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Optimal investment strategies for retirement: A 

stochastic interest rate approach using Garch type 

model 

 
Manasi Goral and Talawar AS 

 
Abstract 

This paper presents a stochastic optimal control model to determine optimal investment strategies in a 

defined contribution pension plan, accounting for pre-retirement phase under a stochastic interest rate 

environment. Unlike traditional models that assume constant risk-free rates, this study utilizes the 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) type models to capture the time-

varying and asymmetric volatility of interest rates, a key factor in retirement planning amid uncertain 

economic conditions. Wealth dynamics are modeled with investments in both a risky asset and a risk-free 

asset, where the risk-free rate follows a GARCH process to realistically reflect fluctuating interest rates. 

The resulting stochastic differential equations for wealth evolution incorporate both the volatility of the 

risky asset and the conditional heteroskedasticity of the interest rate. Simulation results indicate that 

optimal investment strategies are significantly influenced by the stochastic nature of interest rates, with 

implications for asset allocation shifts before retirement. By incorporating GARCH-type modeled interest 

rates, the approach provides a robust framework for managing risk and optimizing returns in retirement 

planning, offering valuable insights for pension fund managers and financial planners navigating 

dynamic interest rate environments. 

 

Keywords: Optimal control, investment policy, GARCH, asymmetric volatility and stochastic interest 

rate 

 

1. Introduction 

Effective retirement planning, especially within defined contribution pension schemes, 

requires tailored investment strategies that evolve through both wealth accumulation before 

retirement and wealth preservation afterward. The traditional models often assume constant 

interest rates, but this simplifying assumption limits their applicability in real-world conditions 

where interest rates are both volatile and asymmetric in response to economic shocks. Merton's 

foundational work on continuous-time portfolio optimization provided a valuable framework 

for dynamic investment strategies (Merton,1969, 1971) [7, 8]. However, the assumption of 

constant or deterministic interest rates is increasingly viewed as inadequate for modeling the 

complex behaviour of financial markets, particularly for long-term retirement planning 

(Cairns, 2000; Ricardo and Juan, 2008) [1, 12]. 

To address these limitations, recent research has incorporated stochastic interest rate models to 

capture real-world rate fluctuations more accurately. Processes such as Vasicek and Cox-

Ingersoll-Ross (CIR) introduced mean-reverting characteristics, which better approximate 

empirical interest rate behaviour (Vasicek, 1977) [13]. However, these models may not 

adequately capture asymmetric responses and volatility clustering, which are prevalent in 

financial data. In response, GARCH-type models, particularly EGARCH and GJR-GARCH, 

have been applied to model conditional volatility in interest rates. The EGARCH model is 

widely recognized for its ability to capture asymmetric volatility without requiring positivity 

constraints (Nelson, 1991) [9], while the GJR-GARCH model provides an alternative that 

effectively captures leverage effects, making it well-suited for rates that exhibit differing 

responses to positive and negative shocks (Glosten et al., 1993) [4]. 

In this study, we compare EGARCH and GJR-GARCH models in representing long-term 

interest rates for pre-retirement investment periods 
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By modeling long-term rates for wealth accumulation before 

retirement, the paper aims to address the objectives of the pre-

retirement phase. This approach enables a more responsive 

allocation strategy, where asymmetric volatility and varying 

risk exposures can be more precisely managed throughout the 

retirement horizon. Stochastic optimal control techniques, 

which have been applied in pension fund modeling and 

annuity contracts (Devolder et al., 2003; Charupat and 

Milevsky, 2002; Osu and Ijioma, 2012) [3, 2, 11], provide a 

robust framework for optimizing asset allocation strategies in 

such dynamic environments. Moreover, applications of 

stochastic differential equations further enhance the modeling 

of pension fund dynamics and optimal control solutions 

(Oksendal, 1998; Mallappa and Talawar, 2019; Lin et al., 

2023) [10, 6, 5]. 

