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Abstract 

The objective of this paper is to develop product methods of estimating population means under two-

phase sampling framework when information on an additional (second) auxiliary is readily available. 

This issue has been addressed by introducing a new approach, called a Redesigned Approach that 

brought out a reducible (generalized) product-type estimator comprising a family/class of estimators. 

Efficiency comparisons of some specific selected estimators of the class together with the classical two-

phase product estimator have been made. Some design-based properties of the proposed estimator have 

also been investigated and finally an empirical study has been included to understand the effectiveness of 

the proposed estimation technique quantitatively. 
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1. Introduction 
Consider a finite population 𝑈 =  {1, 2, … , 𝑖, … , 𝑁}. Let 𝑦 and 𝑥 be the study variable and an 
auxiliary variable taking values 𝑦𝑖  and 𝑥𝑖 respectively on the 𝑖th unit (𝑖 =  1, 2, … , 𝑁). Let 

𝑌 = ∑ 𝑦𝑖
𝑁
𝑖=1 𝑁⁄ , 𝑋 = ∑ 𝑥𝑖

𝑁
𝑖=1 𝑁⁄  be the population means and 𝑆𝑦

2 = ∑ (𝑦𝑖 − 𝑌)
2𝑁

𝑖=1 (𝑁 − 1)⁄ , 

𝑆𝑥
2 = ∑ (𝑥𝑖 −  𝑋)

2𝑁
𝑖=1 (𝑁 − 1)⁄  be the population variances of 𝑦 and 𝑥, and 𝑆𝑦𝑥 =

∑ (𝑦𝑖 − 𝑌)𝑁
𝑖=1 (𝑥𝑖 − 𝑋) (𝑁 − 1)⁄  be the population covariance between 𝑦 and 𝑥. It has already 

been established that the ratio method of estimation fails to estimate population mean 𝑌 with 
acceptable gain in precision when 𝑦 and 𝑥 are negatively correlated. However, in such a 
situation the product method of estimation works well depending on the strength of inverse 
relationship between the variables. 

The classical product estimator of 𝑌 essentially needs previous knowledge of the mean 𝑋 or 

total 𝑋 (= 𝑁𝑋). However, there are situations where neither 𝑋 nor 𝑋 is known in advance. The 
usual procedure is then to apply the two-phase or double sampling technique. When simple 
random sampling without replacement (SRSWOR) is entertained at each phase, the two-phase 
sampling scheme will be as follows:  

 A large preliminary sample called the first phase sample 𝑠1 (𝑠1 ⊂ 𝑈) of fixed size 𝑛1 is 
drawn to observe 𝑥.  

 Given 𝑠1, a second phase sample 𝑠2 (𝑠2 ⊂ 𝑠1) of fixed size 𝑛2 is drawn to observe 𝑦 only. 
 

Let 𝑥̅1 =
1

𝑛1
∑ 𝑥𝑖𝑖∈𝑠1

 be the sample mean of 𝑥 based on 𝑠1; 𝑦̅2 =
1

𝑛1
∑ 𝑦𝑖𝑖∈𝑠1

 and 𝑥̅2 =
1

𝑛2
∑ 𝑥𝑖𝑖∈𝑠2

 be the sample means of 𝑦 and 𝑥 respectively based on 𝑠2. Then the two-phase 

sampling classical product estimator for 𝑌 is defined by 
 

𝑡𝑃 = 𝑦̅2
𝑥̅2

𝑥̅1
 . 

 
The estimator, although biased, for large sample sizes the bias is customarily negligible. The 
approximate expression for the MSE is given by 
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𝑀(𝑡𝑃) = 𝑌
2

[𝜃2𝐶𝑦
2 + (𝜃2 − 𝜃1)(𝐶𝑥

2 + 2𝐶𝑦𝑥)],                  (1) 

 

where 𝜃1 =
1

𝑛1
−

1

𝑁
, 𝜃2 =

1

𝑛2
−

1

𝑁
, 𝐶𝑦

2 = 𝑆𝑦
2 𝑌

2
⁄ , 𝐶𝑥

2 = 𝑆𝑥
2 𝑋

2
⁄  and 𝐶𝑦𝑥 = 𝑆𝑦𝑥 𝑌⁄ 𝑋. Hence, 𝑡𝑃 performs better than the mean per unit 

estimator 𝑦̅2 when 𝜌𝑦𝑥𝐶𝑦 𝐶𝑥⁄ < − 1 2⁄ , 𝜌𝑦𝑥 being the correlation coefficient between 𝑦 and 𝑥. 

Substantial MSE reduction over 𝑡𝑃 can be brought either by remodeling the sampling scheme or by restructuring the estimator. 

But one of the simplest courses of action to achieve this is to reshape 𝑡𝑃 by engaging one or more additional auxiliary variables. In 

this paper, the goal is to consider some alterations over 𝑡𝑃 with the aid of an additional auxiliary variable 𝑧 to compose more 

précised product-type estimators. 

 

2. The Role of An Additional Auxiliary Variable 

Let us consider a survey situation where no prior information on 𝑋 or 𝑋 is obtainable but the values 𝑧1, 𝑧2, … , 𝑧𝑁 of a secondary 

auxiliary variable 𝑧 are accessible for the entire population such as the population mean 𝑍 = ∑ 𝑧𝑖
𝑁
𝑖=1 𝑁⁄  or total 𝑍 = 𝑁𝑍 is known 

precisely. It is also expected that 𝑧 is highly correlated with 𝑥. For instance, while estimating the infant mortality rate in a district, 

the infant mortality and number of educated married women for each village are likely to be unknown. But village-wise figures on 

female population or total population are readily available from census records. Then 𝑦, 𝑥 and 𝑧 are respectively the infant 

mortality, number of educated married women and female or total population. Here, the correlation between 𝑦 and 𝑥 is negative 

whereas the same between 𝑥 and 𝑧 is likely to be positive.  

