 =
14 )
B @
@ >
) E
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0- -0
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Year
Fig 1: Monthly average tomato arrival and price series plot
Table 1: Descriptive statistics of tomato price and arrival series of Jabalpur District
Statistics Original Price Series Log Transformed Price Series | Arrival Series
Min 299.63 5.703 0.20
1st Quartile 386.2 5.956 13.28
Median 607.14 6.409 28.81
Mean 879.59 6.556 44.08403
3rd Quartile 1220.0 7.107 55.54
Max 3630.43 8.197 281.87
Standard Deviation 650.3188 0.6504925 50.23671
Coefficient of Variation (CV) 0.7393 0.09921 1.1396
Skewness 1.668056 0.4441703 2.416811
Kurtosis 2.97237 -0.8686185 6.635363
Jarque-Bera y? 135.04 9.8913 454.67
Jarque-Bera p-value <2.2x1016 0.007114 <2.2x1016
5th Percentile 322.0128 5.77459 4.433524
95th Percentile 2093.81 7.646722 148.1156
Interquartile Range (IQR) 833.75 1.150121 42.25794

The lower standard deviation and coefficient of variation in
the log-transformed price series indicate that the logarithmic
transformation effectively stabilized the variance, which is a
crucial prerequisite for time series modelling. Furthermore,
the log-transformed price series displays a Jarque-Bera test
statistic of 9.8913, suggesting a closer approximation to

~15~

normality after the transformation. However, residual non-
normality persists, as evidenced by the deviations observed in
the Q-Q plot in Figure 3. A logarithmic transformation of the
monthly price series has been employed in this study for
variance stabilization
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Box Plot of Tomato Price Series
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Fig 2: Box plot of tomato price series
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Fig 3: Q-Q plot of original tomato price series and log transformed tomato price series

The decomposition of the monthly tomato price series,
displayed in Figure 4, follows a multiplicative approach due
to increasing variance of the price series. The upward trend
observed in tomato prices aligns with the trajectory of overall
inflation in the economy. Inflationary pressures amplify the
base cost of perishable commodities like tomatoes, leading to
an inherent upward trend in their price series. Seasonal
variations in tomato prices are deeply rooted in agricultural
cycles influenced by planting and harvesting patterns, as well
as climatic variables such as rainfall patterns. The seasonal

component of Price series decomposition plot (Figure 4)
shows recurring seasonal patterns, with prices peaking during
mid-year months, which suggests that seasonal cycles
strongly influence tomato prices irrespective of external
shocks or trend. Superimposed on these long-term and
seasonal patterns are random fluctuations triggered by
extreme events such as unseasonal heavy rainfall, droughts, or
pest infestations. For instance, anomalous monsoon patterns
in recent years have disrupted supply chains, exacerbating
scarcity and inflating prices to unprecedented levels.

,cu “cw
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Fig 4: Multiplicative decomposition plot of tomato price series
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The seasonal plot in the Figure 5 illustrates the fluctuations in
the log transformed price variable across months from 2011 to
2024. Notably, there are distinct peaks in the mid-year
months, particularly around July, indicating that prices tend to
increase in the middle of the year across multiple years. The

https://www.mathsjournal.com

disruptions such as delayed rainfalls causing crop damages
and storage and logistics issues.

Table 2: Monthly seasonal indices for tomato prices

observed prices in QUIy are, on average, 48.1%_higher than the J'\:r?ur::; Sea%?ggé;gdex
annual average price as indicated by the highest seasonal February 0.81159
index (Table 2) observed in July (1.48141). July, followed by March 0.82352
June (1.23302) exhibit a pronounced surge in prices that may April 0.82253
correspond to supply-demand imbalances due to the off- May 0.95532
season during these early monsoon months (Reddy et al., June 1.23302
2018). August (1.09611) through December (0.91473) July 1.48141
demonstrate indices close to unity, suggesting moderate August 1.09611
deviations from the annual average price. Specifically, August September 1.00351
shows a residual effect of the mid-year peak, while October October 1.03940
(1.00351) marks the tapering off of the peak price seasonality. November 0.99098
This transitional behaviour likely reflects supply-side December 0.91473
adjustments or delayed market responses to weather
8.0
‘8 - 2 2020
“ /0
i
S B 2015
6.5
6.0
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Fig 5: Seasonal plot of log transformed price series

The lowest seasonal index values are observed during the
winter months through December (0.91473) to February
(0.81159) due to post harvest effects. Also, lowest medians
and narrower IQRs appear during January to March (Figure
6), suggesting greater market stability and possibly peak
harvest periods. February, despite having a similar median to
January, includes fewer extreme values, reinforcing a pattern
of relative price homogeneity in early months. Also, outliers
are most prominent from June to November, suggesting
intermittent price spikes (Figure 6). The spread of the data
(IQR) is not uniform across months, with highest variability
particularly in June-September. For market stabilization, these
insights can guide intervention timing, such as minimum
support pricing or procurement in June-August while for
producers, this provides a temporal window for maximizing
returns, whereas for consumers and policymakers, it
emphasizes months of heightened price risk.

