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Abstract 

Tomato prices in Jabalpur exhibit significant seasonal fluctuations and high volatility, necessitating 

accurate detection of price patterns to inform effective policy and market interventions. Seasonal indices 

reveal peak prices during June (1.23) & July (1.48), driven by high perishability and monsoon 

disruptions, and troughs from December (0.91) to February (0.81) due to post-harvest supply. The fitted 

linear trend model (R2 = 0.5304) evidenced a statistically significant upward trajectory, indicating an 

average increase of ₹10.42/quintal per month (₹125.04/quintal annually), higher-order polynomial 

models like quadratic (R2 = 0.5504) and cubic (R2 = 0.5599) yielded only marginal improvements in 

model fit, and overall, all deterministic trend models failed to adequately capture the pronounced 

stochastic behaviour inherent in agricultural commodity prices. A log-linear model (adj. R2 = 0.7311), 

estimating a Compound Annual Growth Rate (CAGR) of 15.83%, highlights both long-term price growth 

and the importance of variance stabilization. Structural breaks, notably in April-May 2020 and April 

2022, correspond with COVID-19 related disruptions and market realignments after COVID 

respectively. Given the superior variance stabilization with logarithmic transformation and the 

inadequacy of deterministic models, stochastic trend approaches such as ARIMA are recommended for 

precise forecasting. 

 

Keywords: Compound Annual Growth Rate (CAGR), Cuddy-Della Valle Index, structural breaks, 

tomato price, seasonal indices, trend analysis, log-linear model 

 

1. Introduction 

The essential vegetable staples-tomatoes, onions, and potatoes-collectively known as 'TOP' 

commodities, serve as primary drivers of India's food price inflation and Consumer Price 

Index movements. These commodities exhibit pronounced seasonal patterns with respect to 

price fluctuations. This seasonality, primarily driven by crop production and harvesting cycles, 

significantly contributes to food price inflation in India. The 'TOP' commodity group has been 

found to account for a large proportion, ranging from 50 to 70%, of the overall variance in 

food inflation, underscoring its importance in India's inflationary dynamics (Pratap et al., 

2021) [10]. This volatility through its effects on overall inflation figures has far-reaching 

implications for both consumers and producers in the agricultural sector. Tomato (Solanum 

lycopersicum) is a horticultural crop of family Solanaceae, which is a culinary staple in all 

parts of the world. Tomatoes are a good source of several vitamins and minerals, such as 

vitamin C, potassium, vitamin K, and folate. As per historical data, tomatoes show higher price 

volatility (0.21) compared to onions (0.19) and potatoes (0.10), (NABARD, 2023) [8]. 

Tomatoes, being highly perishable with short crop duration, demonstrate substantial seasonal 

price fluctuations, though these episodes tend to be transient. Tomato prices are particularly 

volatile, often influenced by environmental factors such as irregular rainfall patterns and 

droughts, which can lead to supply shortages. Tomato price hikes have consistently made 

headlines in newspapers across several years. For instance, tomato prices skyrocketed by 

352% in one month (Business Standard, July 7, 2023), tomato prices soared to Rs 250 per kg 

in Delhi, Rs 200 in Mumbai (The Economic Times, July 10, 2023) and tomato prices crashed 

to Rs 2 per kg in Maharashtra's Narayangaon market (The Indian Express, September 20, 

2023). 
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While in 2021, Tomato prices in Tamil Nadu soared past 

₹100, govt stepped in with subsidised variety (Hindustan 

Times, November 24, 2021). 

