

ISSN: 2456-1452 NAAS Rating (2025): 4.49 Maths 2025; 10(12): 08-13 © 2025 Stats & Maths https://www.mathsjournal.com Received: 02-09-2025 Accepted: 05-10-2025

James Wamwenge

Department of Mathematics, School of Mathematics, College of Biological and Physical Sciences, University of Nairobi, Nairobi, Kenya

SK Moindi

Department of Mathematics, School of Mathematics, College of Biological and Physical Sciences, University of Nairobi, Nairobi, Kenya

Study of W₂ curvarture tensors on Lorentzian para-Kenmotsu manifolds

James Wamwenge and SK Moindi

DOI: https://doi.org/10.22271/maths.2025.v10.i12a.2203

Abstract

In this study we consider a class of Lorentzian Para- Kenmotsu manifolds (briefly l.p Kenmotsu). We study w_2 curvarture tensors in relation to w_2 -flatness, $w_2 - Q$, $w_2 \cdot \emptyset$, $w_2 - \varepsilon$, $w_2 - n$ and other conditions such as special n - Einstein manifold, Einstein manifold and n - Einstein manifold. Additionally, R(xy), $w_2 = 0$, w_2 , $w_2 = 0$ is also put into account

Keywords: Lorentzian para-Kenmotsu manifolds, w_2 -Curvature tensors, Einstein manifolds, paracontact manifold

Introduction

K. Matsumoto in 1989 introduced the notion of Lorentzian para contact particularly L.P sasakiani manifolds $^{[1]}$. Other geometer studied these manifolds widely such as Mihai and Matsumoto, Mihai and Rosca, Mihai, Shaika and de, Venkatesha and Bagewadi, Pradeel Kumar *et al* $^{[2]}$.

In 1970 Pokhariyal and Mishra introduced a new tensor field called w_2 curvature tensor on Riemannian manifold m on Riemannian correction is given by

$$w_2(x, y, z, u) = R(x, y, z, u) + \frac{1}{n-1} [g(x, z)s(y, u) - g(y, z)s(x, u)].....(1)$$

For R(x, y) is the Riemannian curvarture tensor,

s(x, y) the Ricci tensor on m

Equation (1) can be written as

$$w_2(xy)z + \frac{1}{n-1}[g(xy)Qy - g(yz)Qx]...$$
 (2)

Where Q = (n-1)

In the same context, Pokhariyal studied the properties of these curvature tensors on sasakian properties [4]. Matsumoto, Mihai and Rosca, extended these concepts to almost paracontact structures and studied p. s manifolds in relations to these tensors fields and the results were further generalized by De and Sarkar in 2009 Sinha and Sai Prasad described a class of almost paracontact metric manifolds referred to as para-Kenmotsu and special para-Kenmotsu (l. p Kenmotsu) manifolds [3].

In 2015 Sai Prasad studied w_2 curvarture tensor in a special- Kenmotsu manifolds [5].

Preliminaries

An (n)-dimensional differentiable manifolds admitting a (1,1) tensor field \emptyset killing vector ε , 1-form η and Lorentzian metric g(xy) satisfying the following condition

Corresponding Author: James Wamwenge

Department of Mathematics, School of Mathematics, College of Biological and Physical Sciences, University of Nairobi, Nairobi, Kenya

$$\emptyset^2 x = x(1 + n(1)\varepsilon.....$$

$$g(\emptyset x, \emptyset y = g(xy + \eta(x) \dots (y)) \dots \dots \dots$$

$$(4)$$

And
$$\eta(\varepsilon) = 1$$
, $\emptyset \varepsilon = 0$

$$g(x\varepsilon) = \eta(x)$$

$$\emptyset = \eta - 1$$

Is Lorentzian almost paracontact manifolds.

