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Abstract 
Purpose: Present analysis is concerned with the reflection of time harmonic plane waves in a 
homogeneous, isotropic, thermoelastic diffusive medium under the effects of double porosity, 
microtemperatures and temperature dependent properties. 
Methods: Six kinds of coupled longitudinal waves in addition to shear wave and microtemperature wave 
travel with distinct speeds in such type of medium. Taking into account appropriate boundary constraints, 
the reflection phenomena is investigated at the stress free surface of the medium. 
Results: The expressions of amplitude ratios and energy ratios for the reflected plane waves are obtained. 
Numerical computations, performed using MATLAB software, analyze the impacts of double porosity, 
diffusion, temperature dependent properties and microtemperature parameters on the amplitude ratios. 
Conclusion: It is observed that the maximum amount of energy goes along the reflected longitudinal 
displacement wave corresponding to the reflection coefficient |Z1|. Thus, the reflected longitudinal 
displacement wave is the most dominating wave after reflection as it suppresses the other reflected 
waves. The computational results are visualized and interpreted through graphs. Notably, it is confirmed 
that there is no dissipation of energy during the reflection phenomena. 
 
Keywords: Thermoelasticity, reflection, diffusion, double porosity, microtemperatures, temperature 
dependent properties 

 
Introduction 
The theory of thermoelasticity with microtemperatures has received a lot of attention because 
of its application in the field of continuum mechanics. The theory of microtemperatures deals 
with the propagation of the temperature wave in a rigid heat conductor which permits the 
variation of thermal properties at a microstructure level. In accordance with the concept of 
microtemperatures, each microelement of a thermoelastic solid has a different temperature and 
relies homogeneously on the microcoordinates of the microelements. Grot [1] introduced the 
theory of thermodynamics of elastic bodies with microstructure, whose molecules possess 
microtemperatures. The Clausius-Duhem inequality is modified to include microtemperatures 
and the first-order moment of energy equations are added to the usual balance laws of a 
continuum with microtemperatures. Riha [2] developed a model for the heat conduction in 
materials with microtemperatures. The linear theory of thermoelasticity with 
microtemperatures was established by Iesan and Quintanilla [3], which was the simplest 
thermoelastic theory of elastic solids that took into account the microtemperature variables by 
modifying the Clausius-Duhem inequality. Kalkal et al. [4] investigated the two dimensional 
thermo-mechanical interactions in a thermodiffusive material with microtemperatures and 
magnetic field. Deswal et al. [5] examined the reflection phenomenon of plane waves in a 
homogeneous, isotropic thermoelastic diffusive medium with microtemperatures. Goyal et al. 
[6] studied the effect of inclined mechanical load on a thermo-diffusive half-space with 
microtemperatures and microconcentrations. 
Material science, petroleum industry, chemical engineering, biomechanics and other fields of 
engineering rely heavily on porous structures. In recent years, many authors have been 
interested in the study of the thermoelastic bodies with double porosity structure. The double 
porosity model demonstrates a double porous structure with macro and micro porosity 
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connected to body’s pores and fissures respectively. By using 

the classic Darcy’s law, Biot [7] presented the first model for a 

single porosity deformable solid. The Biot theory is based on 

the concept of compressible constituents and till recently, 

some of his findings have been utilised as standard references 

and basis for further investigation in the fields of acoustics, 

geophysics, and other related ones in the considered body. A 

non-linear theory of thermoelasticity containing double 

porous structure was proposed by Iesan and Quintanilla [8]. 

Kalkal et al. [9] examined the effect of double porosity and 

gravity in an isotropic, non-homogeneous, functionally graded 

half-space under three-phase-lag model. Mahato and Biswas 
[10] studied the two-dimensional problem in a nonlocal 

thermoelastic medium with double porosity under the purview 

of Green-Naghdi (III) theory. Othman and Mansour [11] 

investigated the influence of diffusion and gravity on a 

thermoelastic medium with double porosity in the context of 

Lord-Shulman theory. 

Diffusion is the passive movement of particles from regions 

of higher concentration to the regions of lower concentration 

until equilibrium is reached. It occurs as a result of second 

law of thermodynamics which states that the entropy or 

disorder of any system must always increase with time. There 

is now a great deal of interest in the study of this 

phenomenon, due to its many applications in geophysics and 

industrial applications. The thermodiffusion process also 

helps investigation in the field associated with the advent of 

semiconductor devices and the advancement of 

microelectronics. By using coupled thermoelastic model, 

Nowacki [12-14] suggested the theory of thermoelastic 

diffusion, predicting infinite velocities of propagation for 

thermoelastic signals. Sherief et al. [15] extended this theory to 

study the interactions among the processes of elasticity, heat 

and diffusion in elastic solids that allow for finite speed of 

propagation of thermoelastic and diffusive waves. Kalkal et 

al. [16] presented a study on wave propagation in an 

anisotropic magnetothermoelastic diffusive half space with 

temperature dependent properties in the context of Green-

Lindsay theory. Propagation of plane waves in a magneto-

thermoelastic medium under the effects of variable thermal 

conductivity and mass diffusivity is examined by Deswal et 

al. [17]. Malik et al. [18] studied the reflection and transmission 

phenomena of plane waves at the interface of two distinct 

nonlocal generalized thermoelastic solid with diffusion. Said 

and Othman [19] discussed the two-dimensional problem of a 

nonlocal thermoelastic diffusion solid with gravity in the 

context of different theories. By using normal mode 

technique, Eraki et al. [20] examined the Thomson effect on 

the behavior of a diffusive magneto-thermoelastic medium 

with initial stress under dual-phase-lag model. 