Within this context, tomato price fluctuations have been 

particularly impactful, illustrating the dual challenges faced 

by consumers and farmers. For consumers, sudden spikes in 

tomato prices can lead to increased food expenditure, 

potentially forcing households to adjust their consumption 

patterns or reduce spending in other areas. India holds the 

position of the world’s second-largest producer of tomatoes, 

following China. As of 2021, the country’s annual tomato 

production is approximately 21 million tonnes, which 

accounts for roughly 11% of global tomato output. Madhya 

Pradesh boasts the highest production of tomatoes in India, 

often competing with states like Andhra Pradesh and 

Karnataka for the top spot. According to the Directorate of 

Marketing and Inspection (2021), Madhya Pradesh held the 

top position in tomato production, with production of 

2,805.07 thousand metric tonnes in the year 2020-21, 

followed by Andhra Pradesh (2,450.67 thousand metric 

tonnes). The tomato market in Jabalpur, Madhya Pradesh, 

plays an essential role in the regional and national supply 

chain due to its production volume and distribution 

capabilities. Understanding and analysing the temporal 

patterns in the tomato price series of the Jabalpur market 

facilitates the prediction of broader trends in the Indian 

tomato market, while offering valuable insights into 

underlying inflationary dynamics. This is particularly vital for 

meeting the demands of modern times and ensuring 

sustainable incomes for farmers. Strategic policies aimed at 

improving tomato production can enable farmers to schedule 

production effectively, optimize harvesting techniques, and 

develop efficient storage plans, ultimately stabilising price. 

Various studies have emphasized the importance of detecting 

price patterns for effective policy formulation and agricultural 

market management. Vasciaveo et al. (2013) [15] examined 

price co-movement between U.S. and Italian markets for 

wheat, corn, and soybean. Using cointegration and structural 

break tests, they find U.S. agri-prices drive Italian markets, 

with oil prices influencing U.S. trends. Anoopkumar (2014) [2] 

investigated intra-year price instability in Indian crops like 

cardamom and rubber, linking short-term volatility to 

seasonal supply cycles that adversely affect farmer incomes. 

Sendhil et al. (2023) [14] assessed rice and wheat market 

integration in India using cointegration and error correction 

models. The study reveals moderate wholesale-retail linkage 

and inefficiencies in price transmission. Santhosh Kumar et 

al. (2024) [13] explored soybean price dynamics in 

Gautampura using trend analysis, seasonal indices, CAGR, 

and CDVI. Findings highlight notable price instability and 

structural shifts driven by climatic and policy factors. 

 

2. Materials and Methodology 

2.1 Data 

The secondary time series data analysed in this study pertains 

to computed monthly tomato prices and arrivals from 

agricultural markets (Mandis) in Jabalpur district, Madhya 

Pradesh, India, spanning the period from June 2011 to June 

2024. The dataset was sourced from the AGMARKNET 

platform, an official initiative by the Department of 

Agricultural Marketing and Inspection under the Ministry of 

Agriculture, Government of India, accessible at 

https://agmarknet.gov.in. The study focuses on the Jabalpur 

district, encompassing key agricultural markets such as 

Sihora, Shahpura, Patan, and the Jabalpur Fruits and 

Vegetables Market. 

 

2.2 Time Series Decomposition 

A time series is conceptualized as a realization of a stochastic 

process { 𝑋𝑡 , 𝑡 ∈ 𝑍 }, where each observation 𝑋𝑡 represents a 

random variable indexed by discrete time. The comprehensive 

decomposition of time series reveals multiple interacting 

components through two fundamental approaches: additive 

and multiplicative decomposition models. In the additive 

decomposition model, the time series is represented as a linear 

combination of components, where the trend component 𝑇𝑡 

captures long-term directional movement, typically modeled 

as a deterministic or stochastic function of time. The seasonal 

component 𝑆𝑡 represents periodic recurring variations, 

mathematically expressed as a periodic function with fixed 

frequency. Cyclical components 𝐶𝑡 capture medium-term 

fluctuations, while the irregular component 𝐼𝑡 encapsulates 

residual randomness. This model is mathematically expressed 

as: 

 

𝑋𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐶𝑡 + 𝐼𝑡 

 

Alternatively, the multiplicative decomposition model 

presents a more complex interaction between components, 

where the time series is represented as a product of its 

constituent elements: 
 

𝑋𝑡 = 𝑇𝑡 ⋅ 𝑆𝑡 ⋅ 𝐶𝑡 ⋅ 𝐼𝑡 
 

The multiplicative model becomes particularly useful when 

the magnitude of seasonal and cyclical variations changes 

proportionally with the trend. Unlike the additive model, 

which assumes constant variance, the multiplicative model 

allows for dynamic scaling of components, capturing more 

nuanced patterns of change. 

