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Abstract

Purpose: Present analysis is concerned with the reflection of time harmonic plane waves in a
homogeneous, isotropic, thermoelastic diffusive medium under the effects of double porosity,
microtemperatures and temperature dependent properties.

Methods: Six kinds of coupled longitudinal waves in addition to shear wave and microtemperature wave
travel with distinct speeds in such type of medium. Taking into account appropriate boundary constraints,
the reflection phenomena is investigated at the stress free surface of the medium.

Results: The expressions of amplitude ratios and energy ratios for the reflected plane waves are obtained.
Numerical computations, performed using MATLAB software, analyze the impacts of double porosity,
diffusion, temperature dependent properties and microtemperature parameters on the amplitude ratios.
Conclusion: It is observed that the maximum amount of energy goes along the reflected longitudinal
displacement wave corresponding to the reflection coefficient |Z1|. Thus, the reflected longitudinal
displacement wave is the most dominating wave after reflection as it suppresses the other reflected
waves. The computational results are visualized and interpreted through graphs. Notably, it is confirmed
that there is no dissipation of energy during the reflection phenomena.

Keywords: Thermoelasticity, reflection, diffusion, double porosity, microtemperatures, temperature
dependent properties

Introduction

The theory of thermoelasticity with microtemperatures has received a lot of attention because
of its application in the field of continuum mechanics. The theory of microtemperatures deals
with the propagation of the temperature wave in a rigid heat conductor which permits the
variation of thermal properties at a microstructure level. In accordance with the concept of
microtemperatures, each microelement of a thermoelastic solid has a different temperature and
relies homogeneously on the microcoordinates of the microelements. Grot [ introduced the
theory of thermodynamics of elastic bodies with microstructure, whose molecules possess
microtemperatures. The Clausius-Duhem inequality is modified to include microtemperatures
and the first-order moment of energy equations are added to the usual balance laws of a
continuum with microtemperatures. Riha [ developed a model for the heat conduction in
materials with microtemperatures. The linear theory of thermoelasticity —with
microtemperatures was established by lesan and Quintanilla B!, which was the simplest
thermoelastic theory of elastic solids that took into account the microtemperature variables by
modifying the Clausius-Duhem inequality. Kalkal et al. ¥ investigated the two dimensional
thermo-mechanical interactions in a thermodiffusive material with microtemperatures and
magnetic field. Deswal et al. ¥ examined the reflection phenomenon of plane waves in a
homogeneous, isotropic thermoelastic diffusive medium with microtemperatures. Goyal et al.
61 studied the effect of inclined mechanical load on a thermo-diffusive half-space with
microtemperatures and microconcentrations.

Material science, petroleum industry, chemical engineering, biomechanics and other fields of
engineering rely heavily on porous structures. In recent years, many authors have been
interested in the study of the thermoelastic bodies with double porosity structure. The double
porosity model demonstrates a double porous structure with macro and micro porosity

~236™


https://www.mathsjournal.com/
https://www.doi.org/10.22271/maths.2025.v10.i6c.2175

International Journal of Statistics and Applied Mathematics

connected to body’s pores and fissures respectively. By using
the classic Darcy’s law, Biot [l presented the first model for a
single porosity deformable solid. The Biot theory is based on
the concept of compressible constituents and till recently,
some of his findings have been utilised as standard references
and basis for further investigation in the fields of acoustics,
geophysics, and other related ones in the considered body. A
non-linear theory of thermoelasticity containing double
porous structure was proposed by lesan and Quintanilla [,
Kalkal et al. ! examined the effect of double porosity and
gravity in an isotropic, non-homogeneous, functionally graded
half-space under three-phase-lag model. Mahato and Biswas
(101 studied the two-dimensional problem in a nonlocal
thermoelastic medium with double porosity under the purview
of Green-Naghdi (llI) theory. Othman and Mansour [
investigated the influence of diffusion and gravity on a
thermoelastic medium with double porosity in the context of
Lord-Shulman theory.

Diffusion is the passive movement of particles from regions
of higher concentration to the regions of lower concentration
until equilibrium is reached. It occurs as a result of second
law of thermodynamics which states that the entropy or
disorder of any system must always increase with time. There
is now a great deal of interest in the study of this
phenomenon, due to its many applications in geophysics and
industrial applications. The thermodiffusion process also
helps investigation in the field associated with the advent of
semiconductor  devices and the advancement of
microelectronics. By using coupled thermoelastic model,
Nowacki [#%4 suggested the theory of thermoelastic
diffusion, predicting infinite velocities of propagation for
thermoelastic signals. Sherief et al. [ extended this theory to
study the interactions among the processes of elasticity, heat
and diffusion in elastic solids that allow for finite speed of
propagation of thermoelastic and diffusive waves. Kalkal et
al. [l presented a study on wave propagation in an
anisotropic magnetothermoelastic diffusive half space with
temperature dependent properties in the context of Green-
Lindsay theory. Propagation of plane waves in a magneto-
thermoelastic medium under the effects of variable thermal
conductivity and mass diffusivity is examined by Deswal et
al. 71, Malik et al. 81 studied the reflection and transmission
phenomena of plane waves at the interface of two distinct
nonlocal generalized thermoelastic solid with diffusion. Said
and Othman 9 discussed the two-dimensional problem of a
nonlocal thermoelastic diffusion solid with gravity in the
context of different theories. By using normal mode
technique, Eraki et al. 2 examined the Thomson effect on
the behavior of a diffusive magneto-thermoelastic medium
with initial stress under dual-phase-lag model.