The two-phase sampling mechanism involving 𝑛1 and 𝑛2 in this context is such that the preliminary sample 𝑠1 is used to collect 

measurements on (𝑥, 𝑧) whereas the second phase sample 𝑠2 is used to collect measurements on 𝑦 only. The key idea behind this 

is to make reasonable estimates for 𝑋 or 𝑋 based on the measured values of (𝑥𝑖 , 𝑧𝑖), 𝑖𝜖𝑠1. Of course, the precision of such an 

estimate is influenced by the strength of correlation between 𝑥 and 𝑧.  

Groundwork for the estimation of 𝑌 under the above background was instituted for the first time by Chand (1975) [1] and 

Sukhatme and Chand (1977) [4]. They have grown a chaining principle under which estimators for 𝑌 are designed from a classical 

two-phase estimator simply replacing first phase sample mean 𝑥̅1 by a better estimator of 𝑋 considering 𝑧 as an auxiliary variable 

and exploiting data on (𝑥, 𝑧) for 𝑠1. Afterwards, the said chaining technique was deliberated in great depth by Kiregyera (1980, 

1984) [2, 3] and consequently inspired several authors to construct large varieties of estimators. In these works, although more 

concentration was given for the ratio and regression-types estimators, only a few attempts have been made for producing product-

type estimators [see for example, Sahoo et al. (2006) [5], Sharma et al. (2014) [12]. But the present study emphasizes creation of 

estimators considering the two-phase product estimator 𝑡𝑃 as the base.  

Considering the kind of correlation that 𝑧 have with 𝑥 i.e., either positive or negative or both, selection of an 𝑠1 − based estimator 

for 𝑋 alternative to 𝑥̅1 can be made in line of Chand (1975) [1]. Hence, the ratio estimator 𝑥̅1𝑍 𝑧1̅⁄ , the product estimator 𝑥̅1𝑧1̅ 𝑍⁄  

and the regression estimator 𝑥̅1 − 𝑏𝑥𝑧(1)(𝑧1̅ − 𝑍) are likely to be more preferrable to 𝑥̅1. Accordingly, the following three 

estimators would be taken into consideration: 

 

Ratio-in-product estimator: 𝑡𝑅𝑃 = 𝑦̅2
𝑥̅2𝑧̅1 

𝑥̅1𝑍
  

 

Product-in-product estimator: 𝑡𝑃𝑃 = 𝑦̅2
𝑥̅2 𝑍

𝑥̅1𝑧̅1
 

 

Regression-in-product estimator: 𝑡𝑅𝐺𝑃 = 𝑦̅2
𝑥̅2

[𝑥̅1−𝑏𝑥𝑧(1)(𝑧̅1−𝑍)]
, 

 

where 𝑧1̅ =
1

𝑛1
∑ 𝑧𝑖𝑖∈𝑠1

 and 𝑏𝑥𝑧(1) =
∑ (𝑥𝑖−𝑥̅1)(𝑧𝑖−𝑧̅1)𝑖∈𝑠1

∑ (𝑧𝑖−𝑧̅1)2
𝑖∈𝑠1

 is the sample regression coefficient of 𝑥 on 𝑧 for 𝑠1. 

 

The asymptotic expressions for the MSEs of 𝑡𝑅𝑃 , 𝑡𝑃𝑃 and 𝑡𝑅𝐺𝑃 are as follows: 

 

𝑀(𝑡𝑅𝑃) = 𝑀(𝑡𝑃) + 𝑌
2

𝜃1(𝐶𝑧
2 + 2𝐶𝑦𝑧)                   (2) 

 

𝑀(𝑡𝑃𝑃) = 𝑀(𝑡𝑃) + 𝑌
2

𝜃1(𝐶𝑧
2 − 2𝐶𝑦𝑧)                   (3) 

 

𝑀(𝑡𝑅𝐺𝑃) = 𝑀(𝑡𝑃) + 𝑌
2

𝜃1(𝜌𝑥𝑧
2 𝐶𝑥

2 + 2𝜌𝑦𝑧𝜌𝑥𝑧𝐶𝑦𝐶𝑥),                (4) 

 

where 𝐶𝑧
2 = 𝑆𝑧

2 𝑍
2

⁄ , 𝐶𝑦𝑧 = 𝑆𝑦𝑧 𝑌⁄ 𝑍 such that 𝑆𝑧
2 = ∑ (𝑧𝑖 − 𝑍)

2𝑁
𝑖=1 (𝑁 − 1)⁄  and 𝑆𝑦𝑧 = ∑ (𝑦𝑖 − 𝑌)𝑁

𝑖=1 (𝑧𝑖 −  𝑍) (𝑁 − 1)⁄ ; 𝜌𝑦𝑧 and 

𝜌𝑥𝑧 are respectively correlation coefficients between 𝑦, 𝑧 and 𝑥, 𝑧. Hence, 𝑡𝑅𝑃 , 𝑡𝑃𝑃 and 𝑡𝑅𝐺𝑃 are likely to be more efficient than 𝑡𝑃 

if  

𝜌𝑦𝑧
𝐶𝑦

𝐶𝑧
< −

1

2
, 𝜌𝑦𝑧

𝐶𝑦

𝐶𝑧
>

1

2
  and 𝜌𝑦𝑧 < −

1

2
𝜌𝑥𝑧

𝐶𝑥

𝐶𝑦
 ,                 (5) 