 

2.3 Seasonal Index  

Seasonal Index is a statistical method used to quantify 

periodic variations in time series data. The core objective is to 

decompose a time series into its trend, seasonal, and irregular 

components. The methodology begins by calculating a 

centered moving average to smooth out seasonal fluctuations, 

represented by the equation. 
 

𝑀𝐴𝑡 =
1

𝑛
∑ 𝑋𝑡+𝑖

𝑛/2

𝑖=−(𝑛/2)

 

 

Where 𝑀𝐴𝑡 represents the moving average at time 𝑡 and 𝑛 is 

the number of periods in the moving average window. 

Subsequently, seasonal ratios are computed by dividing the 

original time series values by their corresponding moving 

averages, expressed as. 
 

𝑆𝑅𝑡 =
𝑋𝑡

𝑀𝐴𝑡
 

 

These ratios are then aggregated by seasonal period, 

calculating the average seasonal index using the formula, 
 

𝑆𝐼𝑠 =
∑ 𝑆𝑅𝑡[𝑠]𝑡

𝑘
 

 

Where, 𝑘 represents the number of years in the dataset and 

𝑆𝑅𝑡[𝑠] is the seasonal ratio for season s at time t. To ensure 
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the seasonal indices are meaningful, they are normalized to 

sum to the total number of seasons, using the equation 

 

𝑁𝑆𝐼𝑠 = 𝑆𝐼𝑠 ×
𝑚

∑ 𝑆𝐼𝑠
 

 

Where 𝑚 is the number of seasons. This process effectively 

explains seasonal variations, revealing the underlying 

seasonality and allowing for more accurate forecasting and 

removal of seasonal effects for analysis of long term patterns 

in the time series data. 

 

2.4 Trend Models  

Trend models such as Linear trend model 𝑌𝑡 = β0 + β1𝑡 + ε𝑡 , 

where ϵ𝑡 ∼ 𝑖. 𝑖. 𝑑. 𝑊𝑁(0, 𝜎2) capture constant rates of change 

using ordinary least squares estimation. Polynomial models 

such as quadratic 𝑌𝑡 = β0 + β1𝑡 + β2𝑡2 + ε𝑡 and cubic 𝑌𝑡 =
β0 + β1𝑡 + β2𝑡2 + β3𝑡3 + ε𝑡 forms accommodate non-linear 

relationships with turning points and complex S-shaped 

curves respectively. Exponential growth models of form, 𝑌𝑡 =
β0𝑒β1𝑡ε𝑡 are linearized through logarithmic transformation 

(log-lin form) to capture exponential growth patterns with 

constant percentage rates (Hamilton, 1994).  

 

2.5 Compound Annual Growth Rate (CAGR) 

Compound Annual Growth Rate (CAGR) measures the mean 

annual growth rate over specified period longer than one year 

via an exponential growth model expressed as, 

𝑃𝑡 = 𝑎0(1 + 𝑏)𝑡 

where 𝑃𝑡 represents the price at time 𝑡, 𝑎0 denotes the 

constant term, and 𝑏 represents the growth rate. To facilitate 

estimation using ordinary least squares, the equation was 

transformed into specified log-lin form, ln 𝑃𝑡 = ln 𝑎0 +
𝑡 ln(1 + 𝑏). This logarithmic transformation enables linear 

regression analysis while preserving the exponential nature of 

price growth patterns. 