The prime objective of the current study is to investigate the
reflection phenomenon of plane waves in a double poroelastic
diffusive medium under the effect of microtemperatures and
temperature dependent properties. A lot of research has been
carried out in recent years on double poroelastic medium, but
the work in its present form has not been studied by any
researcher till now. It has been detected that there are six sets
of coupled longitudinal waves, one set of transverse wave and
one set of independent microtemperature wave propagating
with different speeds in the considered medium. The
amplitude ratios of these reflected waves have been calculated
numerically and their variations with the angle of incidence
are depicted graphically. Energy partitioning among reflected
waves at the free boundary has also been calculated and
various interesting results have been discussed. It has been
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verified that during reflection phenomena, the sum of energy
ratios is equal to unity at each angle of incidence. Some
comparisons have been made in figures to estimate the
influence of double porosity, diffusion, temperature
dependent properties and microtemperatures parameters.

2. Governing equations

Following Kansal 2 22, the constitutive relations and field
equations in a homogeneous isotropic double poroelastic
diffusive medium with microtemperature can be written as:
Constitutive equations

oij = 2pe;; + (Ae B 1T B 2C +bo + dip)d;;

= —be — a1 — azt) + 1T +m,C,

L]

( = —de — az¢p — ash + T + myC,
o; = ao,; + b — rw;,
Xi = b10; + ;i — rowy,

g = K*T; + syw;,

Qij = —S4Wy 05 — S5W; j — SeW;i,
(2; = (.‘1‘1 — Hz)'“-‘_{ + (I\'* — .‘1’3)1‘.57
eij = 5(-1{.,-‘3- + ;).

Equation of motion
MV2ui + (A + p)Ve — BIVT — B2VC + bV + dVy = pu’i.
Equilibrated stress equations of motion

aV2e + b1v2y — be — ale — a3y + y1T + m1C — rlVwi
Kle,”

b1v2ep + yV2y — de — a3¢p — a2y + y2T + m2C — r2Vwi
K2y.

Equation of first moment of energy

s6wi,jj + (s4 + s5)wij,ij — s2wi — s3T,i — r3w’'i — r1Ve’
r2vy’ =0.

Heat conduction equation

KsT,ii + slwi,i = p1T0e" + pCeT  + acTOC  + y1TO@" +
Y2TO0y.

Equation of mass diffusion

C’ =Dc[bcV2C — acV2T — 2V2e — m1V2ep — m2V2y]. (15)

Here oij are the stress components, € and { are the intrinsic
equilibrated body forces, oi and yi are the equilibrated stresses
corresponding to pores and fissures respectively, qi is the heat
flux moment, qij is the first heat flux moment vector, Qi is the
mean heat flux vector, eij are the strain components, 6ij is the
Kronecker delta function, A and p are Lames constants, e=ekk
is the cubical dilatation, ui are the components of
displacement vector ~u, wi are the components of
microtemperature vector w~, b, d, b1, m1, m2, a, al, 02, a3,
b1, b2, r1, r2, y, y1, y2 are constitutive coefficients for double
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porous material, si(i 2,...,6) are constant constitutive
coefficients, Bl=(3A+2p)at, at is the thermal expansion
coefficient, f2=(3A + 2p)ac, ac is the diffusion expansion
coefficient, T = T = — TO, T * is absolute temperature, TO is
reference temperature of the medium in its natural state
assumed to be is the non-equilibrium concentration, CO is the
mass concentration at natural state, t is time, ¢ and y are

https://www.mathsjournal.com

Our motive is to investigate the effect of the temperature-
dependent elastic and thermal moduli on the different physical
parameters. Following Noda 2%, we assume that

(w,\,B1,82,b,d,0,b1,y,a1,02,03,y1,y2,ac,bc,m1,m2,r1,r2,r3,K1,
K2,51,52, s3, s4, s5, s6) = (10, A0, B10, B20, b0, dO, 00, bO1,
v0, @10, 020, a30, y10, y20, aOc, bcO, m01, m02, r10, r20,

volume fraction fields related to pores and fissures
respectively, p is the mass density, K* is the coefficient of
thermal conductivity, Ce is the specific heat at constant strain,
ac is measure of thermodiffusion effect, Dc is the
thermoelastic diffusion constant, bc is measure of diffusive
effect, K1 and K2 are the equilibrated inertia coefficients.

r30, K10, K20, s01, s02, s30, s04, s05, s06)f(T0),

Where f(TO) is a given non-dimensional function of
temperature such that f(T0) = (1 — axT0) and ax is an
empirical material constant.

Free surface y =@

X

Double poroelastic diffusive
medium with microtemperature
and temperature dependent

properties

L J
R

Fig 1: Geometry of the problem

3 Formulation of the problem

Consider a homogeneous, isotropic, double poroelastic,
diffusive half-space with microtemperatures and temperature
dependent properties. We choose the rectangular cartesian

Where z1 = 1 — axT0. Taking into consideration (16), the
governing equations (10)-(15) for two-dimensional problem
take the form:

coordinate system (x,y,z) having the surface of the half-space , d%u ) . 0% ,0%u
as the plane y = 0, with y-axis pointing vertically downwards (N +24 )0— (N + )8;1:8 +u 92
into the medium so that the half-space occupies the region y > Y Y
0 as shown in Figure 1. The current investigation is restricted or aC
to xy-plane and thus all the physical quantities will be 3 17 é —
functions of the space variables x,y and time t. C o dx
Under these considerations, we may write the displacement Ao M P 2u
vector and microtemperature vector as +b— +d— = ——
dx dr  z Ot?
~u = (u,v,0), u = ux,y,1), v = v(x,y,t) w~ = (wl,w2,0), wl = 9 a2 pe
w1(x,y,t), w2 = w2(x,y,t). (17) N 42, ov SN u n g
( 1-).:2 ( *)axay W
Taking into consideration (1), (4), (5) and (7) along with the
expression (16), the requisite non-zero stress components can g aT ,0C
b d as: P oia 27
e expressed as 715y 2 y
d du , . ; 0*v
oy =l + N) = + X2 8 T B 4O+ e+ d] +b,8) ifd“ P d_‘
dy Ox dy dy 2 Ot2
7ye = 2l (20 + 0y
T gy T o o'V + bV —be — oo — oyih +
Ao N
o, = z1[a' = + b = — rlws], o
) ().’ dy Oul ()”Ujg ,,
e ThmC=n(Gy +5,) = Ko (26
Xy = %1 lf)y Y ay 2 Wal,
= [ a“1 O'WIJQ) _ g Owy Oy ViV2 4+ 'V — d'e — ayp — aoih + 7
Gus = 21 =54 x| Oy % oy 5 Or
()t{g , Owy , K owy dws Y
Qyzr = 21[ S d (, C){ ] T + 7}'120 — ?Q(W + W) = §2@.’ (27)
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Pwy Pws , L0 dun
L’"v i (83 +55) (G a2 ?);l:é)y) — s = syp dr ”W
L0 0%