The prime objective of the current study is to investigate the 

reflection phenomenon of plane waves in a double poroelastic 

diffusive medium under the effect of microtemperatures and 

temperature dependent properties. A lot of research has been 

carried out in recent years on double poroelastic medium, but 

the work in its present form has not been studied by any 

researcher till now. It has been detected that there are six sets 

of coupled longitudinal waves, one set of transverse wave and 

one set of independent microtemperature wave propagating 

with different speeds in the considered medium. The 

amplitude ratios of these reflected waves have been calculated 

numerically and their variations with the angle of incidence 

are depicted graphically. Energy partitioning among reflected 

waves at the free boundary has also been calculated and 

various interesting results have been discussed. It has been 

verified that during reflection phenomena, the sum of energy 

ratios is equal to unity at each angle of incidence. Some 

comparisons have been made in figures to estimate the 

influence of double porosity, diffusion, temperature 

dependent properties and microtemperatures parameters. 

 

2. Governing equations 

Following Kansal [21, 22], the constitutive relations and field 

equations in a homogeneous isotropic double poroelastic 

diffusive medium with microtemperature can be written as: 

Constitutive equations 

 

 
  

Equation of motion  

 

µ∇2ui + (λ + µ)∇e − β1∇T − β2∇C + b∇φ + d∇ψ = ρu¨i. 

 

Equilibrated stress equations of motion  

 

α∇2φ + b1∇2ψ − be − α1φ − α3ψ + γ1T + m1C − r1∇wi = 

K1φ,¨  

 

b1∇2φ + γ∇2ψ − de − α3φ − α2ψ + γ2T + m2C − r2∇wi = 

K2ψ.¨ 

 

Equation of first moment of energy  

 

s6wi,jj + (s4 + s5)wj,ij − s2wi − s3T,i − r3w˙i − r1∇φ˙ − 

r2∇ψ˙ = 0. 

 

Heat conduction equation 

 

K∗T,ii + s1wi,i = β1T0e˙ + ρCeT˙ + acT0C˙ + γ1T0φ˙ + 

γ2T0ψ.˙  

 

Equation of mass diffusion 

 

C˙ = Dc[bc∇2C − ac∇2T − β2∇2e − m1∇2φ − m2∇2ψ]. (15) 

 

Here σij are the stress components, ε and ζ are the intrinsic 

equilibrated body forces, σi and χi are the equilibrated stresses 

corresponding to pores and fissures respectively, qi is the heat 

flux moment, qij is the first heat flux moment vector, Qi is the 

mean heat flux vector, eij are the strain components, δij is the 

Kronecker delta function, λ and µ are Lames constants, e=ekk 

is the cubical dilatation, ui are the components of 

displacement vector ~u, wi are the components of 

microtemperature vector w~, b, d, b1, m1, m2, α, α1, α2, α3, 

b1, b2, r1, r2, γ, γ1, γ2 are constitutive coefficients for double 
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porous material, si(i = 1,2,...,6) are constant constitutive 

coefficients, β1=(3λ+2µ)αt, αt is the thermal expansion 

coefficient, β2=(3λ + 2µ)αc, αc is the diffusion expansion 

coefficient, T = T ∗ − T0, T ∗ is absolute temperature, T0 is 

reference temperature of the medium in its natural state 

assumed to be is the non-equilibrium concentration, C0 is the 

mass concentration at natural state, t is time, φ and ψ are 

volume fraction fields related to pores and fissures 

respectively, ρ is the mass density, K∗ is the coefficient of 

thermal conductivity, Ce is the specific heat at constant strain, 

ac is measure of thermodiffusion effect, Dc is the 

thermoelastic diffusion constant, bc is measure of diffusive 

effect, K1 and K2 are the equilibrated inertia coefficients. 

Our motive is to investigate the effect of the temperature-

dependent elastic and thermal moduli on the different physical 

parameters. Following Noda [23], we assume that 

 

(µ,λ,β1,β2,b,d,α,b1,γ,α1,α2,α3,γ1,γ2,ac,bc,m1,m2,r1,r2,r3,K1,

K2,s1,s2, s3, s4, s5, s6) = (µ0, λ0, β10, β20, b0, d0, α0, b01, 

γ0, α10, α20, α30, γ10, γ20, a0c, bc0, m01, m02, r10, r20, 

r30, K10, K20, s01, s02, s30, s04, s05, s06)f(T0),  

 

Where f(T0) is a given non-dimensional function of 

temperature such that f(T0) = (1 − α∗T0) and α∗ is an 

empirical material constant. 

 

 
 

Fig 1: Geometry of the problem 

 

3 Formulation of the problem 

Consider a homogeneous, isotropic, double poroelastic, 

diffusive half-space with microtemperatures and temperature 

dependent properties. We choose the rectangular cartesian 

coordinate system (x,y,z) having the surface of the half-space 

as the plane y = 0, with y-axis pointing vertically downwards 

into the medium so that the half-space occupies the region y ≥ 

0 as shown in Figure 1. The current investigation is restricted 

to xy-plane and thus all the physical quantities will be 

functions of the space variables x,y and time t. 

Under these considerations, we may write the displacement 

vector and microtemperature vector as 

 

~u = (u,v,0), u = u(x,y,t), v = v(x,y,t) w~ = (w1,w2,0), w1 = 

w1(x,y,t), w2 = w2(x,y,t). (17) 

 

Taking into consideration (1), (4), (5) and (7) along with the 

expression (16), the requisite non-zero stress components can 

be expressed as: 

 

  
 

Where z1 = 1 − α∗T0. Taking into consideration (16), the 

governing equations (10)-(15) for two-dimensional problem 

take the form: 
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Where  is the Laplacian operator. 