 

2.6 Time Series Instability Index 

To evaluate price series instability, the Cuddy-Della Valle 

Index (CDVI) methodology was employed. This approach 

quantifies instability through the formula: 

 

𝐶𝐷𝑉𝐼 = 𝐶𝑉 × √(1 − 𝑅2) 

 

Where 𝐶𝐷𝑉𝐼 represents the instability index (%), 𝐶𝑉 denotes 

the coefficient of variation (%), and 𝑅2 is the coefficient of 

multiple determination. The index provides a comprehensive 

assessment of market instability that accounts for both the 

degree of variation and the explanatory power of the 

underlying trend model, where lower values (< 15%) indicate 

consistent trends and higher values suggest volatile patterns, 

thereby determining the reliability of trend projections 

throughout the study period. 

 

2.7 Quantile-Quantile (Q-Q) plot 

The Q-Q plot compares the quantiles of two datasets or 

compares a dataset against a theoretical distribution (i.e. 

Normal distribution). If the distributions are similar, the 

points will approximately lie on a straight line. 

 

2.8 Bai-Perron Methodology for Multiple Structural 

Breaks Detection 

The Bai-Perron methodology (Bai & Perron, 1998; 2003) [3] 

identifies multiple structural breaks in time series data 

through endogenous detection without prior specification of 

break locations. The method employs a linear regression 

model with multiple structural breaks: 

 

𝑦𝑡 = 𝑋𝑡
′β𝑗 + 𝑢𝑡,    𝑡 = 𝑇𝑗−1 + 1, … , 𝑇𝑗 and 𝑗 =  1, … , 𝑚 + 1 

 

Where 𝑦𝑡 is the dependent variable, 𝑋𝑡 is a vector of 

explanatory variables, β𝑗 are segment-specific coefficients, 𝑢𝑡 

is the i.i.d. error term, 𝑇𝑗 are unknown break dates, and 𝑚 is 

the number of structural breaks creating 𝑚 + 1 regimes. 

The estimation procedure minimizes the sum of squared 

residuals (SSR) across all possible sample partitions subject to 

minimum segment size constraints ε ∈ (0, 0.5) using dynamic 

programming. The framework provides several tests including 

the 𝑆𝑢𝑝𝐹 test for no breaks (𝐻0: 𝑚 = 0) usingsup
𝑚≤𝑀

sup 𝐹 (𝑚), 

sequential SupF(𝑙 + 1|𝑙) tests, Double Maximum tests 

(𝑈𝐷𝑚𝑎𝑥 and 𝑊𝐷𝑚𝑎𝑥), and employs BIC and Schwarz 

Criterion for optimal number of breaks selection.  

 

3. Results and Discussion 

The time series plot of the monthly average tomato arrivals 

and prices in Jabalpur district is illustrated in the Figure 1. 

The time plot of the monthly tomato price series reveals a 

clear upward trend, indicating a general increase in tomato 

prices over the years. In contrast, the monthly tomato arrival 

series exhibits a downward trend, possibly due to a reduction 

in agricultural land area dedicated to tomato cultivation and 

disruptions in weather patterns. The tomato price series 

exhibits considerable temporal volatility, with heightened 

fluctuations observed during the period spanning 2020 to 

2024. Following a period of relative stability between 2011 

and 2016, the tomato prices demonstrate significant volatility, 

with pronounced peaks observed during the 2022-2023 

period. The monthly tomato arrival quantities exhibit 

temporal variability like the tomato price series. However, the 

series demonstrates noteworthy peaks around 2011-2012, 

suggesting periods of heightened arrival volumes and in the 

post-2020 period, the arrival quantities are lower compared to 

the earlier years. The tomato arrival quantities exhibit a 

relatively stable pattern with strong seasonal patterns, 

observed post-2020, indicative of consistent market 

conditions due to planting and harvesting cycles and minimal 

supply-side fluctuations. Notably, the post-2020 period is 

characterized by stability in arrival quantities, coinciding with 

the noted increase in price volatility. 