 

respectively. These conditions denote that selection of ratio or product estimator for the unknown mean 𝑋 in terms of 𝑧 depends 

on the strength and magnitude of 𝜌𝑦𝑧 whereas selection of regression estimator depends on those of both 𝜌𝑦𝑧 and 𝜌𝑥𝑧. 
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In lieu of  𝑥̅1, 𝑥̅1
𝑍

𝑧̅1
,  𝑥̅1

𝑧̅1

𝑍
 and 𝑥̅1 − 𝑏𝑥𝑧(1)(𝑧1̅ − 𝑍) as estimators of 𝑋, Sahoo et al. (2006) [5] considered more generally a 

difference estimator 𝑥̅1 − 𝑑(𝑧1̅ − 𝑍) and accordingly defined a generalized estimator for 𝑌 by 

 

𝑡 = 𝑦̅2
𝑥̅2

[𝑥̅1−𝑑(𝑧̅1−𝑍)]
 . 

 

The estimators 𝑡𝑃, 𝑡𝑅𝑃, 𝑡𝑃𝑃 and 𝑡𝑅𝐺𝑃 run out as its special cases when 𝑑 = 0,
𝑥̅1

𝑧̅1
, −

𝑥̅1

𝑍
 and 𝑏𝑥𝑧(1) respectively. 

 

3. A Reducible Estimator Under a Redesigned Approach 

Many authors of course used Chand-Kiregyera (C-K) approach i.e., replacement of 𝑥̅1 by 𝑧 −based estimators in a classical 

estimator to compose various estimators for 𝑌. But they simply recommended estimators without giving any explanation on the 

technique adopted for their construction. However, the purpose here is to gain better improvements over 𝑡𝑃, in respect of 

efficiency, reformatting the Chand-Kiregyera approach. This approach may be called a Redesigned Approach, as explained below, 

in which the target is to use available ancillary information on 𝑧 at each phase. 

As said earlier, 𝑡𝑅𝑃, 𝑡𝑃𝑃 and 𝑡𝑅𝐺𝑃 are generated when 𝑥̅1 in the standard two-phase product estimator 𝑡𝑃 is replaced by 𝑥̅1
𝑍

𝑧̅1
,  𝑥̅1

𝑧̅1

𝑍
 

and 𝑥̅1 − 𝑏𝑥𝑧(1)(𝑧1̅ − 𝑍) respectively with the understanding that the later estimators are better than the former to estimate 𝑋 under 

certain conditions. On the other hand, we do admit that 𝑥̅2 offers a less efficient estimated value of 𝑋 than 𝑥̅1. Hence, this school 

of thought encourages an alternative option for 𝑥̅2 in respect of the second covariate 𝑧. But, to generalize our estimation technique 

we would like to engage a difference estimator 𝑥̅2 − 𝜂(𝑧2̅ − 𝑧1̅) in place of  𝑥̅2. At the same time, we also restrict to 𝑥̅1 −

𝛿(𝑧1̅ − 𝑍) as alternative to  𝑥̅1. These arrangements provide the following reducible or generalized product-type estimator:  

 

ℓ(𝐺) = 𝑦̅2
𝑥̅2−𝜂(𝑧̅2−𝑧̅1)

𝑥̅1−𝛿(𝑧̅1−𝑍)
 . 

 

The coefficients 𝜂 and 𝛿 used in ℓ(𝐺) are either suitable picked out constants or random variables converging to some finite 

values. But in the usual practice, they decide to maximize precision of the estimator. 

The flexibility characteristic of ℓ(𝐺) brings many estimators based on either one or two supplementary variables after suitable 

selections of the coefficients. This means that, it generates a class or family of product-type estimators for 𝑌. For the simplest case 

when 𝜂 = 0 and 𝛿 = 0, ℓ(𝐺) = 𝑡𝑃, the base estimator. But for 𝜂 = 0 and 𝛿 = 𝑑, ℓ(𝐺) = 𝑡, the generalized estimator defined above. 

This means for 𝜂 = 0, ℓ(𝐺) ⟶ 𝑡𝑅𝑃, 𝑡𝑃𝑃 and 𝑡𝑅𝐺𝑃 when 𝛿 =
𝑥̅1

𝑧̅1
, −

𝑥̅1

𝑍
 and 𝑏𝑥𝑧(1) respectively. Nevertheless, the following estimators 

are also some more specific cases of ℓ(𝐺) for appropriate options of the coefficients:  

 

𝑡11 = 𝑦̅2
𝑥̅2𝑧̅1

𝑥̅1𝑧̅2
, 𝑡12 = 𝑦̅2

𝑥̅2𝑧̅2

𝑥̅1𝑧̅1
, 𝑡13 = 𝑦̅2

𝑥̅2−𝑏𝑥𝑧(2)(𝑧̅2−𝑧̅1)

𝑥̅1
, 𝑡14 = 𝑦̅2

𝑥̅2(𝑧̅1)2

𝑥̅1𝑧̅2𝑍
  

 

𝑡15 = 𝑦̅2 
𝑥̅2𝑧̅2𝑍

𝑥̅1(𝑧̅1)2, 𝑡16 = 𝑦̅2

𝑥̅2−𝑏𝑥𝑧(2)(𝑧̅2−𝑧̅1)

𝑥̅1−𝑏𝑥𝑧(1)(𝑧̅1−𝑍)
 , 

 

where 𝑏𝑥𝑧(2) =
∑ (𝑥𝑖−𝑥̅2)(𝑧𝑖−𝑧̅2)𝑖∈𝑠2

∑ (𝑧𝑖−𝑧̅2)2
𝑖∈𝑠2

. 

