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Abstract

In the past few years, there are several authors have come up with coupled fixed point theorems in cone
metric space. The purpose of this paper to prove the existence of a coupled fixed point of some type of
contraction mappings defined on a complete cone metric space. It extends and generalizes many previous
coupled fixed point theorems.
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1. Introduction

Fixed point theory is a well-known and significant area in mathematics, with a wide range of
applications. In 2007, Huang and Zhang ! introduced the concept of cone metric spaces as a
generalization of traditional metric spaces. They proved the existence of a unique fixed point
for contractive mappings in complete cone metric spaces. Dajun Guo and V. Lakshmikantham
[21 established existence theorems for coupled fixed points for both continuous and
discontinuous operators, with applications to initial value problems of ordinary differential
equations with discontinuous right-hand sides. Bhaskar and Lakshmikantham [9 further
developed the theory by proving the existence of coupled fixed points for mixed monotone
mappings in partially ordered metric spaces.

In 2008, C. Di Bari [ presented a common fixed point theorem in cone metric spaces. Later,
in 2009 and 2010, I. Altun & 71 established several common fixed point theorems in cone
metric spaces and ordered cone metric spaces. Additionally, M. Arshad 31 and S. Radenovié
1161 poth in 2009, contributed further by proving common fixed point theorems in cone metric
spaces.

Preliminaries

Definition 2.1:  Let E be a real Banach Spaces. A subset P of E is called a cone if and only if
A). P is closed, non-emptyandp # 0

B)a,b € R,a,b=0andx,y € Pimply ax + by € P

C)Pn(=P)={0}

Given a cone P c E we define the partial ordering < with respect to P by x < y if and only if
y —x € P. We write x < y to denote that x < y but # y, while x << y will stand fory — x €
int.P.

Definition 2.2: ¥ Let X be a nonempty set. Suppose the mapping d: X x X — E satiafies the
following condition:

e 0<dxy)Vxy€eXandd(xy)=0=x=y

o d(xy)=d(y,x),Vx,y€X

e dxy) <dkxy)+dxy),VxyeEX
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Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 2.3: Let (X, d) be a cone metric space, {x,,} a sequence in X, {x,,} is a convergent sequence if there is some k € N
such that, forall n > k,

d(x,, x) L c;
Then x is called limit of the sequence {x,,}

Definition 2.4:11 Let (X, d) be a cone metric space, {x,} a sequence in X, {x, } is a Cauchy sequence if there is some k € N such
that, for all n,m > k,

d(xp, xm) K c;

Note that:
(i) Every convergent sequence in a cone metric space X is a Cauchy sequence.
(if) A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X

Bhashkar and Lakshmikantham in [ introduced the concept of coupled fixed point of a mapping F: X x X — X and investigated
some coupled fixed point theorems in partially ordered sets. They also discussed an application of their result by investigating the
existence and uniqueness of solution for a periodic boundary value problem. Sabetghadam et al. in ! introduced this concept in
cone metric spaces.

Definition 2.5: B Let F: X x X — X be mapping, an element (x,y) € X x X is called a coupled fixed point of mapping F if x =
F(x,y)and y = F(y,x)

3. Main Results
In this theorem, we extend and unify several well-known comparable results in the literature and results of M. Abbas et al. 2,

Theorem 3.1: Let X a non-empty set, (X, d) be a Cone metric space with cone P having non empty interior, F,G: X X X - X be
mapping satisfying the following conditions:

d(G(x, ), F(w,v)) < afd(x,w) + d(y,v)} + B {d(u, F(u, v)) + d(w, G (x, y))} + v{d(x, G (x, y))}

a

1 —
vV x,y,u,v € X where a, B,y E(O,E]Such that0 < h = TR

< 1 and Then F and G has a coupled fixed point in X.

Proof: Let x, and y, be arbitrary points in X. Let
Xir1 = F o i) Yierr = F i X))
Xis2 = G(Xpp1r Y1) Yiwz = GVir1r Xis1)

Now,
d(Xps10 Xkr2) = AF O, Vi), G (X1, Yier1))

< afd (-1, 1) + dYr-1, Y1)} + B {d (x, F (xpe, Yi) + d(xky G (X1, Y1)} + v{d =1, G (k1 Yier1)}
< afd (X1, i) + AW, Vi) 3 + B {d (e, Xper1) + d (e, Xper2)} + V{d (X1, Xier2}
< afd (g1, X)) + AW, Vi) } + B {d g1, Xi) + d (e, Xpe2)} + V{d (K1, Xier2}

< afd (X1, %) + AWk, Vi) 3 + B {d (g1, Xier2)} + v{d (i1, X2}
(1 =B —v) d(xps1, Xp2) < a{d (i, %) + dWier1, Vi) }

d (X1, Xper2) < #{d(xk' Xk+1) + AW Yier D} (1)