For convenience, we will make use of the following non-

dimensional variables to normalize the above relations 

  

Where 

 

 

 

Helmholtz decomposition representation of displacement 

vector ~u in terms of scalar potential function φ1(x,y,t) and 

vector potential function U~(x,y,t) gives: 

 

~u = ∇φ1 + ∇ × U,~ ∇.U~ = 0. (33) 

 

So the displacement components u and v for the two-

dimensional problem are expressed in terms of these 

potentials by the following relations: 

 

  

 

The relations connecting microtemperature components to the 

potential functions are 

 

 . (35) 

 

Inserting the non-dimensional expressions defined in (32) in 

equations (24)-(31) along with the consideration of relations 

(34) and (35), we obtain the following set of equations 

(suppressing the primes for convenience): 

 

 

 
 

 
 

 

 

 

 

 
 

 

 

Making use of non-dimensional variables, potential functions 

and microtemperature components described in (32), (34) and 

(35), the stresses and heat flux moment defined in (18)-(23) 

along with some simplifications, provide the following 

relations: 

 

 
 

Where ai(i = 1,2,...,54) are listed in appendix A. 

 

4. Solution of the problem 

In order to find the analytic solution of the system of partial 

differential equations (36)-(43), we suppose the solution of 

the form: 

 

(φ1,ψ1,φ,ψ,T,C,q1,q2)(x,y,t)= (φ¯1,ψ¯1,φ,¯ ψ,¯ T,¯ C,¯ 

q¯1,q¯2)exp(ιk(xsinθ − y cosθ) − ιωt), (50) 

 

Where φ¯1,ψ¯1,φ,¯ ψ,¯ T,¯ C,¯ q¯1 and q¯2 are the 

amplitudes of the reflected waves. k is the wave number, ω is 

the angular frequency having the definition ω=kv, v being the 

phase velocity and (sinθ,cosθ) denotes the projection of wave 

normal onto the xy- plane. 

Substituting from (50), into equations (36)-(43), we obtain the 

following set of equation 

 

(−k2 + f1)φ¯1 − T¯ − C¯ + a2φ¯+ a3ψ¯ = 0, (51) 

 

(−k2 + f2)ψ¯1 = 0, (52) 

 

−k2φ¯1 + (f3 − a5k2)φ¯+ (a9 − a8k2)ψ¯ − a10T¯ − a11C¯ − 

a12k2q¯1 = 0, (53) 

 

−k2φ¯1 + (a14 − a13k2)φ¯+ (f4 − a15k2)ψ¯ − a18T¯ − 

a19C¯ − a20k2q¯1 = 0, (54) 

 

(f5 − a21k2)¯q1 − a24T¯ + f6φ¯+ f7ψ¯ = 0, (55) 

 

(f8 − a27k2)¯q2 = 0, (56) 

 

f9k2φ¯1 + (f10 + a29k2)T¯ − f11C¯ − f12φ¯− f13ψ¯ + 

a30k2q¯1 = 0, (57) 
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f14k4φ¯1 − a36k2T¯ + (f15 + a38k2)C¯ − a39k2φ¯− 

a40k2ψ¯ = 0, (58) 

 

Where fi(i = 1,2,...,15) are listed in appendix B. 

The condition for the existence of a non-trivial solution of the 

homogeneous system of equations (51), (53)-(55) and (57)-

(58) provides us: 

 

v12 + A∗v10 + B∗v8 + C∗v6 + D∗v4 + E∗v2 + F ∗ = 0, (59) 

 

Where A∗,B∗,C∗,D∗,E∗ and F ∗ are calculated with the help 

of MATLAB programming. 

It is noted that the equation (59) is hexic in v2, whose roots 

will gives the velocities of six vibrating waves. 

From equations (52) and (56), we have 

 

 , (60) 

 

 . (61) 

 

The roots of equation (60) and (61) will give the velocities 

(v7) and (v8) of transverse displacement wave and an 

independent microtemperature wave, respectively. 

The equation (59) is hexic and (60) and (61) are linear in v2 

with complex coefficients, showing that the corresponding 

waves are attenuated in nature. The complex phase velocity 

vi(i = 1,2,...,8) of each wave can be resolved into propagation 

velocity Vi(i = 1,2,...,8) and attenuation coefficient Q−i 1(i = 

1,2,...,8). For a longitudinal wave with complex velocity vi = 

viR + viI, define Vi =(viR2 + viI2)/viR and Q−i 1=−2viI/viR 

as its phase velocity and attenuation coefficient respectively, 

where the letters R and I in the subscript denote the real and 

imaginary parts. The phase speeds of these waves depend 

upon the frequency ω and wave number k. Hence these waves 

are found to be dispersive and attenuated in nature. 

 

5. Reflection phenomenon 

Here, we shall discuss the reflection phenomenon, when a set 

of coupled longitudinal waves having amplitude A0 

propagating with phase speed V0 and making an angle θ0 

with the normal is made to strike at the free surface y = 0. 

Corresponding to the incident wave, we obtain eight reflected 

waves as shown in Figure 2. We postulate the following 

reflected waves to satisfy the boundary conditions at the free 

plane surface: 

1. Six sets of coupled longitudinal waves of amplitudes 

A1,2,...,6 propagating with the speeds V1,2,...,6 and 

making angles θ1,2,...,6 respectively with the normal. 