In the present paper, our findings highlight the impact of 

using a dynamic interest rate model on optimal asset 

allocation before retirement, highlighting how EGARCH and 

GJR-GARCH models provide nuanced risk management tools 

for portfolio adjustments. This study offers actionable insights 

for pension fund managers and financial planners focused on 

maximizing retirement security in fluctuating economic 

conditions, demonstrating the value of distinct models for 

stochastic interest rate horizons. 

 

2. Materials and Methods 

This section formulates the retirement investment strategy, a 

defined contribution pension plan is considered, where 

benefits are paid by annuity. The problem is to find the best 

investment policy for the asset backing the pension liabilities 

of an investor in the plan before retirement. During the 

activity period, the contributions can be invested in a riskless 

asset or in a risky asset and the reserve obtained at retirement 

age is the amount accumulated without any special guarantee 

by the insurer. At the age of retirement this reserve is used to 

purchase a paid-up annuity. After retirement the insurer has to 

pay this guaranteed annuity. Because of the presence of the 

liability only after retirement, the problem is split into two 

periods before and after retirement (Devolder et al., 2003) [3]. 

A continuous-time stochastic model is considered and used 

the tools of stochastic optimal control theory (Oksendal, 

1998) [10]. In the present paper, the focus is on optimal 

investment plan before retirement under stochastic interest 

rate. 

The optimal control problem is defined as, 

State variable: The asset of pension plan is chosen as a state 

variable  

 𝐹(𝑡) (𝑡 ∈ [0, 𝑇 + 𝑁] (1)  

Decision variable: Following the classical model of Merton 

(1971) [8] the proportion invested in risky asset is chosen as 

the decision variable. 

The financial market is supposed to be described by two 

assets: 

Riskless asset with price dynamics: 𝑆1 

 

𝑑𝑆1(𝑡) = 𝑟𝑆1(𝑡)𝑑𝑡          (2) 

 

Risky asset with price dynamics: 𝑆2 

 

𝑑𝑆2(𝑡) = 𝛼𝑆2(𝑡)𝑑𝑡 + 𝜎𝑆2(𝑡)𝑑𝑊(𝑡)      (3) 

 

Where, W the standard Brownian motion. 

The proportion invested in the risky asset at time t is denoted 

𝑢(𝑡) and (1 − 𝑢(𝑡)) is the proportion in the riskless asset. 

The problem is to find optimal solution of 𝑢(𝑡). 

We model the wealth dynamics 𝐹(𝑡) over time, for the pre- 

retirement phase. The wealth 𝐹(𝑡) is allocated between a 

risky asset and a risk-free asset, with the following dynamics: 

 

𝑑𝐹(𝑡) = 𝐹(𝑡)[𝑢(𝑡)𝛼 + (1 − 𝑢(𝑡))𝑟(𝑡)]𝑑𝑡 +

𝐹(𝑡)𝑢(𝑡)𝜎𝑑𝑊(𝑡)  (4) 

 

Where, 𝑟(𝑡)is the stochastic interest rate on the risk-free 

asset, 𝛼 is the expected return on the risky asset, and 𝜎 is the 

volatility of the risky asset. 

Since 𝑟(𝑡) is the stochastic interest rate, we model the rates 

for the two cases: 

 

2.1. The EGARCH model  

Let 𝑟(𝑡)𝑙, denote the observed long-term interest rate and 𝑙 
stands for long term. 

 

The Mean equation is specified as: 

 

𝑟(𝑡)𝑐 = ∑ 𝜙𝑖𝑟𝑡−𝑖 + ∑ 𝜃𝑗𝑍𝑙𝑡−𝑗
𝑞
𝑗=1

𝑝
𝑖=1 + 𝑍𝑙𝑡  (5) 

 

Where,𝑍𝑙𝑡 is the innovation process,𝜃𝑗is the MA (moving 

average) coefficients, capturing the influence of past shocks 

on the current rate,𝜙𝑖 is the AR (autoregressive) coefficients, 

capturing the influence of past rates on the current rate, 

The exponential GARCH model, denoted by EGARCH (p, q), 

has the variance model as: 