N Mdr ’201‘8.1‘ -

&, +02w-j) S , a7 ’,,OU’Q

—— ) — Shle — Sh—— — h———
dxdy — Oy? 2T T8y 3ot
, 0% L O

"otay ~ ooy ~

sEV2ws + (8 + 55)(

dwy;  due aT ) de oc
K*V*T — ) =pC.— + 7 'T— 29 Ty—
VT + (G + g, =Gy A 1Ty + a0y,
o6, o
+z 1 lTu()f + z lng()df
0 o ADHVC — dVT B (V% — m V26 — my V2
Friak AL T —a A Ve —m V) —myVoi)]

’ 2 2 | )
Where V? = r% + 577 is the Laplacian operator.

For convenience, we will make use of the following non-
dimensional variables to normalize the above relations

Wy .
(@\yu7) = E(m’y"”-"")- t'=wot, (7, x;) = — ?(0( 0 i)
K'w? 1 w
o Wy ., ; , o
)= V) O = Tigy Qi = 24y
(&4) = =0, o = 4= gt
A g .
! — ’ 22 ro 0
T, C'=—=-0C, (w),wy,) = —(wy,w),
XN+ 2 Nl (wf, wy) ”4’0( 1, wy)
Where
2= N+ 24 o — pCoc
- ? 0 — =
0 P K*

Helmholtz decomposition representation of displacement
vector ~u in terms of scalar potential function ¢1(x,y,t) and
vector potential function U~(x,y,t) gives:

~u=Vel+VxU~ V.U-=0. (33)

So the displacement components u and v for the two-
dimensional problem are expressed in terms of these
potentials by the following relations:

L N < N

E_Fay’LiBy ox’

u =

U = (0,0,11)

The relations connecting microtemperature components to the
potential functions are

dg1 | Oqz gy 39‘2
P + = w2 =~
dr Oy dy  Ox

T_Ul g

Inserting the non-dimensional expressions defined in (32) in
equations (24)-(31) along with the consideration of relations
(34) and (35), we obtain the following set of equations
(suppressing the primes for convenience):

2
(V2 — alw)qbl T —C+axd+ az) =
32

o2

o
V20, + (a5 V24 a6 + rh

}(:+(uhV + ag)th — argd —anC +apV? 0

12
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; , — i : )
Vi + (aV? + ara)é + (a15V + arg +u,7_‘j)f_‘ — T — a19C + a2V, = 0, (39)

ot

8@ o
(121V — (g — (23— 6124T —Qog— = 0
( ot } ot ot
((137v —agg—azda) 0
at
, O L0 . J ., 0 i) N
{u;,gV'ﬁ}O + (‘”31{;_)‘ —anV)T + r:‘g;iﬁC + u;;,(f?a + li,gg&(' —apVig =0, (42)

(a5 V) V201 + a3 V2T + (a3 — a3sV2)C + a3 V26 + agg Vi = 0

Making use of non-dimensional variables, potential functions
and microtemperature components described in (32), (34) and
(35), the stresses and heat flux moment defined in (18)-(23)
along with some simplifications, provide the following
relations:

oo 13a00) % ‘ ‘
Oyy = Q41— 5 0 3 + 42 i 21 - “() ) —anT — LL.-;[C + Qg4 @ + Ay50,
02(;‘1 (IH( 02 02
Oy = Uy — -
o 45{‘7!{‘)5} ay?  Ox?
Do Ny 17; d
Oy flu,a +G|7av 18(0—{2—%)
de ap O ()(Io
Xv = a”ddr ta Jqu (()u dx
o? o dq P q
G = @515 + 5,3)0 “’2(@1 a:zaz)‘
9* Dqy 9? 0?
Qe = () By (ﬂsraﬁ - 054@)(]2-
Where ai(i = 1,2,...,54) are listed in appendix A.

4. Solution of the problem

In order to find the analytic solution of the system of partial
differential equations (36)-(43), we suppose the solution of
the form:

(plyloy T.Cala2)(xyt)= (¢ Ly Lo, vy, T, C,
g 1,9 2)exp(ik(xsind —y cosf) — wt), (50)

Where ¢ 1,y 1,9, vy, T, C, q 1 and q 2 are the
amplitudes of the reflected waves. k is the wave number, ® is
the angular frequency having the definition w=kv, v being the
phase velocity and (sinf,cos) denotes the projection of wave
normal onto the xy- plane.

Substituting from (50), into equations (36)-(43), we obtain the
following set of equation

-k2+fl)e 1-T —C +a2¢ +a3y =0, (51)
k2+R2)y 1=0, (52)

—k2¢ 1+ (f3 —a5k2)p + (a9 —a8k2)y —al0T —allC —
al2k2q 1=0, (53)

K20 1 + (ald — al3k2)g + (f4 — al5k2)y~ — al8T —
al9C —a20k2q 1=0, (54)

(f5 —a21k2) ql —a24T +f6g + {7y =0,(55)
(f8 —a27k2) q2=0, (56)

k29 1 + (f10 + a29k2)T~ — fI1C” — fl2¢ — 13y~ +
a30k2q 1=0, (57)
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flakde 1 — a36k2T  + (fI5 + a38k2)C — a39k2¢ —
ad0k2y =0,  (58)

Where fi(i = 1,2,...,15) are listed in appendix B.