2. A transverse waves of amplitude A7 propagating with 

speed V7 and making angle θ7 with the normal. 

 

 
 

Fig 2: Schematic of the problem 

 

3. An independent microtemperature wave with amplitude A8 

propagating with speed V8 and making angle θ8 with the 

normal. 

Therefore, the full structure of the wave field consisting of the 

incident and reflected waves, can be written as 

 

  
 

, (64) 

 

Where] is the phase factor of the wave incident at an angle θ0 

with amplitude A0, Pi+=exp[ιki(xsinθi + y cosθi) − ιωit], (i = 

1,2,...,8) are the phase factors of the waves reflected at angles 

θi with amplitudes Ai. η1i, η2i, η3i, η4i, η5i (i = 1,2,...,6) are 

the coupling parameters among φ¯1,φ,¯ ψ,¯ T,¯ C¯ and q¯1. 

The expressions of coupling parameters are given by 

 

  

 

 

Where Eji(j = 1,2,...,10) and R18 are listed in appendix C. 

 

6. Boundary conditions 

The amplitudes Ai (i = 1,2,...,7) can be determined by 

imposing suitable boundary conditions at the free surface y=0. 

Since the boundary of the half-space is adjacent to vacuum, it 

is free from surface tractions. So, the boundary conditions at 

the free surface y=0 are described as: 

1. Vanishing of normal mechanical stress, 

2. Vanishing of tangential mechanical stress, 

3. Vanishing of equilibrated stress corresponding to pores, 

4. Vanishing of equilibrated stress corresponding to 

fissures, 

5. Temperature deviation at the free surface is zero, 

6. Concentration at the free surface is zero, 

7. Vanishing of normal heat flux moment, 

8. Vanishing of tangential heat flux moment. 

 

Mathematically, these boundary conditions can be expressed 

as: 

 

σyy = 0, σyx = 0, σy = 0, χy = 0, T = 0, C = 0, qyy = 0, qyx = 

0. (65) 
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The boundary conditions prescribed above are identically 

satisfied if and only if ω = ω1 = ω2 = ω3 = ω4 = ω5 = ω6= ω7 

= ω8 and Snell’s law holds, which gives the relation among 

angles of incidence and reflection as k1 sinθ0 = k1 sinθ1 = k2 

sinθ2 = k3 sinθ3 = k4 sinθ4 = k5 sinθ5 = k6 sinθ6 = k7 sinθ7 

= k8 sinθ8, which can further be written as (extended Snell’s 

law). 

 

 
 

From Snell’s law (66), we observe that θ0 = θ1, the other 

angles of reflection depend upon the phase velocities Vi (i = 

1,2,...,8) which are functions of material parameters. 

Using expressions (62)-(64) in the boundary conditions (after 

making non-dimensional) given by (65), we obtain a non-

homogeneous system of equations as: 

 

, (67) 

 

Where 8) are the amplitude ratios of the reflected waves. All 

the elements of the matrix [bij] together with column matrix 

[Mi] are defined in Appendix D. 

 

7. Energy partitioning 

We shall now consider the partitioning of incident energy 

between different reflected waves at the surface element of 

unit area. Following Achenbach [24], the instantaneous rate of 

work of surface traction is the scalar product of the surface 

traction and the particle velocity. This scalar product is called 

the power per unit area, denoted by P ∗, and represents the 

rate at which the energy is transmitted per unit area of the 

surface, i.e., the energy flux across the surface element. The 

time average of P ∗ over a period, denoted by hP ∗i, 

represents the average energy transmission per unit surface 

area per unit time. Thus, the rate of energy transmission at the 

surface y = 0 is given by 

 

P ∗ = σyyv˙ + σyxu˙ + σyψ˙ + χyφ˙ + qyyw2 + qyxw1. (68) 

 

Now, we calculate P ∗ for the incident and each of the 

reflected waves and hence obtain the energy ratios. The 

energy ratios Ei (i = 1,2,...,8) of the various reflected waves 

are defined as the ratios of energy corresponding to the 

reflected waves to the energy of the incident wave. The 

expressions for these energy ratios Ei (i = 1,2,...,8) for 

reflected waves are defined as 

 

 , (69) 

 

Where the expressions of and are given by 

P0∗ = −ωk1M1 cosθ0 + ωk1M2 sinθ0 − ιωM3η21 − 

ιωM4η11−ιk1M7 cosθ0η51 + ιk1M8 sinθ0η51, 

Pi∗ = ωkib1i cosθi − ωkib2i sinθi − ιωb3jη2i − ιωb4jη1i 

+ιkib7i cosθiη5i − ιkib8i sinθiη5i, (i = 1,2,...,6) 

 

 , 

 

 . 

 

We note that these energy ratios depend on the elastic 

properties of the medium, angle of incidence and amplitude 

ratios. The phenomena of conservation of energy at the 

surface will be verified graphically in numerical results and 

discussion section. 

 

8. Special cases 

8.1 Without double porosity 
To discuss the problem of wave propagation and reflection in 

a thermoelastic diffusive medium with microtemperatures and 

temperature dependent properties, it is sufficient to set the 

value of double porosity parameters b = d = α = b1 = γ = α1 = 

α2 = α3 = r1 = r2 = γ1 = γ2 = m1 = m2 = 0 into the 

constitutive relations and field equations. With these 

modifications, the corresponding amplitude ratios and energy 

ratios can be obtained from equations (67) and (69) for the 

incidence of a set of coupled waves. In addition, if we neglect 

the influences of temperature dependent property from the 

medium, then the outcomes coincide with those of Deswal et 

al. [5]. 