A Lorentzian almost para contact manifold. We have $\phi(xy) = \phi(yx)$ where $\phi(xy) = g(x, \phi y)$

A Lorentzian almost paracontact manifold m is called Lorentzian para -Kenmotsu manifold if

$$(\nabla_x \emptyset) y = -g(\emptyset \emptyset x, y) \varepsilon - \eta(y) \emptyset x$$

For all xy on m and ∇ is the operator of covariant differentiation with respect to the Lorentzian metric $(g)^{[6]}$ In the L.P.K. The following relations hold

$$\nabla_x \varepsilon = \emptyset^2 x = -x - n(x)\varepsilon$$

$$(\nabla y n)Y = -g(xy) - \eta(x)\eta(y)$$

Additionally, on the l. p Kenmotsu manifold the following condition holds

$$(\nabla_x \emptyset) y = -g(\emptyset x, y) \varepsilon - n(y) \emptyset x$$

$$\nabla_x \varepsilon = x + n(x)\varepsilon$$

$$(\nabla_x n)y = -g(xy) - n(x)n(y)$$

$$R(\varepsilon x)y = g(xy)\varepsilon - n(y)x$$

$$R(\varepsilon x)\varepsilon = -\nabla_x \varepsilon$$

$$\nabla_x \varepsilon = -x - n(x)\varepsilon$$

$$R(xy)\varepsilon = n(y)x - n(x)y$$

$$s(x\varepsilon) = (n-1)n(x)$$

$$Q\varepsilon = (n-1)\varepsilon$$

$$g(R(xy)z, \varepsilon) = n(R(xy)z)$$

$$n(R(xy)z = g(y,z)n(x) - g(y,z)n(y)$$

$$s(\emptyset x, \emptyset y) = s(x, y) + (n - 1)n(x)n(y)$$

for all vector fields x, y, y on M

- S Ricci tensor
- Q Ricci operator
- R Curvature tensor
- ∇ Levi-Civita connection

A Lorentzian para-Kenmotsu manifold M is said to be an η -Einstein manifold if its Ricci tensor satisfies the relation s(xy) is of the form [10]

$$S(xy) = a g(xy) + b \eta (x)\eta(y)$$

Where a and b are scalar function on m.

In particular if b = 0 then the manifold is said to be an Einstein manifold.

3. A w_2 - flat L.P Kenmotsu manifolds

Definition 3.1

An n dimensional L.p Kenmotsu manifold is termed as w_2 flat if its w_2 - curvature tensor satisfies the following condition

$$w_2(xy)z = o$$

Suppose the l. p Kenmstu manifold is w_2 flat then the following condition hold

$$w_2(xy)z = o$$

$$w_2(xy)z = R(xy)z + \frac{1}{n-1}(g(xz)Qy) - g(yz)Qx$$

$$R(xy)z = -g(xz)y + g(yz)x$$

$$g(yz)x - g(xy)z = -g(xz)y + g(yz)x - g(xy)z = g(xzy)$$

But

$$s(xy)z = (n-1)g(xy)z$$

$$g(xy)z = \frac{s(xy)z}{n-1}$$

Therefore

$$s(xy)z = (1 - n)g(xz)y$$

Let $z = \varepsilon$

$$s(xy)\varepsilon = (1-n)g(x\varepsilon)y$$

Contracting w, r, t ε

$$s(xy) = -(n-1)n(x)y$$

Theorem: A w_{2-} flat Lorentzian Para- Kenmotsu manifold is a special type of n -Einstein manifold.

4. A $\varepsilon - w_2$ flat LP Kenmotsu manifold

Definition $\overline{4.0}$ An n- dimensional lotrentzian Para-Kenmotsu manifold is said to be $\varepsilon-w_2$ flat if this condition holds

$$w_2(xy)\varepsilon=0$$

Let

$$w_2(xy)\varepsilon=0$$

Then

$$w_2(xy)\varepsilon = R(xy)\varepsilon + \frac{1}{n-1}(g(xz)Qy - g(yz)Qx)$$

$$w_2(xy)\varepsilon = R(xy)\varepsilon + \frac{1}{n-1}(g(x\varepsilon)Qy - g(y\varepsilon)Qx)$$