The descriptive statistics presented in Table 1 and the 

accompanying box plot in Figure 2 show that the average 

monthly tomato price is Rs. 879.59 per quintal, with average 

arrivals around 44.08 tonnes. The data demonstrates 

substantial variability, with the highest recorded tomato price 

being Rs. 3,630.43 per quintal in July 2023 and the lowest 

being Rs. 299.63 per quintal in February 2017. Similarly, the 

maximum tomato arrivals were 281.87 tonnes in September 

2012, while the minimum was 0.2 tonnes in May 2024. The 

data suggests an inverse relationship between tomato arrivals 

and prices, where periods of high arrivals coincide with lower 

prices, and vice versa. The monthly tomato arrival series 

demonstrates a substantially greater relative dispersion 

compared to the price series, as evidenced by the coefficient 

of variation. The skewness value of price series of 1.668056 

indicates significant positive asymmetry, suggesting the 

presence of an extended right tail in the distribution. The 

excess kurtosis measure of 2.97237 indicates that the 

distribution is leptokurtic, with a sharper peak and thicker 

tails compared to the normal distribution. This suggests a 
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significant deviation from normality. The Jarque-Bera test 

statistic of 135.04 strongly rejects the null hypothesis of 

normality, providing robust evidence of a significant 

departure from a normal distribution. The dataset's longer 

right tail indicates the presence of frequent outliers, which is 

further validated by the five outliers observed in the Box-plot 

of the price series in Figure 2. The arrival series demonstrates 

positive skewness (2.416) and leptokurtosis (excess kurtosis 

of 6.635), both indicative of a significant deviation of this 

series as well from normality. This is further substantiated by 

the elevated Jarque-Bera statistic of 454.67, strongly rejecting 

the null hypothesis of normality. The high degree of 

variability in the monthly tomato prices, as evidenced by the 

substantial standard deviation of 650.3188, underscores the 

need to apply logarithmic transformation to the price series in 

order to stabilize the variance. 

 

 
 

Fig 1: Monthly average tomato arrival and price series plot 

 
Table 1: Descriptive statistics of tomato price and arrival series of Jabalpur District 

 

Statistics Original Price Series Log Transformed Price Series Arrival Series 

Min 299.63 5.703 0.20 

1st Quartile 386.2 5.956 13.28 

Median 607.14 6.409 28.81 

Mean 879.59 6.556 44.08403 

3rd Quartile 1220.0 7.107 55.54 

Max 3630.43 8.197 281.87 

Standard Deviation 650.3188 0.6504925 50.23671 

Coefficient of Variation (CV) 0.7393 0.09921 1.1396 

Skewness 1.668056 0.4441703 2.416811 

Kurtosis 2.97237 -0.8686185 6.635363 

Jarque-Bera 𝜒2 135.04 9.8913 454.67 

Jarque-Bera p-value < 2.2×10-16 0.007114 < 2.2×10-16 

5th Percentile 322.0128 5.77459 4.433524 

95th Percentile 2093.81 7.646722 148.1156 

Interquartile Range (IQR) 833.75 1.150121 42.25794 

 

The lower standard deviation and coefficient of variation in 

the log-transformed price series indicate that the logarithmic 

transformation effectively stabilized the variance, which is a 

crucial prerequisite for time series modelling. Furthermore, 

the log-transformed price series displays a Jarque-Bera test 

statistic of 9.8913, suggesting a closer approximation to 

normality after the transformation. However, residual non-

normality persists, as evidenced by the deviations observed in 

the Q-Q plot in Figure 3. A logarithmic transformation of the 

monthly price series has been employed in this study for 

variance stabilization 
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Fig 2: Box plot of tomato price series 
 

 
 

Fig 3: Q-Q plot of original tomato price series and log transformed tomato price series 
 