 

8.2 Without microtemperature 

If we assume that k1 = k2 = k3 = k4 = k5 = k6 = r1 = r2 = r3 

= 0, then we shall deal with a relevant problem of reflection 

phenomenon in a thermoelastic diffusive half-space with 

double porosity and temperature dependent property. By 

taking into consideration the above mentioned modifications, 

equations (67) and (69) will provide us the reflection 

coefficients and energy ratios for the corresponding problem. 

If we also remove the effect of doule porosity from the 

medium, then the results of the relevant problem coincide 

with the particular case (Isotropic medium) of Kalkal et al. [16] 

(in the absence of the magnetic field). 

 

8.3 Without temperature dependent property 

The effect of temperature dependent property can be removed 

from the medium by taking α∗ = 0 in the governing equations. 

If we further remove the impact of double porosity, then our 

results match with those of Sheoran et al. [25] in the absence of 

magnetic field, rotation and initial stress. 

 

9 Numerical results and discussion 

In order to discuss the problem in greater details and to find 

out the nature of dependence of reflection coefficients and 

energy ratios on the angle of incidence and material 

parameters, a numerical analysis is carried out with the help 

of computer programming using the software MATLAB. For 

the purpose of numerical computation, the material constants 

of the problem are taken from Sherief and Saleh [26] λ0 = 

7.76 × 1010Nm−2, µ0 = 3.86 × 1010Nm−2, ρ = 8954kgm−3, 

T0 = 293K, Ce = 3831m2s−2K−1, Dc = 0.85 × 10−8kgsm−3, 

αt = 1.78 × 10−5K−1, αc = 1.2 × 10−4m3kg−1, a0c = 1.2 × 

104m2K−1s−2, b0c = 0.9 × 104m5kg−1s−2, 

 

K∗ = 386Wm−1K−1. 

 

The double porosity parameters are taken from Khalili [27] b0 

= 0.9 × 104Nm−2, d0 = 0.1 × 104Nm−2, b10 = 1.2 × 10−6N, 

α0 = 1.3 × 10−5N, α10 = 2.3 × 1010Nm−2, α20 = 2.4 × 

1010Nm−2, α30 = 2.5 × 1010Nm−2, γ0 = 1.1 × 10−5N, γ10 = 

0.16 × 105Nm−2, γ20 = 0.219 × 105Nm−2, m10 = 2.9 × 

1012N, m02 = 2.9 × 1010N, K10 = 0.1456 × 10−12Nm−2s2, 

K20 = 0.1546 × 10−12Nm−2s2. 

The values of microtemperature parameters are taken from 

Sheoran et al. [25] k10 = 0.0035Ns−1, k20 = 0.0045Ns−1, k30 

= 0.0055Ns−1K−1, k40 = 0.065Ns−1m−2, k50 = 
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0.076Ns−1m−2, k60 = 0.096Ns−1m−2, r10 = 0.0085N, r20 = 

0.0085N, r30 = 0.15 × 10−9N. 

 

For the purpose of numerical computation, we also consider 

angular velocity ω = 0.001 and a∗ = 0.005. 

Considering the above physical data, we have evaluated the 

amplitude ratios, energy ratios and sum of modulus of energy 

ratios for each value of angle of incidence varying from 

normal incidence to grazing incidence for incident wave 

propagating with speed V0. With the help of above-

mentioned constants, the numerical results are obtained and 

presented graphically. 

The presentation is divided into five categories for 

convenience: 

 

Category 1: In this category (Figures 3(a)-(h)), the amplitude 

ratios Zi(i = 1,2,...,8) have been evaluated at different angles 

of incidence of a coupled longitudinal wave for different 

values of double porosity parameter (solid line), 1.6 × 10−6 

(dashed line), (dotted line). The variation in amplitude ratio 

|Z1| corresponding to an incident longitudinal wave versus 

angle of incidence θ0 is depicted in Figure 3(a). It can be 

observed that the amplitude ratio |Z1| has its maximum value 

unity at normal incidence, it then decreases with increase in 

θ0 till θ0 = 520 and thereafter, it increases with an increase in 

θ0 for three different values of discussed above. An increase 

in the value of double porosity parameter results in an 

increase in the absolute numerical values of the reflection 

coefficient |Z1|, which illuminates the fact that the is having 

an increasing effect on the profile of the reflection coefficient 

|Z1|. Figure 3(b) depicts the effect of double porosity 

parameter on the profile of reflection coefficient |Z2|, for three 

different values mentioned above. Increase in the value of 

results in increase in numerical values of reflection coefficient 

|Z2|, which illuminates the fact that the double porosity 

parameter is having a noticeable increasing effect on the 

profile of reflection coefficient |Z2|. 

The influence of double porosity parameter on the profile of 

amplitude ratio |Z3| is depicted in figure 3(c). By comparing 

the three solution curves, it is observed that the modulus 

values of amplitude ratio |Z3| are lesser for greater value of 

Hence double porosity parameter has a decreasing effect on 

the profile of this amplitude ratio |Z3|. In figure 3(d), we have 

elucidated the variations of amplitude ratio |Z4| against the 

angle of incidence. It can be noticed from the plot that the 

values of |Z4| increase monotonically in the interval 00 < θ0 ≤ 

550 and then decrease as θ0 increases further. Double 

porosity coefficient b1 is having an increasing influence on 

the amplitude ratio |Z4|. In figure 3(e), a similar pattern of 

distribution of amplitude ratio |Z5| is observed for the three 

distinct values of the double porosity parameter. The figure 

shows that an increase in the value of reduces the values of 

|Z5|. The variations of amplitude ratios |Z6|, |Z7| and |Z8| 

versus angle of incidence are depicted in figures 3(f), 3(g) and 

3(h) respectively, for three different values of mentioned 

above. From the figures, one can notice that the values of 

amplitude ratios |Z6|, |Z7| and |Z8| increase with an increase in 

the value of double porosity parameter. Thus, double porosity 

parameter has an increasing effect on the profile of amplitude 

ratios |Z6|, |Z7| and |Z8|. 