The condition for the existence of a non-trivial solution of the
homogeneous system of equations (51), (53)-(55) and (57)-
(58) provides us:

v12 + Axv10 + B*v8 + C+v6 + Dxv4 + Exv2 + F x =0, (59)
Where A#,Bx,C+,D*,Ex and F = are calculated with the help
of MATLAB programming.

It is noted that the equation (59) is hexic in v2, whose roots
will gives the velocities of six vibrating waves.

From equations (52) and (56), we have

2
P W
v? = =, (60)
2
2
‘ Ao7W
v = 22T (61)
8

The roots of equation (60) and (61) will give the velocities
(v7) and (v8) of transverse displacement wave and an
independent microtemperature wave, respectively.

https://www.mathsjournal.com

The equation (59) is hexic and (60) and (61) are linear in v2
with complex coefficients, showing that the corresponding
waves are attenuated in nature. The complex phase velocity
vi(i = 1,2,...,8) of each wave can be resolved into propagation
velocity Vi(i = 1,2,...,8) and attenuation coefficient Q—i 1(i =
1,2,...,8). For a longitudinal wave with complex velocity vi =
ViR + vil, define Vi =(viR2 + vil2)/viR and Q—i 1=—2vil/viR
as its phase velocity and attenuation coefficient respectively,
where the letters R and | in the subscript denote the real and
imaginary parts. The phase speeds of these waves depend
upon the frequency ® and wave number k. Hence these waves
are found to be dispersive and attenuated in nature.

5. Reflection phenomenon

Here, we shall discuss the reflection phenomenon, when a set
of coupled longitudinal waves having amplitude AO
propagating with phase speed VO and making an angle 60
with the normal is made to strike at the free surface y = 0.
Corresponding to the incident wave, we obtain eight reflected
waves as shown in Figure 2. We postulate the following
reflected waves to satisfy the boundary conditions at the free
plane surface:

1. Six sets of coupled longitudinal waves of amplitudes
Al.2,..,6 propagating with the speeds V1,2,..6 and
making angles 01,2,...,6 respectively with the normal.

2. A transverse waves of amplitude A7 propagating with

speed V7 and making angle 67 with the normal.

Free surface y =0

Ao

Incident wave

Reflected waves

Fig 2: Schematic of the problem

3. An independent microtemperature wave with amplitude A8
propagating with speed V8 and making angle 68 with the
normal.

Therefore, the full structure of the wave field consisting of the
incident and reflected waves, can be written as

(01,0, 0. T, Coqu) = (1,01, 21, srs i, s ) Ao By Z(l-h‘l;-Hz,-fﬂ,h‘f,‘u-'[-'u)-lJP"- (62)
i=1

Py = AP, (63)

g = AP, (64)

Where] is the phase factor of the wave incident at an angle 60
with amplitude A0, Pi+=exp[iki(xsinfi + y cosfi) — woit], (1 =
1,2,...,8) are the phase factors of the waves reflected at angles
01 with amplitudes Ai. nli, n2i, n3i, n4i, n51 (i = 1,2,...,6) are
the coupling parameters among ¢ 1,¢, y, T, C andq 1.
The expressions of coupling parameters are given by

Ey; FEasi — Eym —(Eei + Erinii + Esinpi)
i = — sy Moo = == s =
Ey; Es; Ris
azanzi — fonmi — froi
Nai = —Foi + N3 — aani — asnei, 15 =

E]U-i

~240~

Where Eji(j = 1,2,...,10) and R18 are listed in appendix C.

6. Boundary conditions

The amplitudes Ai (i 1,2,...,7) can be determined by
imposing suitable boundary conditions at the free surface y=0.
Since the boundary of the half-space is adjacent to vacuum, it
is free from surface tractions. So, the boundary conditions at
the free surface y=0 are described as:

1. Vanishing of normal mechanical stress,

Vanishing of tangential mechanical stress,

Vanishing of equilibrated stress corresponding to pores,
Vanishing of equilibrated stress corresponding to
fissures,

Temperature deviation at the free surface is zero,
Concentration at the free surface is zero,

Vanishing of normal heat flux moment,

Vanishing of tangential heat flux moment.

o

©®No o

Mathematically, these boundary conditions can be expressed
as:

oyy=0,0yx=0,0y=0,xy=0,T=0,C=0,qyy=0,qyx=
0. (65)
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The boundary conditions prescribed above are identically
satisfied if and only if © = ©1 = 02 = 03 = ®4 = ©5 = V6= ©7
= ®8 and Snell’s law holds, which gives the relation among
angles of incidence and reflection as k1 sinf0 = k1 sinf1 = k2
sinf2 = k3 sinB3 = k4 sinB4 = k5 sinf5 = k6 sinB6 = k7 sin7
= k8 sin68, which can further be written as (extended Snell’s
law).

sin fy

Va

sin ty

Vi

sinfy

Vi

sinfly

= =

sinfy  sind;

Vi W

sinfly  sinf;

Ve V7

sin Ay

= = (66)

8

From Snell’s law (66), we observe that 60 = 01, the other
angles of reflection depend upon the phase velocities Vi (i =
1,2,...,8) which are functions of material parameters.

Using expressions (62)-(64) in the boundary conditions (after
making non-dimensional) given by (65), we obtain a non-
homogeneous system of equations as:

8
> bz =M, (i
j=1

Where 8) are the amplitude ratios of the reflected waves. All
the elements of the matrix [bij] together with column matrix
[Mi] are defined in Appendix D.