=)
AYVies1 Yier2) =A@V 9Wk+1)) = d(F Vier X1e), G Y1, Xi41))
< a{dWis1, i) + d(err, 1)} + B{d (i F Wi x1)) + d(Vier G W1, %i41))} + VA Gesrs G G, Xier 1))}
< a{d(Vis1, Yi) + A1, X1} + BLAWk Yiew1) + AWieo Vier2)} + VA Vi1 Yier1)}
< a{d(Vis1, Yid) + A1, 1)} + B LAk, Vi) + AW Vier2)} + VA Wier1s Yier1)}

< af{d(Yr+1, Vi) + A, X} + B LA Wks1s Yier2)} + VI Vkr1s Yier1)}
~g
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AWks1 Yier2) = BUAWkr1 Vier2)} = VIAWks1, Vier2)} < a{d i, Yier1) + d e, Xpe11)}

(1 =B =7) dWk+1, Yi+2) < a{d Vi, Yier1) + d g, Xper1)}

AdWk+1 Vier2) < #{d(}’k:%ﬁl) +d (g, XD} (2)

-y)

Now adding (1) and (2) we have

2a
d (X1 Xr2) + Vi1, Yir2) < m{d(xk: Xe+1) + AW Yier1)}
Similarly,

2a
d(Xp2 Xpe+3) + dVk2 Vi) < m{d(xkﬂ' Xi+2) T AWkr1, Vier2)}
And so on. Therefore

2a
d(xn, Xp41) + A, Yny1) < a- {d(xn-1, %) + d(pn_1, ¥)}

B=v)
d(xn’ Xn+1) + d(ym }’n+1) < h{d(xn—lixn) + d(}’n—p yn)}
Where 0 < h 2oy
ere =—-———————T
1-B-v)

d(xnt xn+1) + d(yn' yn+1) < hz{d(xn—Z'xn—l) + d(yn—z' yn—l)}

< hn{d(x(],xl) + d(}’o' yl)}

Now ifd(xnrxn+1) + d(ynr yn+1) =6,

Then,

8y ShSp_1 <h%5, 5 < iuv..<h"Syform>n
A, Xm) F AW Vi) < 81+ 0mea + v+ Gy
< ST+ A2+ L ......+h")
<8(1+h+h?>+h3+ ... ....+h™ "

ngq4 _ pm-n
_ ML= R,
- 1-h
(" — k™S
d e, xm) + Ay Ym) < Tho

n

1-nh

d(xn’ xm) + d(yn:ym) < 60 4 0 asn —>

It follows that for 0 << ¢ and for large n, we have

n

1-h

by <<c

d(xp, xm) + d(Yn, ym) << ¢

Hence by definition { d (x,,, x,,) + d(v,, ¥m)} is Cauchy sequence.

~g~
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Since,

d(xp, %) < d(xp, X)) + d (V) Yim)

And

AW Ym) < d(xn, X)) + d Y, Yim)

Again {x,} and {y,,} are cauchy sequence in x so 3 x,y € X such that x,, - x and y,, > y asn — oo.
Now we have to show that x = F(x,y) and y = F(y, x), on the contrary let we assume that x # F(x,y) and y # F(y, x)
So that,

d(F(x,y),x) =k >0and d(y,F(y,x)) =[>0

Consider,

a; = d(F(x,y),x)

< d(F(x,¥), Xp12) + d(Xpey2, %)

< d(xg42,%) + d(F (X, ¥), Xi42)

< d(xpq2,%) + d(GOpeyy, Yirr), F(x, 3))

< d(xps2, %) + af{d (a1, ) + AW, W} + B {d(x, F(x, ) + d(x, G (a1, Vier1))} + ¥{d Xier1, G Oierr, Vierr))}
< d(xpq2, %) + a{d Ctirr, ) + AW, W3+ B {d (6 F (1)) + d(x, xp42)} + {d (s n, Xier2)}
Ask - o

<0+a.0+ ,Bd(x,F(x, y)) + y{0}

a,=1-B)dF(x,y),x)<0

Which is a contradiction.

Therefore d(F(x,y),x) =0

x=F(xy)

Similarly we can prove that y = F(y, x)

It follows that x = G(x,y) and y = G(y, x)

So we have proved that (x, y) is common coupled fixed point of F and G.

Corollary: Let X a non-empty set, (X,d) be a Cone metric space with cone P having non empty interior, F,G: X X X - X be
mapping satisfying the following conditions:

d(6(x ), 6w, ) < afd(x,u) +d,v)} + B {d(w, G(u,v)) + d(w, G (x, )} + y{d(x, G (x, y))}

a

1--v

vV x,y,u,v € X where a, B,y €(0, %]such that0 < h = < 1and Then F and G has a coupled fixed point in X.
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