Category 2: In this category, figures 4((a)-(h)) are drawn to 

show the variations in the absolute values of the amplitude 

ratios |Zi| (i = 1,2,...,8) with the angle of incidence, for 

different values of the diffusion parameter (solid line), 

1.5×104 (dashed line), 1.8 × 104 (dotted line) when a coupled 

wave is made incident at the free surface y = 0. Figure 4(a) 

represents the variation in the value of reflection coefficient 

|Z1| with the angle of incidence for three different values of 

diffusion parameter. As shown in figure, the value of 

reflection coefficient |Z1| lies near to unity for the entire range 

of angle of incidence and is showing negligible effect of 

diffusion parameter. The variations of amplitude ratios |Z2| 

and |Z3| versus angle of incidence are depicted in figures 4(b) 

and 4(c) respectively, for different values of the diffusion 

parameter. It can be seen from these figures that the variation 

pattern of reflection coefficients |Z2| and |Z3| is almost similar 

for all the three values of The increase in the value of results 

in the decrease in numerical values of reflection coefficients 

|Z2| and |Z3|, which illuminates the fact that the diffusion 

parameter is having a noticeable decreasing effect on the 

profile of reflection coefficients |Z2| and |Z3|. 

Figures 4(d) and 4(e) present the variations of absolute values 

of amplitude ratios |Z4| and |Z5| respectively against the angle 

of incidence for the three different values of diffusion 

parameter mentioned above. It can be concluded from the 

plots that diffusion parameter is having a decreasing influence 

on the amplitude ratios |Z4| and |Z5|. In figure 4(f), we have 

elucidated the variations of amplitude ratio |Z6| against the 

angle of incidence. It can be noticed from the plot that the 

values of |Z6| increase monotonically in the interval 00 < θ0 ≤ 

550 and then decrease as θ0 increases further. Diffusion 

parameter is having an increasing influence on the amplitude 

ratio |Z6|. Figures 4(g) and 4(h) are plotted to show the 

variations of reflection coefficients |Z7| and |Z8| respectively, 

for different values of the diffusion parameter. Both of these 

reflection coefficients decrease with an increment in the value 

of diffusion parameter and show a similar pattern of 

variations. 

 

Category 3: In this category, figures 5(a)-5(h) are plotted to 

demonstrate the effect of temperature dependent property 

parameter α∗ on the profile of reflection coefficients |Zi| (i = 

1,2,...,8). In this figure, the solid line and dashed line refer to 

the presence (α∗ = 0.005) and absence ((α∗ = 0) of 

temperature dependent property respectively. In figure 5(a) 

the modulus values of amplitude ratio Z1 are computed 

against the angle of incidence for two different cases: in 

presence and absence of temperature dependent property. The 

figure reveals that the reflection coefficient |Z1| has 

qualitatively similar behaviour for both the cases and presence 

of temperature dependent property decreases the numerical 

values of amplitude ratio |Z1|. In figure 5(b), we have 

elucidated the variation of amplitude ratio |Z2| against the 

angle of incidence. The presence of temperature dependent 

property acts to decrease the magnitude of amplitude ratio 

|Z2| in the whole range of angle of incidence. The variations 

of amplitude ratios |Z3|, |Z4| and |Z5| versus angle of 

incidence are depicted in figures 5(c), 5(d) and 5(e) 

respectively, for with and without temperature dependent 

property. It can be noticed from the figures that in presence of 

temperature dependent property parameter, the magnitude of 

amplitude ratios |Z3|, |Z4| and |Z5| is greater as compared to in 

absence of temperature dependent property parameter. 

Figures 5(f), 5(g) and 5(h) manifest the effect of temperature 

dependent property parameter on the profiles of reflection 

coefficients |Z6|, |Z7| and |Z8| respectively. It is evident from 

the plots that the presence of temperature dependent property 

parameter decreases the values of |Z6|, |Z7| and |Z8|, hence 

indicating a decreasing effect on amplitude ratio |Z6|, |Z7| and 

|Z8|. 
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Category 4: In this category, the values of reflection 

coefficients |Zi| (i = 1,2,...,8) have been computed at different 

angles of incidence for three different values of 

microtemperature parameter r3: r3 = 1.5 × 10−8 (solid line), 

r3 = 2.5 × 10−8 (dashed line), r3 = 3.5 × 10−8 (dotted line) 

and are shown in figures 6(a)-6(f). The variation in reflection 

coefficient |Z1| corresponding to an incident wave against 

angle of incidence θ0 is displayed in figure 6(a). From the 

plot, we notice that there is an increasing influence of 

microtemperature parameter r3 on the profile of amplitude 

ratio |Z1|. Figure 6(b) depicts the effect of microtemperature 

parameter on the profile of reflection coefficient |Z2|, for three 

different values mentioned above. Increase in the value of r3 

results in decrease in numerical values of reflection 

coefficient |Z2|, which illuminates the fact that the 

microtemperature parameter is having a noticeable decreasing 

effect on the profile of reflection coefficient |Z2|. A similar 

effect of microtemperature parameter is observed on the 

profiles of reflection coefficients |Z3| and |Z4| in figures 6(c) 

and 6(d). However, |Z3| and |Z4| attain small numerical values 

in comparison to |Z2|. Figures 6(e) and 6(f) displays the 

variation in the reflection coefficient |Z5| and |Z6| with the 

angle of incidence. 