1,2,...8), (67)

7. Energy partitioning

We shall now consider the partitioning of incident energy
between different reflected waves at the surface element of
unit area. Following Achenbach [24], the instantaneous rate of
work of surface traction is the scalar product of the surface
traction and the particle velocity. This scalar product is called
the power per unit area, denoted by P =, and represents the
rate at which the energy is transmitted per unit area of the
surface, i.e., the energy flux across the surface element. The
time average of P = over a period, denoted by hP =i,
represents the average energy transmission per unit surface
area per unit time. Thus, the rate of energy transmission at the
surface y = 0 is given by

P * =oyyv' +oyxu’ +coyy +yye +qyyw2 +qyxwl. (68)
Now, we calculate P = for the incident and each of the
reflected waves and hence obtain the energy ratios. The
energy ratios Ei (i = 1,2,...,8) of the various reflected waves
are defined as the ratios of energy corresponding to the
reflected waves to the energy of the incident wave. The
expressions for these energy ratios Ei (i 1,2,..,8) for
reflected waves are defined as

(Fr)

(Ps)

Where the expressions of and are given by

PO —ok1IM1 cos60 + ®k1M2 sinf0 — wM3n2l1 -
wM4n11-1k1M7 cosB0n51 + k1M8 sinf0n51,

Pix = okibli cosfi — wkib2i sinfi — 1wb3jn2i — wb4jnli
+1kib7i cosBin5i — 1kib8i sinbin5i, (i = 1,2,...,6)

E, (i=1,2,.,8), (69)

P7 = —bjzwkz sin 07 + bazwks cos 64,
1); = bﬂ;[zrlt'g sin 93 + bgsb]ﬁg CcOSs 98

We note that these energy ratios depend on the elastic
properties of the medium, angle of incidence and amplitude
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ratios. The phenomena of conservation of energy at the
surface will be verified graphically in numerical results and
discussion section.

8. Special cases

8.1 Without double porosity

To discuss the problem of wave propagation and reflection in
a thermoelastic diffusive medium with microtemperatures and
temperature dependent properties, it is sufficient to set the
value of double porosity parametersb=d=a=bl =y=al =
02 =03 =1l =12 =91 =y2 =ml = m2 = 0 into the
constitutive relations and field equations. With these
modifications, the corresponding amplitude ratios and energy
ratios can be obtained from equations (67) and (69) for the
incidence of a set of coupled waves. In addition, if we neglect
the influences of temperature dependent property from the
medium, then the outcomes coincide with those of Deswal et
al. o,

8.2 Without microtemperature

If we assume that k1 =k2 =k3=k4d=k5=k6=r1l=r2=r3
= 0, then we shall deal with a relevant problem of reflection
phenomenon in a thermoelastic diffusive half-space with
double porosity and temperature dependent property. By
taking into consideration the above mentioned modifications,
equations (67) and (69) will provide us the reflection
coefficients and energy ratios for the corresponding problem.
If we also remove the effect of doule porosity from the
medium, then the results of the relevant problem coincide
with the particular case (Isotropic medium) of Kalkal et al. (]
(in the absence of the magnetic field).

8.3 Without temperature dependent property

The effect of temperature dependent property can be removed
from the medium by taking a* = 0 in the governing equations.
If we further remove the impact of double porosity, then our
results match with those of Sheoran et al. 1 in the absence of
magnetic field, rotation and initial stress.

9 Numerical results and discussion

In order to discuss the problem in greater details and to find
out the nature of dependence of reflection coefficients and
energy ratios on the angle of incidence and material
parameters, a numerical analysis is carried out with the help
of computer programming using the software MATLAB. For
the purpose of numerical computation, the material constants
of the problem are taken from Sherief and Saleh [26] A0 =
7.76 x 1010Nm—2, p0 = 3.86 x 1010Nm—2, p = 8954kgm-3,
T0 = 293K, Ce = 3831m2s—2K—1, Dc = 0.85 x 10—8kgsm—3,
at = 1.78 x 10—5K-1, ac = 1.2 x 10—4m3kg—1, a0c = 1.2 x
104m2K—1s—2, b0c = 0.9 x 104m5Skg—1s—2,

Kx = 386Wm—1K-1.

The double porosity parameters are taken from Khalili [27] b0
=0.9 x 104Nm—2, d0 =0.1 x 104Nm—2, b10 = 1.2 x 10—6N,
a0 = 1.3 x 10-5N, al0 = 2.3 x 1010Nm—2, 020 = 2.4 x
1010Nm—2, @30 =2.5 x 1010Nm—2, y0 = 1.1 x 10-5N, y10 =
0.16 x 105Nm—2, y20 = 0.219 x 105Nm—2, m10 = 2.9 x
1012N, m02 = 2.9 x 1010N, K10 = 0.1456 x 10—12Nm—2s2,
K20 =0.1546 x 10—12Nm—2s2.

The values of microtemperature parameters are taken from
Sheoran et al. 1 k10 = 0.0035Ns—1, k20 = 0.0045Ns—1, k30
0.0055Ns—1K-1, k40 0.065Ns—1m—2, k50
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0.076Ns—1m—2, k60 = 0.096Ns—1m—2, r10 = 0.0085N, r20 =
0.0085N, r30 =0.15 x 10-9N.

For the purpose of numerical computation, we also consider
angular velocity @ = 0.001 and a* = 0.005.

Considering the above physical data, we have evaluated the
amplitude ratios, energy ratios and sum of modulus of energy
ratios for each value of angle of incidence varying from
normal incidence to grazing incidence for incident wave
propagating with speed V0. With the help of above-
mentioned constants, the numerical results are obtained and
presented graphically.

The presentation is divided
convenience:

into five categories for

Category 1: In this category (Figures 3(a)-(h)), the amplitude
ratios Zi(i = 1,2,...,8) have been evaluated at different angles
of incidence of a coupled longitudinal wave for different
values of double porosity parameter (solid line), 1.6 x 10-6
(dashed line), (dotted line). The variation in amplitude ratio
|Z1] corresponding to an incident longitudinal wave versus
angle of incidence 00 is depicted in Figure 3(a). It can be
observed that the amplitude ratio |Z1| has its maximum value
unity at normal incidence, it then decreases with increase in
00 till 60 = 520 and thereafter, it increases with an increase in
00 for three different values of discussed above. An increase
in the value of double porosity parameter results in an
increase in the absolute numerical values of the reflection
coefficient |Z21|, which illuminates the fact that the is having
an increasing effect on the profile of the reflection coefficient
|Z1|. Figure 3(b) depicts the effect of double porosity
parameter on the profile of reflection coefficient [Z2|, for three
different values mentioned above. Increase in the value of
results in increase in numerical values of reflection coefficient
|Z2], which illuminates the fact that the double porosity
parameter is having a noticeable increasing effect on the
profile of reflection coefficient |Z2)|.