The decomposition of the monthly tomato price series, 

displayed in Figure 4, follows a multiplicative approach due 

to increasing variance of the price series. The upward trend 

observed in tomato prices aligns with the trajectory of overall 

inflation in the economy. Inflationary pressures amplify the 

base cost of perishable commodities like tomatoes, leading to 

an inherent upward trend in their price series. Seasonal 

variations in tomato prices are deeply rooted in agricultural 

cycles influenced by planting and harvesting patterns, as well 

as climatic variables such as rainfall patterns. The seasonal 

component of Price series decomposition plot (Figure 4) 

shows recurring seasonal patterns, with prices peaking during 

mid-year months, which suggests that seasonal cycles 

strongly influence tomato prices irrespective of external 

shocks or trend. Superimposed on these long-term and 

seasonal patterns are random fluctuations triggered by 

extreme events such as unseasonal heavy rainfall, droughts, or 

pest infestations. For instance, anomalous monsoon patterns 

in recent years have disrupted supply chains, exacerbating 

scarcity and inflating prices to unprecedented levels. 

 

 
 

Fig 4: Multiplicative decomposition plot of tomato price series 
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The seasonal plot in the Figure 5 illustrates the fluctuations in 

the log transformed price variable across months from 2011 to 

2024. Notably, there are distinct peaks in the mid-year 

months, particularly around July, indicating that prices tend to 

increase in the middle of the year across multiple years. The 

observed prices in July are, on average, 48.1% higher than the 

annual average price as indicated by the highest seasonal 

index (Table 2) observed in July (1.48141). July, followed by 

June (1.23302) exhibit a pronounced surge in prices that may 

correspond to supply-demand imbalances due to the off-

season during these early monsoon months (Reddy et al., 

2018). August (1.09611) through December (0.91473) 

demonstrate indices close to unity, suggesting moderate 

deviations from the annual average price. Specifically, August 

shows a residual effect of the mid-year peak, while October 

(1.00351) marks the tapering off of the peak price seasonality. 

This transitional behaviour likely reflects supply-side 

adjustments or delayed market responses to weather 

disruptions such as delayed rainfalls causing crop damages 

and storage and logistics issues.  

 
Table 2: Monthly seasonal indices for tomato prices 

 

Month Seasonal Index 

January 0.80996 

February 0.81159 

March 0.82352 

April 0.82253 

May 0.95532 

June 1.23302 

July 1.48141 

August 1.09611 

September 1.00351 

October 1.03940 

November 0.99098 

December 0.91473 

 

 

 
 

Fig 5: Seasonal plot of log transformed price series 
 

The lowest seasonal index values are observed during the 

winter months through December (0.91473) to February 

(0.81159) due to post harvest effects. Also, lowest medians 

and narrower IQRs appear during January to March (Figure 

6), suggesting greater market stability and possibly peak 

harvest periods. February, despite having a similar median to 

January, includes fewer extreme values, reinforcing a pattern 

of relative price homogeneity in early months. Also, outliers 

are most prominent from June to November, suggesting 

intermittent price spikes (Figure 6). The spread of the data 

(IQR) is not uniform across months, with highest variability 

particularly in June-September. For market stabilization, these 

insights can guide intervention timing, such as minimum 

support pricing or procurement in June-August while for 

producers, this provides a temporal window for maximizing 

returns, whereas for consumers and policymakers, it 

emphasizes months of heightened price risk. 

The pronounced seasonal patterns exhibited by the monthly 

tomato price series make it highly suitable for modelling 

applications, such as the utilization of SARIMA models to 

explicitly capture and account for these observed seasonal 

dynamics. Some years (e.g., 2017) exhibit relatively stable 

prices throughout the year, while others, particularly post-

2020, show steep increase and decrease, reflecting greater 

instability and unpredictability in prices post-2020 (Figure 5). 