The pronounced seasonal patterns exhibited by the monthly
tomato price series make it highly suitable for modelling
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applications, such as the utilization of SARIMA models to
explicitly capture and account for these observed seasonal
dynamics. Some years (e.g., 2017) exhibit relatively stable
prices throughout the year, while others, particularly post-
2020, show steep increase and decrease, reflecting greater
instability and unpredictability in prices post-2020 (Figure 5).
Furthermore, both the trend component in decomposition plot
in Figure 4 and the seasonal plot in Figure 5 suggests the
presence of an increasing long-term trend in the series, with
tomato prices gradually rising over the years. The trend
suggests a steady increase in prices over time, which
accelerates post-2020. The analysis of the monthly tomato
price series reveals a statistically significant upward trend, as
demonstrated by a fitted linear trend model. A linear
regression model was employed to estimate the trend,
specified as:

~ _ 56.6295

B 10.4172 ¢
Y = (71.7024)

(0.7873)
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Fig 6: Boxplot depicting intra-annual price dispersion and central tendency

Table 3: Summary of linear regression results for linear trend model fit on monthly tomato prices

Metric Value Standard Error | T-Statistic| P-Value
Intercept 56.63 71.7024 0.79 0.431
Slope 10.42 0.7873 13.23 [<2.2x 1016
Multiple R-squared 0.5304 - -
F-statistic 175.1 - <2.2x 1016
Residual Standard Error | 447.1 (155 DF) - -

The results of the regression in Table 3 show the Intercept as
56.63 (p = 0.431), indicating that the initial value of the price
series is not statistically significant and Slope as 10.42
(p<2x10716), suggesting a highly significant upward trend
with an average increase of approximately Rs. 10.42 per
quintal per month, translating to an annual increase of Rs.
125.04 per quintal. The F-statistic of 175.1 (p<2.2x107%%) on 1
and 155 df further underscores the significance of the overall
model. Although the linear trend model offers ease of
interpretation particularly through its slope coefficient which
reflects the average monthly rate of change it fails to
adequately capture the underlying seasonality & variability in
the tomato price series. The coefficient of determination (R?)
from the linear trend model stands at 0.5304, indicating that

only approximately 53% of the variation in prices is explained
by the linear trend, leaving a substantial proportion
unaccounted for. This is further established by the high
Cuddy-Della Valle Index (CDVI) in Table 5, which adjusts
for the loss of degrees of freedom and suggests a weak
explanatory power of the model and high instability in the
price series. To improve model performance, higher-order
polynomial trend models such as quadratic and cubic models
were fitted as shown in Figure 7. However, the corresponding
increases in the R2 values, 0.5504 for the quadratic model and
0.5599 for the cubic model are marginal improvements over
linear trend model and insufficient to meaningfully improve
the explanatory power of the deterministic trend models.

y=10.417x + 67.047
3500 = 0.050%% 42,6324 268,157

¥= =0.001x" +0.25Lx*

9.90Lx + 428,487

3000

2500

2000

Price (Rs/Quintal)

1000

500

212 014 2016

= Price Data
= Linear Trend
Quadratic Trend
Cubie Trand

2018
Yaar

2020 022 2024

Fig 7: Visualisations of the fit of linear, quadratic and cubic trend models to tomato price series data
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These findings highlight the limitations of deterministic trend
models in capturing the complexity and stochastic nature of
price dynamics, particularly in the context of agricultural
commodities that are subject to supply shocks, demand
fluctuations, and seasonal patterns. Consequently, this
justifies the shift towards stochastic modeling frameworks
such as ARIMA that account for both deterministic trends and
random disturbances. Additionally, the Compound Annual
Growth Rate (CAGR) of tomato prices was also estimated
based on the following exponential growth model, which
allows for an interpretation of growth on a multiplicative
scale specified as

https://www.mathsjournal.com

P, = 267.43(1.01232)¢

This functional form ensures that the percentage growth rate
is more accurately captured, particularly when the data exhibit
exponential-like behaviour over time. The log transformation
linearizes exponential growth, making the coefficient of time
interpretable as a monthly growth rate, which translates to
approximately 15.83% annually for tomato price series as
shown,