 

log(𝜎(𝑡)𝑙) = 𝜔𝑙 + ∑ 𝛼𝑙𝑖
𝑍𝑙𝑡−𝑖

√𝜎(𝑡−𝑖)𝑙

𝑝
𝑖=1 + ∑ 𝛽𝑙𝑗log (𝜎

𝑞
𝑗=1 (𝑡 −

𝑗)𝑙) + ∑ 𝛾𝑙𝑘 |
𝑍𝑙𝑡−𝑘

√𝜎(𝑡−𝑘)𝑙
|

𝑝
𝑘=1   (6) 

            

Where, 𝜎(𝑡)𝑙 denotes a volatility process, 𝜔𝑙 is the constant 

term, controlling the baseline level of volatility, 𝛼𝑙𝑖’s are the 

parameters capturing the impact of past standardized returns 

on volatility (asymmetric shock terms),  

𝛽𝑙𝑗’s are the parameters representing the persistence of 

volatility and 𝛾𝑙𝑘’s terms allowing for asymmetric effects, 

where negative shocks can impact volatility differently than 

positive shocks. Where subscript 𝑙 for long-term interest rate. 

 

2.2. The GJR-GARCH model  

The mean Equation of GJR-GARCH is same as specified in 

equation (5). 

The GJR-GARCH model, denoted by GJR-GARCH (p, q), 

has the variance model as: 

 

𝜎(𝑡)𝑙 = 𝜔𝑙 + ∑ 𝛼𝑙𝑖𝑍𝑡𝑙−𝑖 
2 + ∑ 𝛽𝑙𝑗𝜎(𝑡)𝑙−𝑗 +

𝑞
𝑗=1

𝑝
𝑖=1

∑ 𝛾𝑙𝑖𝑍𝑙𝑡−𝑖
2𝑝

𝑖=1 𝐼           (7)  

 

Where, 𝜎(𝑡)𝑙 is the conditional variance of 𝑟(𝑡)𝑐, 

representing volatility at time t, 𝜔𝑙 is the constant, 𝛼𝑙𝑖 denotes 

the impact of past squared residuals (ARCH effect), capturing 

short-term volatility shocks.𝛾𝑙𝑖’sare the terms allowing for 

asymmetric effects, where negative shocks can impact 

volatility differently than positive shocks. 𝐼 is the indicator 

function (𝑍𝑡𝑙 < 0)and 𝛽𝑙𝑗’s are the GARCH term, capturing 

the persistence of volatility. Where subscript 𝑙 for long-term 

rates. 

 

2.3. Optimal Wealth Before Retirement 
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Before retirement (𝑡 ∈ [0, 𝑁]), period without liability 

wherein we optimize the utility of the final wealth at 

retirement. 

Therefore, the final wealth equation for before retirement is as 

follows: 

 

𝑑𝐹(𝑡) = 𝐹(𝑡)[𝑢(𝑡)𝛼 + (1 − 𝑢(𝑡))𝑟(𝑡)𝑙]𝑑𝑡 +

𝐹(𝑡)𝑢(𝑡)𝜎𝑑𝑊(𝑡)  (8) 

 

Where, 𝑟(𝑡)𝑙 is stochastic interest rate (long-term) modelled 

using either EGARCH or GJR-GARCH model. 

 

Objective function: The problem will be to optimize the 

expected utility of the final wealth at the end of the period. 

First period: Maximization of the expected utility of the total 

fund obtained at retirement age: 

 

max
u

𝐸𝑈(𝐹(𝑁))  (9) 

 

2.5. Optimal policy before retirement 

Using the classical tools of stochastic optimal control, to solve 

equation (9) with  

 

𝑑𝐹(𝑡) = 𝐹(𝑡)[𝑢(𝑡)𝛼 + (1 − 𝑢(𝑡))𝑟(𝑡)𝑙]𝑑𝑡 +

𝐹(𝑡)𝑢(𝑡)𝜎𝑑𝑊(𝑡),  
 𝐹(0) = 𝑃(0 ≤ 𝑡 ≤ 𝑁 )  