 

4. Comparison of Some Selected Estimators 

For establishing effectiveness of our redesigned approach over C-K approach, we shall now make MSE comparisons between 

some selected estimators considered/elicited above. But to make the study more attainable, we limit it to two situations. In the first 

case it is assumed that 𝜌𝑥𝑧 > 0 so that only ratio estimators are considered in place of 𝑥̅2 or 𝑥̅1 or both. Considering structural 

resemblance, here we compare 𝑡11 and 𝑡14 with 𝑡𝑃 and 𝑡𝑅𝑃. In the second case, 𝜌𝑥𝑧 is presumed to be either positive or negative. 

On this ground, we are restricted to those estimators considering only regression estimators for either 𝑥̅2 or 𝑥̅1 or both and simply 

compare 𝑡13 and 𝑡16 with 𝑡𝑃 and 𝑡𝑅𝐺𝑃. 

 

Asymptotic MSE expressions of the comparable estimators are presented below: 

 

𝑀(𝑡11) = 𝑀(𝑡𝑃) + 𝑌
2

(𝜃2 − 𝜃1)(𝐶𝑧
2 − 2𝐶𝑦𝑧 − 2𝐶𝑥𝑧)                (6) 

 

𝑀(𝑡14) = 𝑀(𝑡𝑃) + 𝑌
2

[𝜃2(𝐶𝑧
2 − 2𝐶𝑦𝑧 − 2𝐶𝑥𝑧) + 2𝜃1(2𝐶𝑦𝑧 + 𝐶𝑥𝑧)]            (7) 

 

𝑀(𝑡13) = 𝑀(𝑡𝑃) − 𝑌
2

(𝜃2 − 𝜃1)(𝜌𝑥𝑧
2 𝐶𝑥

2 + 2𝜌𝑦𝑧𝜌𝑥𝑧𝐶𝑦𝐶𝑥)               (8) 

 

𝑀(𝑡16) = 𝑀(𝑡𝑃) − 𝑌
2

(𝜃2 − 2𝜃1)(𝜌𝑥𝑧
2 𝐶𝑥

2 + 2𝜌𝑦𝑧𝜌𝑥𝑧𝐶𝑦𝐶𝑥)              (9) 
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Throughout the present work, it is assumed that 𝜃2 − 2𝜃1 > 0 i.e., 𝑛2 <
𝑛1

2
. This condition of course is a very mild restriction 

satisfied in many survey situations and can be decided by the sampler at the planning stage without any appreciable increase in 

cost. 

In the following discussions, we obtain certain sufficient conditions to judge superiority of the selected estimators coming out 

under redesigned approach over their respective counterparts coming under C-K approach in respect of MSE. However, it may be 

remarked here that drawing out of necessary conditions is difficult. 

 

4.1. Comparison of 𝒕𝟏𝟏 and 𝒕𝟏𝟒 with 𝒕𝑷 and 𝒕𝑹𝑷  

From (1), (2) and (6), it is straightforwardly derived that 𝑀(𝑡11) < 𝑀(𝑡𝑃) and 𝑀(𝑡11) < 𝑀(𝑡𝑅𝑃) if  

 

𝜌𝑥𝑧
𝐶𝑥

𝐶𝑧
>

1

2
− 𝜌𝑦𝑧

𝐶𝑦

𝐶𝑧
  and  𝜌𝑥𝑧

𝐶𝑥

𝐶𝑧
> (

𝑘1

2
− 𝑘2𝜌𝑦𝑧

𝐶𝑦

𝐶𝑧
),                (10) 

 

respectively, where 𝑘1 =
𝜃2−2𝜃1

𝜃2−𝜃1
 and 𝑘2 =

𝜃2

𝜃2−𝜃1
(> 1).  

 

Note that 0 < 𝑘1 < 1 for 𝑛2 <
𝑛1

2
 and 𝑀(𝑡𝑅𝑃) < 𝑀(𝑡𝑃) if 𝜌𝑦𝑧

𝐶𝑦

𝐶𝑧
< −

1

2
. Hence, we may conclude that when 𝑡𝑅𝑃 is superior to 𝑡𝑃, 

𝑡11 is superior to both 𝑡𝑃 and 𝑡𝑅𝑃 if 

 

𝜌𝑥𝑧

𝐶𝑥

𝐶𝑧

> max (
1

𝑘1

,
1

4
) 

 

⟹ 𝜌𝑥𝑧
𝐶𝑥

𝐶𝑧
>

1

𝑘1
 .                        (11) 

 

Exactly in a similar way and omitting details of the derivations, we also deduce that when 𝑡𝑅𝑃 is more efficient than 𝑡𝑃, 𝑡14 is 

more efficient than both 𝑡𝑃 and 𝑡𝑅𝑃 if 

 

𝜌𝑥𝑧
𝐶𝑥

𝐶𝑧
> max (

1

𝑘2
,

1

4
).                       (12)  

 

Considering (6) and (7) it has been established that 𝑀(𝑡11) > or < 𝑀(𝑡14) in accordance with 

 

𝜌𝑦𝑧
𝐶𝑦

𝐶𝑧
< or 𝜌𝑦𝑧

𝐶𝑦

𝐶𝑧
>  −

1

2
 .                      (13) 

 

4.2 Comparison of 𝒕𝟏𝟑 and 𝒕𝟏𝟔 with 𝒕𝑷 and 𝒕𝑹𝑮𝑷  

From the MSE expressions (1), (4), (8) and (9), we directly see that both 𝑡13 and 𝑡16 would be more efficient than both 𝑡𝑃 and 𝑡𝑅𝐺𝑃 

if  

 

𝜌𝑦𝑧 > −
1

2
𝜌𝑥𝑧

𝐶𝑥

𝐶𝑦
.                         (14) 

 

But, under this condition 𝑡𝑅𝐺𝑃 is less efficient than 𝑡𝑃. Hence, both 𝑡13 and 𝑡16 are superior to 𝑡𝑃 and 𝑡𝑅𝐺𝑃 just when 𝑡𝑅𝐺𝑃 is 

inferior to 𝑡𝑃. In this sense the estimators 𝑡13 and 𝑡16 may be considered as complementary to 𝑡𝑅𝐺𝑃.  