The influence of double porosity parameter on the profile of
amplitude ratio |Z3| is depicted in figure 3(c). By comparing
the three solution curves, it is observed that the modulus
values of amplitude ratio [Z3| are lesser for greater value of
Hence double porosity parameter has a decreasing effect on
the profile of this amplitude ratio |Z3|. In figure 3(d), we have
elucidated the variations of amplitude ratio |Z4| against the
angle of incidence. It can be noticed from the plot that the
values of |Z4| increase monotonically in the interval 00 < 60 <
550 and then decrease as 00 increases further. Double
porosity coefficient bl is having an increasing influence on
the amplitude ratio |[Z4|. In figure 3(e), a similar pattern of
distribution of amplitude ratio |Z5| is observed for the three
distinct values of the double porosity parameter. The figure
shows that an increase in the value of reduces the values of
|Z5|. The variations of amplitude ratios |Z26|, |Z7] and |Z8|
versus angle of incidence are depicted in figures 3(f), 3(g) and
3(h) respectively, for three different values of mentioned
above. From the figures, one can notice that the values of
amplitude ratios |Z6|, |Z7| and |Z8| increase with an increase in
the value of double porosity parameter. Thus, double porosity
parameter has an increasing effect on the profile of amplitude
ratios |Z6|, |Z7| and |Z8|.

Category 2: In this category, figures 4((a)-(h)) are drawn to
show the variations in the absolute values of the amplitude
ratios |Zi| (i = 1,2,..,8) with the angle of incidence, for
different values of the diffusion parameter (solid line),
1.5x104 (dashed line), 1.8 x 104 (dotted line) when a coupled
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wave is made incident at the free surface y = 0. Figure 4(a)
represents the variation in the value of reflection coefficient
|Z1| with the angle of incidence for three different values of
diffusion parameter. As shown in figure, the value of
reflection coefficient |Z1]| lies near to unity for the entire range
of angle of incidence and is showing negligible effect of
diffusion parameter. The variations of amplitude ratios |Z2|
and |Z3| versus angle of incidence are depicted in figures 4(b)
and 4(c) respectively, for different values of the diffusion
parameter. It can be seen from these figures that the variation
pattern of reflection coefficients [Z2| and [Z3]| is almost similar
for all the three values of The increase in the value of results
in the decrease in numerical values of reflection coefficients
|Z2] and |Z3|, which illuminates the fact that the diffusion
parameter is having a noticeable decreasing effect on the
profile of reflection coefficients |Z2| and |Z3|.

Figures 4(d) and 4(e) present the variations of absolute values
of amplitude ratios |Z4| and |Z5| respectively against the angle
of incidence for the three different values of diffusion
parameter mentioned above. It can be concluded from the
plots that diffusion parameter is having a decreasing influence
on the amplitude ratios |Z4| and |Z5]. In figure 4(f), we have
elucidated the variations of amplitude ratio |Z6| against the
angle of incidence. It can be noticed from the plot that the
values of |Z6| increase monotonically in the interval 00 < 00 <
550 and then decrease as 00 increases further. Diffusion
parameter is having an increasing influence on the amplitude
ratio |Z6|. Figures 4(g) and 4(h) are plotted to show the
variations of reflection coefficients |Z7| and |Z8| respectively,
for different values of the diffusion parameter. Both of these
reflection coefficients decrease with an increment in the value
of diffusion parameter and show a similar pattern of
variations.

Category 3: In this category, figures 5(a)-5(h) are plotted to
demonstrate the effect of temperature dependent property
parameter ax on the profile of reflection coefficients |Zi| (i =
1,2,...,8). In this figure, the solid line and dashed line refer to
the presence (o 0.005) and absence ((o* 0) of
temperature dependent property respectively. In figure 5(a)
the modulus values of amplitude ratio Z1 are computed
against the angle of incidence for two different cases: in
presence and absence of temperature dependent property. The
figure reveals that the reflection coefficient |Z1| has
qualitatively similar behaviour for both the cases and presence
of temperature dependent property decreases the numerical
values of amplitude ratio |Z1]. In figure 5(b), we have
elucidated the variation of amplitude ratio |Z2| against the
angle of incidence. The presence of temperature dependent
property acts to decrease the magnitude of amplitude ratio
|Z2| in the whole range of angle of incidence. The variations
of amplitude ratios |Z3|, |Z4| and |Z5| versus angle of
incidence are depicted in figures 5(c), 5(d) and 5(e)
respectively, for with and without temperature dependent
property. It can be noticed from the figures that in presence of
temperature dependent property parameter, the magnitude of
amplitude ratios |Z3|, |Z4| and |Z5]| is greater as compared to in
absence of temperature dependent property parameter.
Figures 5(f), 5(g) and 5(h) manifest the effect of temperature
dependent property parameter on the profiles of reflection
coefficients |Z6|, |Z7| and |Z8| respectively. It is evident from
the plots that the presence of temperature dependent property
parameter decreases the values of |Z6|, |Z7] and |Z8|, hence
indicating a decreasing effect on amplitude ratio |Z6|, |Z7| and
|Z8|.
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Category 4: In this category, the values of reflection
coefficients |Zi| (i = 1,2,...,8) have been computed at different
angles of incidence for three different values of