It can be noticed from the figures that the microtemperature 

parameter has a decreasing effect on the profile of the 

reflection coefficients |Z5| and |Z6|. It is also noticed from the 

figures 6(g) and 6(h) that the values of the solution curves of 

the reflection coefficients |Z7| and |Z8| against the angle of 

incidence decrease with an increase in the value of the 

microtemperature parameter. 

 

Category 5 

Category 5 includes figure 7 which depicts the variations of 

modulus of energy ratios of reflected waves with the angle of 

incidence of coupled longitudinal wave propagating with 

velocity V0. The energy conversion in different ranges of 

angle of incidence is clearly noticed. We can see from the plot 

that the values of |E1| and sum are almost same and equal to 

unity irrespective of the variations in angle of incidence. The 

energy ratios |E2|, |E3|, |E4|, |E5|, |E6|, |E7| and |E8| are very 

small as the amplitude ratios |Z2|, |Z3|, |Z4|, |Z5|, |Z6|, |E7| and 

|Z8| were found to be small. These energy ratios have been 

shown by curves II, III, IV, V, VI and VII in the figure after 

multiplying their original values by the factors 

107,1031,104,104,1017,1041 and 1013 respectively. It can be 

seen from the figure that the energy carried by reflected 

coupled longitudinal wave propagating with velocity V1 is 

maximum in comparison to energy carried along with other 

reflected waves. It is observed that the profiles of the energy 

ratios versus angle of incidence are qualitatively similar to the 

corresponding profiles of the reflection coefficients apart 

from the magnitudes. It has been verified that at each angle of 

incidence P8i=1 |Ei| ≈ 1. Thus, we conclude that energy 

balance law is verified for each angle of incidence. 
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Geophys Res Lett:30 

 

Fig 3: Variations of reflection coefficients |Zi|(i = 1,2,...,8) against angle of incidence of a coupled wave with speed V0 for different values of 

double porosity parameter b1: b1 = 1.2 × 10−6 (solid line), b1 = 1.6 × 10−6 (dashed line), b1 = 1.8 × 10−6 (dotted line) 
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Fig 4: Variations of reflection coefficients |Zi|(i = 1,2,...,8) against angle of incidence of a coupled wave with speed V0 for different values of 

diffusion parameter ac: ac = 1.2×104 (solid line), ac = 1.5×104 (dashed line), ac = 1.8×104 (dotted line) 
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Fig 5: Effect of temperature dependent property parameter α∗ (α∗ = 0.005 (solid line), α∗ = 0 (dashed line)) on the reflection coefficients |Zi|(i = 

1,2,...,8) against angle of incidence of a coupled wave with speed V0 
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Fig 6: Variations of reflection coefficients |Zi|(i = 1,2,...,8) against angle of incidence of a coupled wave with speed V0 for different values of 

microtemperature parameter r3: r3 = 1.5 × 10−8 (solid line), r3 = 2.5 × 10−8 (dashed line), r3 = 3.5 × 10−8 (dotted line) 

 

 
Angle of incidence (in degrees) 

 

Fig 7: Profile of energy ratios versus angle of incidence. 

 

10 Conclusions 

The present study provides a mathematical model to 

investigate the phenomena of elastic wave propagation from a 

stress free boundary of a homogeneous isotropic double 

poroelastic diffusive medium under the effect of 

microtemperatures and temperature dependent properties. It 

has been observed that there exist eight plane waves 

consisting of six sets of coupled longitudinal waves, one set 

of transverse wave and one set of independent 

microtemperature wave propagating with distinct speeds. 

Effects of double porosity, diffusion, temperature dependent 

properties and microtemperature are discussed numerically 

and illustrated graphically. The expressions giving the 

reflection coefficients and energy ratios have been presented. 

From the analysis of the illustrations, we can arrive at the 

following conclusions: 

1. The reflection coefficients depend on the angle of 

incidence as well as on the properties of the medium. The 

nature of this dependency is different for different 

reflected waves. 

2. It is observed that all the reflection coefficients |Zi| (i = 

1,2,...,8) are highly influenced by the double porosity 

parameter. It exhibits an increasing effect on the absolute 

values of the reflection coefficients |Z1|, |Z2|, |Z4|, |Z6|, 

|Z7| and |Z8| but a decreasing effect is observed on the 

reflection coefficients |Z3| and |Z5|. 
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3. Theoretical as well as numerical results show that the 

reflection coefficients of various reflected waves are 

affected by diffusion coefficient. From the figures, it is 

noticed that diffusion coefficient has an increasing effect 

on the profiles of reflection coefficient |Z6| and a 

decreasing effect is observed on those of |Z2|, |Z3|, |Z4|, 

|Z5|, |Z7| and |Z8|. 

4. Effect of temperature dependent property parameter is 

quite pertinent on the amplitude ratios |Zi| (i = 1,2,...,8). 

The presence of temperature dependent property 

parameter is having a decreasing effect on the amplitude 

ratio |Z1|, |Z2|, |Z6|, |Z7| and |Z8| whereas a reverse effect 

is observed on the profiles of |Z3|, |Z4| and |Z5|. 