 

The value function of the problem is denoted by 

  

𝑊(𝑡, 𝐹, 𝑟(𝑡)𝑙) = max
u

𝐸[𝑈(𝐹(𝑁)|𝐹(𝑡) = 𝐹]  (10) 

 

The maximum principle leads to the following result 

(Hamilton- Jacobi method): 

 

0 = max
{u}

[
𝜕𝑊

𝜕𝑡
+ [𝑢(𝑡)(𝛼 − 𝑟(𝑡)𝑙 + 𝑟(𝑡)𝑙)]𝐹

𝜕𝑊

𝜕𝐹
+

1

2
𝑢2(𝑡)𝜎2𝐹2 𝜕2𝑊

𝜕𝐹2 + µ𝑟𝑙

𝜕𝑊

𝜕𝑟
+ 𝜎𝑟𝑙

2 𝜕2𝑊

𝜕𝑟𝑙
2 ]      (11) 

 

Or 0 = max
u

{𝜓} 

 

We can derive from these two equations and second order 

condition: 

 

(i). 𝜓(𝑢∗) = 0  (12) 

 

(ii). 
𝜕𝜓(𝑢∗)

𝜕𝑢
= 0  (13) 

 

(iii). 
𝜕2𝜓(𝑢∗)

𝜕𝑢2 < 0 

 

Therefore (13) gives 

 

0 = (𝛼 − 𝑟(𝑡)𝑐)𝐹
𝜕𝑊

𝜕𝐹
+ 𝑢(𝑡)𝜎2𝐹2 𝜕2𝑊

𝜕𝐹2       (14) 

 

Hence the optimal the optimal investment proportion 𝑢∗ in 

risky asset is  

 

𝑢∗(𝑡) = −
𝜕𝑊

𝜕𝐹⁄

𝐹(𝜕2𝑊
𝜕2𝐹

⁄ )

(𝛼−𝑟(𝑡)𝑐)

𝜎2   (15) 

 

Substituting this in equation (12), the partial differential 

equation for the value function is obtained as: 

𝜕𝑊

𝜕𝑡
+ 𝑟(𝑡)𝑙𝐹

𝜕𝑊

𝜕𝐹
−

1

2

(𝛼−𝑟(𝑡)𝑙)2

𝜎2

(𝜕𝑊
𝜕𝐹⁄ )

2

(𝜕2𝑊
𝜕2𝐹

⁄ )
+ µ𝑟𝑙

𝜕𝑊

𝜕𝑟
+ 𝜎𝑟𝑙

2 𝜕2𝑊

𝜕𝑟𝑙
2 =

0            (16) 

 

 With limit condition 𝑊(𝑡, 𝐹, 𝑟) = 𝑈(𝐹). 

Solving for the equation (16) for the value function W and 

replacing it in (15) the optimal policy is obtained. 

 

3. Results and Discussion 

The analysis uses daily data from Federal Reserve Economic 

Data (FRED) database, for the period January 1, 2022, to 

December 1, 2022. The DGS10 rates were chosen to model 

long-term interest rates, respectively, due to their relevance in 

retirement investment strategies. 

Since this phase typically spans multiple decades, it needs a 

rate that reflects long-term expectations for risk-free returns. 

Longer-term rates tend to be less volatile and better suited for 

reflecting the long-term nature of retirement saving, where the 

focus is on accumulating wealth over a significant period. A 

longer-term interest rate DGS10 (10-Year U.S. Treasury 

Rate) is considered for the study. Long-term interest rates, 

such as the 10-year Treasury yield (DGS10), exhibit slow 

mean reversion and are less volatile compared to short-term 

rates. Since they adjust gradually to macroeconomic 

conditions, even a one-year period can capture meaningful 

trends for stochastic modeling. 