In passing, to compare achievability of 𝑡13 and 𝑡16 in respect of MSE, it is found from (8) and (9) that 𝑀(𝑡13) < or > 𝑀(𝑡16) if  

 

𝜌𝑦𝑧 > −
1

2
𝜌𝑥𝑧

𝐶𝑥

𝐶𝑦
 or 𝜌𝑦𝑧 < −

1

2
𝜌𝑥𝑧

𝐶𝑥

𝐶𝑦
 .                   (15) 

 

5. Some Design-Based Properties of 𝓵(𝑮)   

To study conventional efficacy of the proposed reducible product estimator, we need expressions for their design-based bias and 

MSE. As the exact derivation of these expressions under a finite population set-up is not possible, we depend on the asymptotic 

expressions. However, omitting details to save, derived asymptotic bias and MSE expressions of ℓ(𝐺) are as follows:  

 

𝐵(ℓ(𝐺)) = 𝑌[(𝜃2 − 𝜃1)(𝐶𝑦𝑥 − 𝜂𝐷𝐶𝑦𝑧) + 𝜃1𝛿𝐷(𝛿𝐷𝐶𝑧
2 + 𝐶𝑦𝑧 − 𝐶𝑥𝑧)]            (16) 

 

𝑀(ℓ(𝐺)) = 𝑀(𝑡𝑃) + 𝑌
2

𝐷[(𝜃2 − 𝜃1)𝜂(𝜂𝐷𝐶𝑧
2 − 2𝐶𝑦𝑧 − 2𝐶𝑥𝑧) 

 

+𝜃1𝛿(𝛿𝐷𝐶𝑧
2 + 2𝐶𝑦𝑧)],                      (17) 

 

where 𝐷 = 𝑍 𝑋⁄ . 

 

As is known, the asymptotic bias of 𝑡𝑃 is given by 
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𝐵(𝑡𝑃) = 𝑌(𝜃2 − 𝜃1)𝐶𝑦𝑥, 

 

it cannot be zero as 𝜌𝑦𝑥 ≠ 0. Alternatively, expression (16) is not simple to provide practicable conclusions on the bias of ℓ(𝐺). 

However, in the following, we shall just derive some sufficient conditions for which 𝐵(ℓ(𝐺)) = 0. Because here our intention is to 

achieve improvement over 𝑡𝑃 in a certain sense. 

Assuming that 𝛿 ≠ 0, from (16) we have 𝐵(ℓ(𝐺)) = 0 when 𝐶𝑦𝑥 − 𝜂𝐷𝐶𝑦𝑧 = 0 and 𝛿𝐷𝐶𝑧
2 + 𝐶𝑦𝑧 − 𝐶𝑥𝑧 = 0. This means that ℓ(G) 

is asymptotically unbiased if 

 

𝜂 =
𝛽𝑥𝑦

𝛽𝑧𝑦
  and  𝛿 = 𝛽𝑥𝑧 −

𝛽𝑦𝑧

𝑅
 ,                     (18) 

 

where 𝛽𝑥𝑦 = 𝑆𝑦𝑥 𝑆𝑦
2⁄ , 𝛽𝑦𝑧 = 𝑆𝑦𝑧 𝑆𝑧

2⁄  etc. and 𝑅 = 𝑌 𝑋⁄ . 

 

The MSE expression provisionally determines some possible ranges or intervals for 𝜂 and 𝛿 in order that ℓ(𝐺) would be better than 

𝑡𝑃. From (17), 𝑀(ℓ(𝐺)) < 𝑀(𝑡𝑃) when 𝑄1 = 𝜂(𝜂𝐷𝐶𝑧
2 − 2𝐶𝑦𝑧 − 2𝐶𝑥𝑧) < 0 and 𝑄2 = 𝛿(𝛿𝐷𝐶𝑧

2 + 2𝐶𝑦𝑧) < 0.   

 

These conditions of course hold if the roots of the quadratic equations 𝑄1 = 0 in 𝜂 and 𝑄2 = 0 in 𝛿 are real and distinct, and 𝜂 and 

𝛿 lie between them. Finally, this leads to restrictions 

 

0 < 𝜂 + 𝛿 ≤ 2𝛽𝑥𝑧 or 2𝛽𝑥𝑧 ≤ 𝜂 + 𝛿 < 0.                   (19) 

 

Above obtained ranges for 𝜂 and 𝛿 provide guidelines to decide their values to improve accuracy of ℓ(𝐺) compared to 𝑡𝑃.  

Conditions (18) and (19) depending exclusively on 𝛽𝑦𝑧, 𝛽𝑥𝑧 , 𝛽𝑥𝑦, 𝛽𝑧𝑦 and 𝑅 would be competent enough to provide suitable 

values for the coefficients to make ℓ(𝐺) more productive than 𝑡𝑃 on the grounds of bias and efficiency. Sometimes this of course 

may not be feasible in the absence of known values of the said parameters. However, prior knowledge from past data or surveys 

or experience or even guessed values having close approximations to the true values may be very helpful for this purpose. It may 

also be noted that derived ranges for 𝜂 and 𝛿 in (19) are only necessary but not sufficient in the sense that other reasonable ranges 

can be sorted out for the purpose. 