$$R(xy)\varepsilon = -g(x\varepsilon)y + g\frac{(y\varepsilon)Qx}{n-1}$$

$$g(y\varepsilon)x - g(x\varepsilon)y = -g(x\varepsilon)y + g(y\varepsilon)x$$

$$\frac{s(y\varepsilon)x}{n-1} = n(y)x$$

$$s(y\varepsilon)x = (n-1)n(y)x$$

$$g(y\varepsilon)x = n(y)x$$

$$g(y\varepsilon)g(xu) = n(y)g(xu)$$

$$\frac{n(y)s(xu)}{n(y)} = \frac{(n-1)g(xu)}{n(y)}$$

$$s(xu) = (n-1)g(xy)$$

Theorem: A $\varepsilon - w_2$ flat l.p Kenmotsu manifold is an Einstein manifold.

5. R. w₂ curvature tensors on Lorentzian Para Kenmotsu manifolds

Definition 5.1 A Lorentzian Para-Kenmotsu manifolds is said to be semi symmetric if it satisfies their condition [8,7]

$$R(xy).R = 0$$

R(xy) is considered as the derivation of the algebra at each point of the manifold.

Definition 5.2

A Lorentzian Para-Kenmotsu manifold satisfies the condition $R(xy)w_2 = 0^{[9]}$

Consider $R(\varepsilon x)w_2(uvy) = 0$

Considering R(xy) as the derivation of the tensor algebra at every point of the manifold x, y, u, v are vector fields

$$R(\varepsilon, x, w_2(u, v, y) - w_2(R(\varepsilon, x, u), v, y) - w_2(u, R(\varepsilon, x, v)y - w_2(u, v, R(\varepsilon, x, y))) = 0$$

$$\eta \big(w_2(u,v,y) \big) x - w_2(u,v,y,x) \varepsilon - n(u) w_2(x,v,y) + g(xu) w_2(\varepsilon vy) - n(v) w_2(u,x,y) + g(x,v) w_2(u,\varepsilon,y) \\ - n(y) w_2(u,v,x) + g(xy) w_2(u,v,\varepsilon)$$

Taking the inner product of above equation with ε and using equations

$$w_2(u, v, y, x) = -\frac{u}{(n-1)} [g(x, u)n(v)n(y) - g(x, v)n(u)n(y)] + \left[\frac{n-1+u}{n-1}\right] g(x, u)n(v)n(y) - g(x, u)n(y)n(v)$$
$$-\left[\frac{n-1+u}{n-1}\right] g(x, v)n(u)n(y) + g(xv)n(y)n(u)$$

But

$$R(u, v, y, x) = \frac{1}{n-1} [g(yu)s(xv) - g(yv)s(xu)]$$

Set: (i = 1, 2, ...) be on orthonormal basis with $\nabla e_i = 0$ let $x = u = e_i$ in the above equation and taking summation over i we get

$$s(yv) = -ng(yv) + n(y)n(v)$$

Hence w_2 curvature tensor on LP manifold is on n –Einstein manifolds

Theorem: w_2 curvature tensor on Lorentzian Para- Kenmotsu manifold satisfying the condition $R.w_2 = 0$ is on n -Einstein manifold.

6. w_2 Lorentzian para-Kenmotsu manifold satisfying the condition $w_2R=0$

Definition 6.1

A L.P-Kenmotsu manifold is said to satisfy the condition $w_2R = 0$

 \forall vector field x, y, z, u, v on $m^{[8]}$

i.e.,
$$w_2(uv) . R(xy)z = 0$$

Theorem: A w_2 LP-Kenmotsu manifold satisfies the condition $w_2R = 0$

$$w_2(uv) \cdot R(xy)z = w_2(u,v)R(x,y)z - R(w_2(u,v)x,y)z - R(xw_2(uv)y)z - R(xy)w_2(uv)z$$

Let $U = \varepsilon$ in the above equation

$$w_2(\varepsilon v)R(xy)z = w_2(\varepsilon, v)R(x, y)z - R(w_2(\varepsilon v)x, y)z - R(yw_2(\varepsilon v)y)z - R(xy)w_2(\varepsilon v)z$$