Compound Annual Growth Rate = (e%146%¢8 — 1) x 100 ~ 15.83%

Table 4: Summary of log-linear regression for the exponential growth model

Metric Value Standard Error T-Statistic P-Value
Intercept 5.5889 0.0541 103.30 <2.2x107'¢
Slope (1) 0.0122 0.0006 20.62 <2.2x10°16
Multiple R-squared 0.7328 - - -
F-statistic 425 - - <2.2x10716
Residual Standard Error 0.3373 (155 DF) - - -

Given the statistically significant coefficients (Table 4), both
Intercept (5.5888700, p value < 0.001) and Slope (0.0122473,
p value < 0.001) of the corresponding log-lin form of the
specified model, high adjusted R? (0.7311), and lowest
residual error as well as low instability indicated by low
CDVI value (Table 5), the log-linear trend model is most
appropriate for modeling the deterministic growth trend as
well as efficiently proving the robustness of log
transformation for tomato price for reducing instability in the
time series effectively, which is central to economic and
policy analyses.

series by minimizing the residual sum of squares (RSS) across
various segmentations. To ensure robustness and account for
potential non-linearities in the price trajectory, three model
specifications of increasing complexity were considered i.e.
Mean Shift Model, Linear Trend Model and Quadratic Trend
Model. The optimal number of breakpoints for each
specification was identified as the one which minimised the
BIC value. The results of the Bai-Perron test have been
enlisted in Table 6.

Table 5: CDVI evaluations for various Model Specifications

To_lnvestlgate the presence_of s_tructural breqks_ln the time Model Specifications CDVI (%)
series of monthly tomato prices in Jabalpur district of India, Linear Trend Model 50.66
Bai-Perron multiple breakpoint test was employed. This Log-Lin model (Log transformed data) 513
method detects multiple endogenous breakpoints in a time
Table 6: Results of the Bai Perron test for structural breaks detection in tomato price series
Model Specification Optimal Number of Breakpoints Break Dates (Year-Month) RSS BIC
Mean Shifts 2 2015-07, 2020-04 24,921,906 {2356
Linear Trend 1 2020-04 24,929,008 | 2356
Quadratic Trend 2 2020-05, 2022-04 21,469,206 |2363

The presence of a common breakpoint around April-May
2020 (Figure 8) across all three specifications is particularly
noteworthy. This period coincides with the onset of the
COVID-19 pandemic and the imposition of nationwide
lockdowns in India, which severely disrupted agricultural
supply chains (Rajpoot et al., 2021) 'Y and likely caused a
regime shift in the price determination mechanism for
perishable commodities such as tomatoes. The second break
identified under the trend models (April 2022) may reflect
post-pandemic normalization or structural adjustments in the
market (e.g., changes in production practices, logistics, or
demand patterns). The earlier breakpoint identified by the
mean shift model (July 2015) could correspond to volatility
arising from climatic events, supply shocks, or changes in
government procurement or distribution systems.

Conclusion

This study investigates the temporal dynamics of wholesale
tomato prices in Jabalpur, emphasizing the critical need for
accurate pattern detection due to the commodity's inherently
high volatility. Seasonal analysis of tomato prices via
seasonal indices reveals peaks in June-July due to high
perishability, low shelf life and monsoon disruptions,
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followed by stabilization from August to November, and
lowest prices during December-February caused by post-
harvest effects. These patterns highlight the need for targeted
interventions to reduce price volatility and protect
stakeholders. Various deterministic trend models were fitted
to the price data wherein fitted linear trend model indicated a
significant upward average price increase of about 310.42 per
quintal monthly (3125.04 per quintal annually). Though,
quadratic and cubic models provided only marginal
improvements in fit compared to linear model, all of them
exhibited poor fit to tomato price data underscoring the
limitations of deterministic trend models in capturing the
complex and stochastic nature of agricultural prices. The
Compound Annual Growth Rate of approximately 15.83% in
tomato prices was estimated through fitted log linear model
confirming substantial long-term growth as well as the need
of Logarithmic transformation to cater to the high variance of
the tomato price series in Jabalpur.

Notably, structural breaks were detected using Bai Perron
structural breaks test around April-May 2020, coinciding with
the COVID-19 pandemic lockdowns, and again in April 2022,
likely reflecting market adjustments. Given the high variance
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inflation in the linear model and the superior variance
stabilization with log transformations, these findings support
employing stochastic models like ARIMA framework over

https://www.mathsjournal.com

deterministic ones for accurate forecasting of prices in the
volatile tomato market.
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Fig 8: F-Statistics plot for detecting the significance of the structural breaks detected in Tomato price data
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