 

6. Selections of Optimal Coefficients 

It is obvious that proper selections of the coefficients make the proposed reducible estimator more purposeful. Discussions on the 

ranges of determinations in the preceding section may be helpful to some extent in this regard. But what is more desirable is to 

obtain the best values, i.e., optimal values of the coefficients 𝜂 and 𝛿 which minimize MSE of ℓ(𝐺). Hence, with the aid of the 

usual optimizing technique, these optimal coefficients obtained from (17) are as follows:  

 

𝜂̂ = 𝛽𝑥𝑧 +
𝛽𝑦𝑧

𝑅
, 𝛿̂ = −

𝛽𝑦𝑧

𝑅
.                       (20) 

 

Using these optimal values, the minimum value of 𝑀(ℓ(𝐺)) is obtained as  

 

𝑀𝑚𝑖𝑛(ℓ(𝐺)) = 𝑀(𝑡𝑃) − 𝑌
2

𝐶𝑦
2 [(𝜃2 − 𝜃1) (𝜌𝑦𝑧 +

𝐶𝑥

𝐶𝑦
𝜌𝑥𝑧)

2

+ 𝜃1𝜌𝑦𝑧
2 ].            (21) 

 

𝑀𝑚𝑖𝑛(ℓ(𝐺)) may be interpreted as the minimum MSE bounds of ℓ(𝐺). An estimator whose MSE is equal to the said bound is 

designated as minimum MSE bound estimator of ℓ(𝐺). One such estimator that can be generated using optimal values 𝜂̂ and 𝛿̂ in 

ℓ(𝐺), is a product-type estimator defined by  

 

ℓ𝑃
(𝐺)

= 𝑦̅2

𝑥̅2−(𝛽𝑥𝑧+
𝛽𝑦𝑧

𝑅
)(𝑧̅2−𝑧̅1)

𝑥̅1+
𝛽𝑦𝑧

𝑅
.(𝑧̅1−𝑍)

. 

 

As in the case of range determination, here the optimal coefficients of 𝜂 and 𝛿 also require known values of the 

parameters 𝛽𝑦𝑧, 𝛽𝑥𝑧 and 𝑅 otherwise the optimum estimator ℓ𝑃
(𝐺)

 cannot be computed from the survey data. But on most occasions 

the parameters are unknown, and the normal practice is therefore to estimate them using available data on the second-phase 

sample 𝑠2. 

 

Let 𝑏𝑦𝑧(2) =
∑ (𝑦𝑖−𝑦̅2)(𝑧𝑖−𝑧̅2)𝑖∈𝑠2

∑ (𝑧𝑖−𝑧̅2)2
𝑖∈𝑠2

, 𝑏𝑥𝑧(2) =
∑ (𝑥𝑖−𝑥̅2)(𝑧𝑖−𝑧̅2)𝑖∈𝑠2

∑ (𝑧𝑖−𝑧̅2)2
𝑖∈𝑠2

 and 𝑟2 =
𝑦̅2

𝑥̅2
 respectively be the consistent estimators of 𝛽𝑦𝑧, 𝛽𝑥𝑧 and 𝑅 

based on 𝑠2. Then for computational purposes the optimum estimator shall be defined in the following manner: 

 

ℓ̂𝑃
(𝐺)

= 𝑦̅2

𝑥̅2 − (𝑏𝑥𝑧(2) + 
𝑏𝑦𝑧(2)

𝑟2
) (𝑧2̅ − 𝑧1̅)

𝑥̅1 +
𝑏𝑦𝑧(2)

𝑟2
 (𝑧1̅ − 𝑍)

.  
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Note that the use of sample estimates in preference to the respective unknown parameters does not make any change in the 

asymptotic MSE expressions of the resulting estimator i.e., 𝑀𝑚𝑖𝑛(ℓ(𝐺)) = 𝑀(ℓ̂𝑃
(𝐺)

).   

 

7. Comparison of 𝓵(𝑮) With 𝒕 

As said earlier, the generalized estimator 𝑡 constructed under the Chand-Kiregyera approach produces a system of estimators 

covering 𝑡𝑃, 𝑡𝑅𝑃 ,  𝑡𝑃𝑃 and 𝑡𝑅𝐺𝑃 as its perspective members. This system also remains as a subclass of estimators of the wider 

classes of estimators coming out of ℓ(𝐺) for 𝜂 = 0 and 𝛿 = 𝑑. But to uphold that our redesigned technique is better than the 

Chand-Kiregyera method, there is a need to comparison of ℓ(𝐺) with 𝑡 at least regarding MSE. Considering 𝜂 = 0 and 𝛿 = 𝑑, 

asymptotic expression for the MSE of 𝑡 can be directly obtained from (17) as  

 

𝑀(𝑡) = 𝑀(𝑡𝑃) + 𝑌
2

𝜃1𝑑𝐷(𝑑𝐷𝐶𝑧
2 + 2𝐶𝑦𝑧).                  (22)  

 

Hence, we have, 

 

𝑀(𝑡) − 𝑀(ℓ(𝐺)) = −𝑌
2

𝐷[(𝜃2 − 𝜃1)𝜂(𝜂𝐷𝐶𝑧
2 − 2𝐶𝑦𝑧 − 2𝐶𝑥𝑧) 

 

+𝜃1(𝛿 − 𝑑){(𝛿 + 𝑑)𝐷𝐶𝑧
2 + 2𝐶𝑦𝑧}] .                   (23)  

 

ℓ(𝐺) is therefore more efficient than 𝑡 if the expression within the square brackets of (23) is negative which of course results under 

multiple conditions. But, as in the previous discussions, here we report only some sufficient conditions. Hence, 𝑀(ℓ(𝐺)) ≤ 𝑀(𝑡) 

if  

 

0 < 𝜂 ≤ 2 (𝛽𝑥𝑧 +
𝛽𝑦𝑧

𝑅
) and 𝑑 < 𝛿 ≤ −2 (

𝛽𝑦𝑧

𝑅
+ 𝑑)                (24) 

 

or   

 

2 (𝛽𝑥𝑧 +
𝛽𝑦𝑧

𝑅
) ≤ 𝜂 < 0 and −2 (

𝛽𝑦𝑧

𝑅
+ 𝑑) ≤ 𝛿 < 𝑑.                (25) 

 

But if 𝛿 = 𝑑, then the first two ranges of (24) and (25) remain as sufficient conditions to make ℓ(𝐺) more effective than 𝑡.  