microtemperature parameter r3: r3 = 1.5 x 10—8 (solid line),
r3 = 2.5 x 10—8 (dashed line), r3 = 3.5 x 10—8 (dotted line)
and are shown in figures 6(a)-6(f). The variation in reflection
coefficient |Z1| corresponding to an incident wave against
angle of incidence 60 is displayed in figure 6(a). From the
plot, we notice that there is an increasing influence of
microtemperature parameter r3 on the profile of amplitude
ratio |Z1|. Figure 6(b) depicts the effect of microtemperature
parameter on the profile of reflection coefficient |Z2|, for three
different values mentioned above. Increase in the value of r3
results in decrease in numerical values of reflection
coefficient |Z2|, which illuminates the fact that the
microtemperature parameter is having a noticeable decreasing
effect on the profile of reflection coefficient |Z2|. A similar
effect of microtemperature parameter is observed on the
profiles of reflection coefficients |Z3| and |Z4| in figures 6(c)
and 6(d). However, |Z3| and |Z4| attain small numerical values
in comparison to |Z2|. Figures 6(e) and 6(f) displays the
variation in the reflection coefficient |Z5| and |Z6| with the
angle of incidence.

It can be noticed from the figures that the microtemperature
parameter has a decreasing effect on the profile of the
reflection coefficients |Z5| and |Z6]. It is also noticed from the
figures 6(g) and 6(h) that the values of the solution curves of

https://www.mathsjournal.com

the reflection coefficients |Z7| and |Z8| against the angle of
incidence decrease with an increase in the value of the
microtemperature parameter.

Category 5

Category 5 includes figure 7 which depicts the variations of
modulus of energy ratios of reflected waves with the angle of
incidence of coupled longitudinal wave propagating with
velocity V0. The energy conversion in different ranges of
angle of incidence is clearly noticed. We can see from the plot
that the values of |E1| and sum are almost same and equal to
unity irrespective of the variations in angle of incidence. The
energy ratios |E2|, |E3|, |[E4|, |E5|, |E6|, |[E7| and |E8| are very
small as the amplitude ratios |22|, |Z3|, |Z4, |Z5|, |Z6], |[E7| and
|Z8| were found to be small. These energy ratios have been
shown by curves Il, HII, 1V, V, VI and VII in the figure after
multiplying  their original values by the factors
107,1031,104,104,1017,1041 and 1013 respectively. It can be
seen from the figure that the energy carried by reflected
coupled longitudinal wave propagating with velocity V1 is
maximum in comparison to energy carried along with other
reflected waves. It is observed that the profiles of the energy
ratios versus angle of incidence are qualitatively similar to the
corresponding profiles of the reflection coefficients apart
from the magnitudes. It has been verified that at each angle of
incidence P8i=1 |Ei| = 1. Thus, we conclude that energy
balance law is verified for each angle of incidence.
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10 Conclusions

The present study provides a mathematical model to
investigate the phenomena of elastic wave propagation from a
stress free boundary of a homogeneous isotropic double
poroelastic  diffusive medium under the effect of
microtemperatures and temperature dependent properties. It
has been observed that there exist eight plane waves
consisting of six sets of coupled longitudinal waves, one set
of transverse wave and one set of independent
microtemperature wave propagating with distinct speeds.
Effects of double porosity, diffusion, temperature dependent
properties and microtemperature are discussed numerically
and illustrated graphically. The expressions giving the
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reflection coefficients and energy ratios have been presented.
From the analysis of the illustrations, we can arrive at the
following conclusions:

1. The reflection coefficients depend on the angle of
incidence as well as on the properties of the medium. The
nature of this dependency is different for different
reflected waves.

2. It is observed that all the reflection coefficients |Zi| (i =

1,2,...,8) are highly influenced by the double porosity
parameter. It exhibits an increasing effect on the absolute
values of the reflection coefficients |Z1|, [Z2|, |Z4], |26,
|Z7| and |Z8| but a decreasing effect is observed on the
reflection coefficients |Z3| and |Z5].
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3. Theoretical as well as numerical results show that the
reflection coefficients of various reflected waves are
affected by diffusion coefficient. From the figures, it is
noticed that diffusion coefficient has an increasing effect
on the profiles of reflection coefficient |Z6] and a
decreasing effect is observed on those of 22|, |Z3|, |Z4],
|Z5], |Z7] and |Z8|.

Effect of temperature dependent property parameter is
quite pertinent on the amplitude ratios |Zi| (i = 1,2,...,8).
The presence of temperature dependent property
parameter is having a decreasing effect on the amplitude
ratio |21, |Z2|, |26, |Z7| and |Z8| whereas a reverse effect
is observed on the profiles of |Z3|, |Z4| and |Z5].

All the amplitude ratios |Zi| (i = 1,2,...,8) are highly
influenced by microtemperature. A significant increasing
impact of microtemperature coefficient is observed on the
reflection coefficient |Z1| whereas a reverse effect is
observed on the profiles of |22|, |Z3|, |Z4|, |Z5|, |26], |Z7|
and |Z8|.

It is observed that the maximum amount of energy goes
along the reflected longitudinal displacement wave
corresponding to the reflection coefficient |Z1|. Thus, the
reflected longitudinal displacement wave is the most
dominating wave after reflection as it suppresses the
other reflected waves.

The numerical results show that sum of the modulus
values of energy ratios is approximately unity at each
angle of incidence. This shows that there is no dissipation
of energy during reflection phenomena and hence
proving the law of conservation of energy.