Furthermore, both the trend component in decomposition plot 

in Figure 4 and the seasonal plot in Figure 5 suggests the 

presence of an increasing long-term trend in the series, with 

tomato prices gradually rising over the years. The trend 

suggests a steady increase in prices over time, which 

accelerates post-2020. The analysis of the monthly tomato 

price series reveals a statistically significant upward trend, as 

demonstrated by a fitted linear trend model. A linear 

regression model was employed to estimate the trend, 

specified as: 

 

𝑦̂ =
56.6295

(71.7024)
+

10.4172 𝑡
(0.7873)
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Fig 6: Boxplot depicting intra-annual price dispersion and central tendency 
 

Table 3: Summary of linear regression results for linear trend model fit on monthly tomato prices 
 

Metric Value Standard Error T-Statistic P-Value 

Intercept 56.63 71.7024 0.79 0.431 

Slope 10.42 0.7873 13.23 < 2.2× 10-16 

Multiple R-squared 0.5304  - - 

F-statistic 175.1  - < 2.2× 10-16 

Residual Standard Error 447.1 (155 DF)  - - 

 

The results of the regression in Table 3 show the Intercept as 

56.63 (p = 0.431), indicating that the initial value of the price 

series is not statistically significant and Slope as 10.42 

(p<2×10−16), suggesting a highly significant upward trend 

with an average increase of approximately Rs. 10.42 per 

quintal per month, translating to an annual increase of Rs. 

125.04 per quintal. The F-statistic of 175.1 (p<2.2×10−16) on 1 

and 155 df further underscores the significance of the overall 

model. Although the linear trend model offers ease of 

interpretation particularly through its slope coefficient which 

reflects the average monthly rate of change it fails to 

adequately capture the underlying seasonality & variability in 

the tomato price series. The coefficient of determination (R²) 

from the linear trend model stands at 0.5304, indicating that 

only approximately 53% of the variation in prices is explained 

by the linear trend, leaving a substantial proportion 

unaccounted for. This is further established by the high 

Cuddy-Della Valle Index (CDVI) in Table 5, which adjusts 

for the loss of degrees of freedom and suggests a weak 

explanatory power of the model and high instability in the 

price series. To improve model performance, higher-order 

polynomial trend models such as quadratic and cubic models 

were fitted as shown in Figure 7. However, the corresponding 

increases in the R² values, 0.5504 for the quadratic model and 

0.5599 for the cubic model are marginal improvements over 

linear trend model and insufficient to meaningfully improve 

the explanatory power of the deterministic trend models. 

 

 
 

Fig 7: Visualisations of the fit of linear, quadratic and cubic trend models to tomato price series data 
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These findings highlight the limitations of deterministic trend 

models in capturing the complexity and stochastic nature of 

price dynamics, particularly in the context of agricultural 

commodities that are subject to supply shocks, demand 

fluctuations, and seasonal patterns. Consequently, this 

justifies the shift towards stochastic modeling frameworks 

such as ARIMA that account for both deterministic trends and 

random disturbances. Additionally, the Compound Annual 

Growth Rate (CAGR) of tomato prices was also estimated 

based on the following exponential growth model, which 

allows for an interpretation of growth on a multiplicative 

scale specified as 

𝑃𝑡 = 267.43(1.01232)𝑡 

 

This functional form ensures that the percentage growth rate 

is more accurately captured, particularly when the data exhibit 

exponential-like behaviour over time. The log transformation 

linearizes exponential growth, making the coefficient of time 

interpretable as a monthly growth rate, which translates to 

approximately 15.83% annually for tomato price series as 

shown, 

 

Compound Annual Growth Rate = (e0.146968 − 1) × 100 ≈ 15.83% 

 
Table 4: Summary of log-linear regression for the exponential growth model 

 

Metric Value Standard Error T-Statistic P-Value 

Intercept 5.5889 0.0541 103.30 < 2.2×10⁻¹⁶ 

Slope (t) 0.0122 0.0006 20.62 < 2.2×10⁻¹⁶ 

Multiple R-squared 0.7328 - - - 

F-statistic 425 - - < 2.2×10⁻¹⁶ 

Residual Standard Error 0.3373 (155 DF) - - - 

 

Given the statistically significant coefficients (Table 4), both 

Intercept (5.5888700, p value < 0.001) and Slope (0.0122473, 

p value < 0.001) of the corresponding log-lin form of the 

specified model, high adjusted R² (0.7311), and lowest 

residual error as well as low instability indicated by low 

CDVI value (Table 5), the log-linear trend model is most 

appropriate for modeling the deterministic growth trend as 

well as efficiently proving the robustness of log 

transformation for tomato price for reducing instability in the 

time series effectively, which is central to economic and 

policy analyses. 