Note that the above derived sufficient conditions favoring ℓ(𝐺) of course difficult to check on many occasions. But they clearly 

indicate that there is scope for improving upon the formulated estimation strategy over that considered in Chand (1975) [1] and 

Kiregyera (1980, 1984) [2, 3]. However, this dilemma has been clarified below for optimum choices of the coefficients.  

The optimum value of 𝑑 minimizing 𝑀(𝑡) is 𝑑̂ = −
𝛽𝑦𝑧

𝑅
, and the resulting minimum MSE bound and the minimum MSE bound 

estimator are respectively given below according as 𝛽𝑦𝑧 and 𝑅 are known or estimated: 

 

𝑀𝑚𝑖𝑛(𝑡) = 𝑀(𝑡𝑃) − 𝑌
2

𝜃1𝐶𝑦
2𝜌𝑦𝑧

2                     (26)  

 

𝑡(𝐺) = 𝑦̅2
𝑥̅2

[𝑥̅1+
𝛽𝑦𝑧

𝑅
(𝑧̅1−𝑍)]

  or  𝑡̂(𝐺) = 𝑦̅2
𝑥̅2

[𝑥̅1+
𝑏𝑦𝑧(2)

𝑟2
(𝑧̅1−𝑍)]

 . 

 

As we see that 𝑀𝑚𝑖𝑛(ℓ(𝐺)) < 𝑀𝑚𝑖𝑛(𝑡), 𝑡 is less efficient than both ℓ(𝐺) regarding minimum MSE bound criterion. 

It has already been established that the four estimators 𝑡𝑃, 𝑡𝑅𝑃 , 𝑡𝑃𝑃 and 𝑡𝑅𝐺𝑃, and the estimators 𝑡11, 𝑡13, 𝑡14 and 𝑡16 considered 

earlier, are some distinct cases of ℓ(𝐺). These estimators are therefore less efficient than their minimum MSE bound estimator 

ℓ̂𝑃
(𝐺)

. On the same ground, 𝑡𝑃, 𝑡𝑅𝑃 , 𝑡𝑃𝑃 and 𝑡𝑅𝐺𝑃 being some cases of 𝑡 are always less efficient than 𝑡̂(𝐺). Further it is also noted 

that 𝑀(ℓ̂𝑃
(𝐺)

) < 𝑀(𝑡̂(𝐺)). Hence, these derived results lead to a conclusion that that 𝑡 may be inferior to ℓ(𝐺).  

 

8. An Alternative Reducible Estimator Under the Redesigned Approach 

Let us once again recall the methodology adopted in section 3 to compose ℓ(𝐺) under the redesigned approach. As another option, 

one should also like to prefer the difference estimator 𝑥̅2 − 𝜔(𝑧2̅ − 𝑍) instead of 𝑥̅2 − 𝜂(𝑧2̅ − 𝑧1̅) to replace 𝑥̅2 in 𝑡𝑃. This 

mechanism produces the following alternative estimator:  

 

ℓ𝐴
(𝐺)

= 𝑦̅2
𝑥̅2−𝜔(𝑧̅2−𝑍)

𝑥̅1−𝜆(𝑧̅1−𝑍)
. 

 

The estimator also arises as a particular case from the product-type estimator defined in Sharma et al. (2014) [12] where no 

explanation on the construction of the estimator has been provided. But here it is considered under our redesigned approach.  

Note that when 𝜂 = 𝜔 = 0 and 𝛿 = 𝜆 = 𝑑, ℓ(𝐺) = ℓ𝐴
(𝐺)

= 𝑡, and when 𝜂 = 𝜔 = 0 and 𝛿 = 𝜆 = 0, ℓ(𝐺) = ℓ𝐴
(𝐺)

= 𝑡𝑃. These results 

imply that the classes of estimators launched by ℓ(𝐺) and ℓ𝐴
(𝐺)

 are certainly overlapping. While analyzing design-based properties 
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of ℓ𝐴
(𝐺)

, the authors established that the class possesses the same minimum MSE bound as that of ℓ(𝐺) but with a different MSE 

bound estimator defined by ℓ̂𝐴𝑃
(𝐺)

= 𝑦̅2

𝑥̅2−(𝑏𝑥𝑧(2)+ 
𝑏𝑦𝑧(2)

𝑟2
)(𝑧̅2−𝑍)

𝑥̅1−𝑏𝑥𝑧(2)(𝑧̅1−𝑍)
. 

In view of these results, ℓ𝐴
(𝐺)

 is not considered in the present study. 

 

9. Empirical Study 

In the usual practice, the foregoing theoretical discussions/comparisons make the identification of a better estimator among others 

difficult. Hence, at this stage an empirical study has been carried out using data sets of 10 populations as described below for a 

quantitative analysis of the performance of different estimators. Nevertheless, to make the study manageable, we selected 

populations with 𝜌𝑥𝑧 > 0 so that ratio-in-product and regression-in-product type estimators would be taken into consideration. 