11. Applications

The results presented in this article may prove useful for
researchers concerned with material science, designers of new
materials as well as for those working on the development of
hyperbolic thermoelasticity theory. The introduction of
double porous structure to the thermoelastic medium has
drawn the attention of many engineers, seismologists and
scientists due to its application in geophysics, material
science, mechanics of bones, drugs, medical devices industry
etc. Wave vibration in a thermoelastic solid under the effect
of diffusion and microtemperatures with additional
parameters like temperature dependent properties gives vital
information about the existence of new and modified waves
and is of great importance in various technological and
geophysical circumstances. Such information may be useful
for experimental seismologists/scientists in correcting
earthquake estimation. The reflections of seismic waves have
a broad range of applications and are primarily used to
prospect the geological materials from the Earths interior to
provide high-resolution maps. The seismic reflection survey
technique builds coherent geological data from the maps of
processed seismic reflections. As seismic waves can
propagate long distances through the material and gather
information from different parts, mapping of stratigraphy as
well as structure and significant evaluation of the properties
of their constituent materials or components can be
accomplished  through  nondestructive  testing.  The
effectiveness of the repair can also be quantified by analyzing
the change of wave features before and after repair through
nondestructive testing as it uses the feature (velocity,
frequency, amplitude, etc.) of elastic waves to estimate the
degree of damage.
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Appendix B

fl =alw2, 2 =ad4w2, f3 =a6 —aTw2, f4 =al6 —al7w2, f5=
—a22 + a23ww, f6 = a2510, 7 = a261w, 18 = 5, {9 = a321w, f10
= —a3lw, fl1 = —a33w, f12 = —a34o, f13 = a35ww, f14 =
p20, f15 =—-a37o.

Appendix C

Eli = R66ki8 + R67ki6 + R68ki4 + R69Ki2 + R70, E2i
R71ki8 + R72ki6 + R73ki4+R74ki2 + R75, E3i = R39ki4 +
R40ki2 + R41, E4i = R42ki4 + R43ki2 + R44,

E5i = R45ki4 + R46ki2 + R47, E6i = R16ki2 + R17, E7i
R19ki2 + R20, E8i = R21ki2 + R22, E9i = —ki2 + f1, E10i
—a21ki2 + 15,1 =(1,2,....,6), R1 =1 —all, R2 = flall, R3 =
al0 —all, R4 =2a2all — 3, RS =a3all —a9, R6 =1 —al9,
R7 = al9fl, R8 = al8 —al9, R9 = a2al9 — al4, R10 = a3al9
— f4, R11 = (9 + f11), R12 = fIfl1, R13 = —(f10 + f11),
R14 = a2fll + f12, R15 = a3fll + f13, R16 = R1a20 —
R6al2, R17 = R2a20 — R7al2, R18 = R3a20 — R8al2, R19 =
a5a20 — al2al3, R20 = R4a20 — R9al2, R21 = a8a20 —
al2al5, R22 = R5a20 —R10al2, R23 = R6a30 + R11a20, R24
= R7a30 + R12a20, R25 = R8a30 + R13a20, R26 = —a20a29,
R27 = al3a30, R28 = R9a30 + R14a20, R29 = al5a30, R30 =
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R10a30+R15a20, R31 = R1a30 + R11al2, R32 = R2a30 +
R12a12, R33 = R13al2, R34 =—a29al2, R35 = a5a30, R36 =
R4a30 + R14al12, R37 = a8a30, R38 = R5a30 + R15a12, R39
= R16R26, R40 = R16R25 + R17R26 — R18R23, R4l
R17R25 — R24R18, R42 R19R26, R43 = R19R25
R20R26 — RI18R27, R44 = R20R25 — RI18R28, R45
R21R26, R46 = R22R26 R18R29, R47 = R22R25
R18R30, R48 = R16f19 —R18f16, R49 = R17f19 — R16{20 —
R17f18, R50 = —R17f20 — R18f18, R51 = R19f19, R52 =
R20f19 — R19120 — R18f21, R53 = —R20f20 — R18f22, R54 =
R21f19, R55 = R22f19 — R21f20 — R18f23, R56 = —R2220 —
R18f24, R57 R16R34, R58 R17R34 + RI6R33 -
R18R31, R59 = R17R33 — R18R32, R60 = R19R34, R61 =
R19R33 +R20R34 — R18R35, R62 = R33R20 — R18R36,
R63 = R21R34, R64 = R21R33 + R22R34 —R18R37, R65 =
R33R22, R66 = R48R63 — R54R57, R67 = R49R63 +
R48R64 — R54R58 —R55R57, R68 = R50R63 + R49R64 +
R48R65 — R54R59 — R55(R58 + R59), R69 = R49 R65 +
R64R30 — R55R59 — R56R58, R70 = R50R65 — R56RS59,
R71 = R51R63 — R60R54, R72 = R49R63 + R48R64 —
R54R61 — R55R60, R73 = R53R63 + R52R64 + R51R65 —

o+ 1


https://www.mathsjournal.com/

International Journal of Statistics and Applied Mathematics

R54 R62 — R55R61 — R56R60, R74 = R52R65 + R53R64 —
R56R61 —R55R62, R75 = R53R65 — R56R62.

Appendix D

blj = —a41kj2 cos2 0j — a42kj2 sin2 6] — a41n3j — ad1ndj +
addnlj + a45n2j, bl7 = a43k72 cosB7 sinf7, b2j = —2a43kj2
cosfj sinBj, b27 = a43k72(—cos2 07 + sin2 07), b3j = 1kj
cosfj(—ad6mlj — a47n2j + a48n5j), b38 = a481k8 sin68, b4j =
kj cosBj(—ad47m1j — ad49n2j + a50m5j), b48 = a501k8 sinf8, b5j
= 1n3j, b6j = ndj, b7j = kj2n5j(—as51 + a52 cos2 6j), b78 =
k82a52 cos08 sinf8, b8j = kj2a52 coshj sinbj, b88 = k82(—a53
sin2 0j + a54 cos2 68), b18 = b28 = h37 = b47 = b57 = b58 =
b67 = h68 = b77 =b87 =0, j = (1,2,...,6) M1 = —a41kl2 cos2
01 — a42k12 sin2 61 —a4In31 — ad4In4l + ad44nll + a45n21,
M2 = 2a43k12 cos81 sinf1, M3 =1kl cosf1(ad6m11 + a47n21
— a48n51), M4 = ikl cosB1(ad7nll + a48n21), M5 = —n31,
M6 = —n41, M7 = k12n51(a51 — a52 cos2 01), M8 = k12a52
sinf1 cosf1n51.
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