 

3.1. Estimation of the Model Parameters 

3.1.1. EGARCH Model Estimation 

The model used to analyze the data is an EGARCH model for 

conditional variance dynamics with an Auto Regressive 

Fractional Integrated Moving Average (ARFIMA) mean 

structure. The parameters were estimated using the maximum 

likelihood method under a normal distribution assumption. 

The results are summarized in Tables below: 

 
Table 1: Parameter Estimates for EGARCH (2, 2) with ARFIMA (3, 

0, 4) 
 

Parameters Estimate Std. Error t-value p-value 

Mean Model Parameters 

µ𝑙 -0.000185 0.000000 -3524.9 0.000000 

AR(1) -0.562195 0.000121 -4647.5 0.000000 

AR(2) -0.099920 0.000027 -3730.4 0.000000 

AR(3) -0.446467 0.000147 -3027.7 0.000000 

MA(1) -0.346307 0.000142 -2435.5 0.000000 

MA(2) -0.598648 0.000182 -3292.8 0.000000 

MA(3) 0.398199 0.000155 2570.5 0.000000 

MA(4) -0.449825 0.000238 -1893.5 0.000000 

Variance Model Parameters 

𝜔𝑙 -0.223474 0.000065 -3464.4 0.000000 

𝛼𝑙1 -0.135514 0.000033 -4163.9 0.000000 

𝛼𝑙2 0.213894 0.000047 4539.1 0.000000 

𝛽𝑙1 0.681179 0.000168 4044.6 0.000000 

𝛽𝑙2 0.275256 0.000072 3831.7 0.000000 

𝛾𝑙1 0.692928 0.000179 -3860.9 0.000000 

𝛾𝑙2 0.496132 0.000144 3438.5 0.000000 

 

Table 2: Loglikelihood, AIC and BIC comparison of EGARCH 

Models 
 

Model Loglikelihood AIC BIC 

EGARCH(0, 1) 254.8218 -2.1835 -2.0778 

EGARCH(1, 1) 259.1678 -2.2041 -2.0683 

EGARCH(1, 2) 266.0853 -2.2386 -2.0576 

EGARCH(2, 2) 272.1538 -2.2657 -2.0394 
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Fig 1: ACF and Normal QQ plot of Standardized Residuals of EGARCH for DGS10. 

 

 
 

Fig 2: Plot of Actual versus fitted values of EGARCH model for DGS10. 

 

From the above model outputs, it is observed that the 

parameter estimates (Table 1) of EGARCH (2, 2) are 

significant, also the log-likelihood (Table 2) is maximum with 

the lowest AIC and BIC. The ACF and QQ plot (Figure 1) 

implies that most of the lags fall within the confidence band 

suggesting no autocorrelation in the residual and are normally 

distributed. The plot of actual versus fitted value (Figure 2) 

also shows that the model fits most of the observed values and 

also indicates that the model has captured the volatility of the 

long-term interest rate to some extent. Therefore, the 

EGARCH (2, 2) could be chosen for fitting the long-term 

interest rate. 

 

3.1.2. GJR-GARCH Model Estimation 

The model used to analyze the data is an GJR-GARCH model 

for conditional variance dynamics with an Auto Regressive 

Fractional Integrated Moving Average (ARFIMA) mean 

structure. The parameters were estimated using the maximum 

likelihood method under a normal distribution assumption. 

The results are summarized in Tables below. 

From the above model outputs, it is observed that the 

parameter estimates (Table 3) of GJR-GARCH (1, 1) are 

significant, also the loglikelihood (Table 4) is maximum with 

the lowest AIC and BIC. The ACF and QQ plot (Figure 3) 

implies that most of the lags fall within the confidence band 

suggesting no autocorrelation in the residual and they are 

normally distributed. The plot of actual versus fitted value 

(Figure 4) also shows that the model fits most of the observed 

values and also indicates that the model has captured the 

volatility of the long-term interest rate to some extent. 

Therefore, the GJR-GARCH (1, 1) could be chosen for fitting 

the long-term interest rate. 
 