To investigate the presence of structural breaks in the time 

series of monthly tomato prices in Jabalpur district of India, 

Bai-Perron multiple breakpoint test was employed. This 

method detects multiple endogenous breakpoints in a time 

series by minimizing the residual sum of squares (RSS) across 

various segmentations. To ensure robustness and account for 

potential non-linearities in the price trajectory, three model 

specifications of increasing complexity were considered i.e. 

Mean Shift Model, Linear Trend Model and Quadratic Trend 

Model. The optimal number of breakpoints for each 

specification was identified as the one which minimised the 

BIC value. The results of the Bai-Perron test have been 

enlisted in Table 6. 

 
Table 5: CDVI evaluations for various Model Specifications 

 

Model Specifications CDVI (%) 

Linear Trend Model 50.66 

Log-Lin model (Log transformed data) 5.13 

 
Table 6: Results of the Bai Perron test for structural breaks detection in tomato price series 

 

Model Specification Optimal Number of Breakpoints Break Dates (Year-Month) RSS BIC 

Mean Shifts 2 2015-07, 2020-04 24,921,906 2356 

Linear Trend 1 2020-04 24,929,008 2356 

Quadratic Trend 2 2020-05, 2022-04 21,469,206 2363 

 

The presence of a common breakpoint around April-May 

2020 (Figure 8) across all three specifications is particularly 

noteworthy. This period coincides with the onset of the 

COVID-19 pandemic and the imposition of nationwide 

lockdowns in India, which severely disrupted agricultural 

supply chains (Rajpoot et al., 2021) [11] and likely caused a 

regime shift in the price determination mechanism for 

perishable commodities such as tomatoes. The second break 

identified under the trend models (April 2022) may reflect 

post-pandemic normalization or structural adjustments in the 

market (e.g., changes in production practices, logistics, or 

demand patterns). The earlier breakpoint identified by the 

mean shift model (July 2015) could correspond to volatility 

arising from climatic events, supply shocks, or changes in 

government procurement or distribution systems. 

Conclusion 

This study investigates the temporal dynamics of wholesale 

tomato prices in Jabalpur, emphasizing the critical need for 

accurate pattern detection due to the commodity's inherently 

high volatility. Seasonal analysis of tomato prices via 

seasonal indices reveals peaks in June-July due to high 

perishability, low shelf life and monsoon disruptions, 

followed by stabilization from August to November, and 

lowest prices during December-February caused by post-

harvest effects. These patterns highlight the need for targeted 

interventions to reduce price volatility and protect 

stakeholders. Various deterministic trend models were fitted 

to the price data wherein fitted linear trend model indicated a 

significant upward average price increase of about ₹10.42 per 

quintal monthly (₹125.04 per quintal annually). Though, 

quadratic and cubic models provided only marginal 

improvements in fit compared to linear model, all of them 

exhibited poor fit to tomato price data underscoring the 

limitations of deterministic trend models in capturing the 

complex and stochastic nature of agricultural prices. The 

Compound Annual Growth Rate of approximately 15.83% in 

tomato prices was estimated through fitted log linear model 

confirming substantial long-term growth as well as the need 

of Logarithmic transformation to cater to the high variance of 

the tomato price series in Jabalpur. 

Notably, structural breaks were detected using Bai Perron 

structural breaks test around April-May 2020, coinciding with 

the COVID-19 pandemic lockdowns, and again in April 2022, 

likely reflecting market adjustments. Given the high variance 
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inflation in the linear model and the superior variance 

stabilization with log transformations, these findings support 

employing stochastic models like ARIMA framework over 

deterministic ones for accurate forecasting of prices in the 

volatile tomato market.  

 

 
 

Fig 8: F-Statistics plot for detecting the significance of the structural breaks detected in Tomato price data 
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