By

$$R(xy)z = g(yz)x - g(xz)y$$

$$R(\varepsilon v)w = g(vw)\varepsilon - g(\varepsilon w)v$$

$$= g(vw)\varepsilon - \eta(w)v$$

Compute the four terms separately gives Term (1)

$$w_2(\varepsilon v)R(xy)z$$

Let
$$R(xy)z = w$$

Then

$$w_2(\varepsilon v)w = R(\varepsilon v)w = \frac{1}{n-1}[g(xz)Qy - g(yz)Qx]$$

$$= g(vw)\varepsilon - g(\varepsilon w)v + g(\varepsilon w)y - g(\forall w)\varepsilon = 0$$

Second term

$$R(w_2(\varepsilon v)x, y)z$$

Let
$$w_2(\varepsilon v)x = w$$

$$R(wy)z = g(yz)w - g(wz)y$$

$$\Rightarrow g(yz)w_2(\varepsilon v)x - g(w_2(\varepsilon v)xz)y$$

$$\Rightarrow g(yz)w_2(\varepsilon v)x - g(w_2(\varepsilon v)x, z)y$$

$$w_2(\varepsilon v)x = R(\varepsilon v)x + \frac{1}{n-1}(g(xz)Qy - g(yz)Qx)$$

$$\Rightarrow g(vx)\varepsilon - g(\varepsilon x)v + g(\varepsilon x)v - g(vx)\varepsilon$$

 $\Rightarrow 0$

$$R(wy)z = 0$$

Third term

$$R(X W_2(\varepsilon, v)Y)Z$$

$$R(xw)z = g(wz) - g(xz)w$$

$$\Rightarrow g(w_2(\varepsilon v)y, z)x - g(xz)w_2(\varepsilon v)y, z)x$$

But
$$w_2(\varepsilon v)y = 0$$

Thus

$$R9yw)z = 0$$

Fourth term

$$R(XY)W_2(\varepsilon v)z$$

$$R(xy)w = g(yw) - g(xw)y$$

But
$$w(\varepsilon v)z = 0$$

$$thus = 0$$

References

- 1. Mburu FN, Njori PW, Gitonga C, Moindi SK. Study of *W*₉ curvature tensor on Lorentzian Para-Kenmotsu manifolds. International Journal of Statistics and Applied Mathematics. 2024.
- 2. Mburu FN, Njori PW, Gitonga C. Study of *W*³ curvature tensor on Lorentzian Para-Kenmotsu manifolds. Maths Journal. 2025. DOI:10.22271/maths.2025.v10.i7a.2100.
- 3. Mburu FN, Wahome J. On Lorentzian Para-Kenmotsu manifolds satisfying *W*₇-curvature tensor conditions. International Journal of Mathematics. 2025.
- 4. Prasad R, Haseeb A, Sen S, Bilal M. A study on W_6 and W_8 curvature tensors on an $(LPK)_n$ -manifold with a quarter-symmetric metric connection. International Journal of Analysis and Applications. 2025.
- 5. Pokhariyal GP, Mishra RS. Curvature tensors and their relativistic significance II. Yokohama Mathematical Journal. 1970.
- 6. Mishra AK, Prajapati P, Rajin R, Singh GP. On *M-projective* curvature tensor of Lorentzian β -*Kenmotsu* manifold. Bulletin of the Transilvania University of Brasov Series III Mathematics and Computer Science. 2024.
- 7. Haseeb A, Prasad R. Geometry of indefinite Kenmotsu manifolds as η-Ricci-Yamabe solitons. Axioms. 2022.
- 8. Zamkovoy S. On para-Kenmotsu manifolds. arXiv preprint. 2017.
- 9. Mondal A. η-Ricci solitons on para-Kenmotsu manifolds with curvature conditions. Korean Journal of Mathematics. 2019.
- 10. Erken İK. Yamabe solitons on three-dimensional normal almost paracontact metric manifolds, arXiv preprint, 2017.