Table 3: Parameter Estimates for GJR-GARCH (1, 1) with ARFIMA (2, 0, 2) 
 

Parameters Estimate Std. Error t-value p-value 

Mean Model Parameters 

µ𝑙 -0.000214 0.000003 -83.6456 0.000000 

AR(1) -0.884874 0.000076 -11654.4764 0.000000 

AR(2) 0.014557 0.000083 175.2033 0.000000 

MA(1) 0.040012 0.000002 20991.4096 0.000000 

MA(2) -1.035677 0.000064 -16272.1661 0.000000 

Variance Model Parameters 

𝜔𝑙 0.000173 0.000001 275.9036 0.000000 

𝛼𝑙1 0.000048 0.000030 1.6143 0.10647 

𝛽𝑙1 1.000000 0.000015 66061.0546 0.000000 

𝛾𝑙1 -0.056794 0.000292 -194.3459 0.000000 

 

Table 4: Loglikelihood, AIC and BIC comparison of GJR-GARCH Models 
 

Model Loglikelihood AIC BIC 

GJR-GARCH(0, 1) -7168.212 63.218 63.323 

GJR-GARCH(1, 1) 266.2895 -2.2669 -2.1311 
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GJR-GARCH(1, 2) 250.0632 -2.0975 -1.9164 

GJR-GARCH(2, 2) 247.1429 -2.0453 -1.8190 

 

 
 

Fig 3: ACF and Normal QQ plot of Standardized Residuals of GJR-GARCH for DGS10. 

 

 
 

Fig 4: Plot of Actual versus fitted values of GJR-GARCH model for DGS10. 

 

3.2. Optimal Policy and Sensitivity Analysis for long-term 

interest rates: The below plot illustrates pre-retirement 

wealth trajectories under different parameter settings: 

expected return (Alpha), volatility (Sigma) & risk aversion 

(Gamma). Each subplot corresponds to a unique combination 

of these parameters, allowing us to observe how different 

investment strategies and risk preferences affect pre-

retirement wealth accumulation over 20 years. 

 

 
 

Fig 5: Sensitivity Analysis for Pre-Retirement Wealth 

 

4. Key observations from Figure 5 

• Effect of Alpha (Expected Return): The last row 

corresponds to α = 0.09, while the other rows use α = 

0.07. Higher α (0.09) results in higher final wealth, 

indicating that increasing the expected return leads to 

better long-term wealth accumulation. 

• Effect of Sigma (Volatility): The middle row (σ = 0.4) 

shows greater fluctuations compared to the top row (σ = 

0.3) and bottom row (σ = 0.1). Higher σ (volatility) leads 
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to greater wealth variations, with some scenarios even 

experiencing a decline in wealth over time (middle row, 

leftmost plot). The bottom row (σ = 0.1) exhibits steadier 

growth, showing that reducing volatility smooths out the 

wealth trajectory. 

• Effect of Gamma (Risk Aversion): γ = 1 (leftmost) 

leads to higher average wealth accumulation but comes 

with higher fluctuations. γ = 2 (middle) shows moderate 

fluctuations and more controlled growth. γ = 3 

(rightmost) has the least fluctuation, with smoother but 

lower wealth growth. Higher γ leads to more conservative 

investment strategies, resulting in lower but more stable 

wealth growth. 

 

5. Conclusion and Recommendation 

Both EGARCH and GJR-GARCH models perform well for 

the long-term stochastic interest rates. When compared 

selection criterion, of EGARCH and GJR-GARCH, 

loglikelihood was maximum for EGARCH, the EGARCH 

model will be chosen to model the optimal investment policy 

for the long-term stochastic interest rates. 

A moderate risk aversion strategy (γ = 2) with controlled 

exposure to market volatility (σ between 0.15-0.25) and a 

return rate of α = 0.07 or higher appears to be the most 

effective approach for balancing growth and sustainability in 

a defined contribution pension plan. Overly conservative 

strategies may lead to wealth depletion, while excessive risk-

taking could cause major losses. A dynamic investment 

allocation that transitions from high-risk to low-risk assets 

over time is recommended to ensure financial security pre-

retirement. 
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