Hence, the estimators come under attention are 𝑡𝑃, 𝑡𝑅𝑃, 𝑡𝑅𝐺𝑃, 𝑡11, 𝑡13, 𝑡14, 𝑡16, 𝑡̂(𝐺) and ℓ̂𝑃
(𝐺)

. 

 

Description of the Populations 

 Population 1 [Montgomery, Peck and Vining (2012, p.556) [9]]: N = 32 automobiles, y = miles/gallon, x = displacement, 

z = horsepower  

 Population 2 [Gujarati and Porter (2009, p.51) [7]]: N = 27 years, y = civilian unemployment rate, x = civilian labor force 

participation rate, z = average hourly earnings  

 Population 3 [Bhuyan (2005, p.76) [6]]: N = 28 two times milking cows, y = daily milk production, x = weight of cow after 

lactation period, z = initial weight  

 Population 4 [Bhuyan (2005, p.77) [6]]: N = 28 three times milking cows, y = daily milk production, x = weight of cow 

after lactation period, z = initial weight  

 Population 5 [Steel and Torrie (1960, p.282) [13]]: N = 30 locations, y = Log of leaf burns in secs, x = nitrogen percentage, 

z = chlorine percentage  

 Population 6 [Montgomery, Peck and Vining (2012, p.558) [9]]: N = 27 Belle Ayr Liquefaction Runs, y = oil yield, x = coal 

total, z = carbon di oxide  

 Population 7 [Johnson and Wichern (2007, p.215) [8]]: N = 20 healthy females, y = sweat rate, x = potassium content, z = 

sodium content  

 Population 8 [Morrison (1990, p.470) [10]]: N = 26 lighter and heavier underweight young males, y = pigment creatinine, 

x = Phosphate level, z = calcium level  

 Population 9 [Bhuyan (2005, p.4) [6]]: N = 28 married couples of middle-class families, y = number of ever born children, 

x = education level of mother, z = education level of father  

 Population 10 [Rawlings, Pantula and Dickey (1998, p.396) [11]]: N = 40 plots (depth 1 and 2), y = sand percentage, x = 

clay percentage, z = silt percentage  

 

To examine the relative performance of the selected estimators, their percentage relative efficiencies (PREs) compared to the 

conventional estimator 𝑦̅2 whose variance is given by 𝑉(𝑦̅2) = 𝑌
2

𝜃2𝐶𝑦
2, have been computed. These computed values for 

different values of 𝑛1 and 𝑛2, meeting the restriction 𝑛2 <
𝑛1

2
, are compiled in table 1. 

 

After scrutiny of the tabulated figures, the findings are summarized in the following manner:  

 For all populations being taken into consideration, ℓ̂𝑃
(𝐺)

 gains the maximum precision amongst all in conformity with the 

theoretical findings. 

 Both 𝑡𝑅𝑃 and 𝑡𝑅𝐺𝑃 are more efficient than 𝑡𝑃. But, as is anticipated, efficacy of 𝑡̂(𝐺) is better than 𝑡𝑃, 𝑡𝑅𝑃 and 𝑡𝑅𝐺𝑃 in all cases.  

 𝑡𝑅𝐺𝑃 seems to be less efficient than 𝑡𝑅𝑃 for 3 populations. This means that selection of regression estimator in place of ratio 

estimator as a substitute of 𝑥̅1 cannot always enhance efficiency in estimation. 

 The estimators 𝑡11 and 𝑡14 are undoubtedly preferable to 𝑡𝑅𝑃, and both  𝑡13 and 𝑡16 are better than 𝑡𝑅𝐺𝑃. 

 Performance of 𝑡̂(𝐺) is better than 𝑡13 and 𝑡16 in 4 cases only whereas in other cases it appears to be worse than at least one of 

them. 

 
Table 1: PREs of Different Estimators 

 

Est. 

Population (𝒏𝟏, 𝒏𝟐) 

1 

(12,5) 

2 

(10,4) 

3 

(10,4) 

4 

(10,4) 

5 

(12,5) 

6 

(11,5) 

7 

(10,4) 

8 

(10,4) 

9 

(10,4) 

10 

(14,6) 

𝑡𝑃 166.79 173.49 119.05 122.11 138.11 141.02 130.68 109.14 106.85 152.43 

𝑡𝑅𝑃 249.73 177.03 123.22 125.61 141.42 161.37 132.75 120.59 117.83 162.61 

𝑡11 252.14 181.51 125.44 132.72 144.85 168.16 136.74 131.09 125.64 179.50 

𝑡14 252.92 181.13 128.93 137.90 142.86 163.55 138.11 131.28 130.62 174.28 

𝑡𝑅𝐺𝑃  248.27 182.66 127.62 126.68 142.32 160.05 134.29 145.85 116.03 171.32 

𝑡13 256.12 199.23 132.58 137.33 149.44 167.14 140.91 152.32 120.21 178.92 

𝑡16 263.50 187.15 131.78 130.24 151.92 164.85 144.28 161.58 122.39 175.83 

𝑡̂(𝐺) 276.76 192.74 129.55 133.36 154.04 162.39 148.57 151.09 139.91 174.94 

ℓ̂𝑃
(𝐺)

 306.59 213.75 142.75 147.73 187.16 179.14 164.01 178.25 188.43 192.44 
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10. Conclusions  

Reviewing discussed analytical and empirical results of the present work, it may be finally concluded that the planned estimation 

method, i.e., redesigned approach in connection with the reducible estimator ℓ(𝐺) has a greater scope than the Chand-Kiregyera 

approach and can be successfully used in many survey situations.  
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