5. All the amplitude ratios |Zi| (i = 1,2,...,8) are highly 

influenced by microtemperature. A significant increasing 

impact of microtemperature coefficient is observed on the 

reflection coefficient |Z1| whereas a reverse effect is 

observed on the profiles of |Z2|, |Z3|, |Z4|, |Z5|, |Z6|, |Z7| 

and |Z8|. 

6. It is observed that the maximum amount of energy goes 

along the reflected longitudinal displacement wave 

corresponding to the reflection coefficient |Z1|. Thus, the 

reflected longitudinal displacement wave is the most 

dominating wave after reflection as it suppresses the 

other reflected waves. 

7. The numerical results show that sum of the modulus 

values of energy ratios is approximately unity at each 

angle of incidence. This shows that there is no dissipation 

of energy during reflection phenomena and hence 

proving the law of conservation of energy. 

 

11. Applications 

The results presented in this article may prove useful for 

researchers concerned with material science, designers of new 

materials as well as for those working on the development of 

hyperbolic thermoelasticity theory. The introduction of 

double porous structure to the thermoelastic medium has 

drawn the attention of many engineers, seismologists and 

scientists due to its application in geophysics, material 

science, mechanics of bones, drugs, medical devices industry 

etc. Wave vibration in a thermoelastic solid under the effect 

of diffusion and microtemperatures with additional 

parameters like temperature dependent properties gives vital 

information about the existence of new and modified waves 

and is of great importance in various technological and 

geophysical circumstances. Such information may be useful 

for experimental seismologists/scientists in correcting 

earthquake estimation. The reflections of seismic waves have 

a broad range of applications and are primarily used to 

prospect the geological materials from the Earths interior to 

provide high-resolution maps. The seismic reflection survey 

technique builds coherent geological data from the maps of 

processed seismic reflections. As seismic waves can 

propagate long distances through the material and gather 

information from different parts, mapping of stratigraphy as 

well as structure and significant evaluation of the properties 

of their constituent materials or components can be 

accomplished through nondestructive testing. The 

effectiveness of the repair can also be quantified by analyzing 

the change of wave features before and after repair through 

nondestructive testing as it uses the feature (velocity, 

frequency, amplitude, etc.) of elastic waves to estimate the 

degree of damage. 
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Appendix A 

 

 
 

Appendix B 

f1 = a1ω2, f2 = a4ω2, f3 = a6 − a7ω2, f4 = a16 − a17ω2, f5 = 

−a22 + a23ιω, f6 = a25ιω, f7 = a26ιω, f8 = f5, f9 = a32ιω, f10 

= −a31ιω, f11 = −a33ιω, f12 = −a34ιω, f13 = a35ιω, f14 = 

β20, f15 = −a37ιω. 

 

Appendix C 

E1i = R66ki8 + R67ki6 + R68ki4 + R69ki2 + R70, E2i = 

R71ki8 + R72ki6 + R73ki4+R74ki2 + R75, E3i = R39ki4 + 

R40ki2 + R41, E4i = R42ki4 + R43ki2 + R44, 

E5i = R45ki4 + R46ki2 + R47, E6i = R16ki2 + R17, E7i = 

R19ki2 + R20, E8i = R21ki2 + R22, E9i = −ki2 + f1, E10i = 

−a21ki2 + f5, i = (1,2,...,6), R1 = 1 − a11, R2 = f1a11, R3 = 

a10 − a11, R4 = a2a11 − f3, R5 = a3a11 − a9, R6 = 1 − a19, 

R7 = a19f1, R8 = a18 − a19, R9 = a2a19 − a14, R10 = a3a19 

− f4, R11 = −(f9 + f11), R12 = f1f11, R13 = −(f10 + f11), 

R14 = a2f11 + f12, R15 = a3f11 + f13, R16 = R1a20 − 

R6a12, R17 = R2a20 − R7a12, R18 = R3a20 − R8a12, R19 = 

a5a20 − a12a13, R20 = R4a20 − R9a12, R21 = a8a20 − 

a12a15, R22 = R5a20 −R10a12, R23 = R6a30 + R11a20, R24 

= R7a30 + R12a20, R25 = R8a30 + R13a20, R26 = −a20a29, 

R27 = a13a30, R28 = R9a30 + R14a20, R29 = a15a30, R30 = 

R10a30+R15a20, R31 = R1a30 + R11a12, R32 = R2a30 + 

R12a12, R33 = R13a12, R34 =−a29a12, R35 = a5a30, R36 = 

R4a30 + R14a12, R37 = a8a30, R38 = R5a30 + R15a12, R39 

= R16R26, R40 = R16R25 + R17R26 − R18R23, R41 = 

R17R25 − R24R18, R42 = R19R26, R43 = R19R25 + 

R20R26 − R18R27, R44 = R20R25 − R18R28, R45 = 

R21R26, R46 = R22R26 − R18R29, R47 = R22R25 − 

R18R30, R48 = R16f19 −R18f16, R49 = R17f19 − R16f20 − 

R17f18, R50 = −R17f20 − R18f18, R51 = R19f19, R52 = 

R20f19 − R19f20 − R18f21, R53 = −R20f20 − R18f22, R54 = 

R21f19, R55 = R22f19 − R21f20 − R18f23, R56 = −R22f20 − 

R18f24, R57 = R16R34, R58 = R17R34 + R16R33 − 

R18R31, R59 = R17R33 − R18R32, R60 = R19R34, R61 = 

R19R33 +R20R34 − R18R35, R62 = R33R20 − R18R36, 

R63 = R21R34, R64 = R21R33 + R22R34 −R18R37, R65 = 

R33R22, R66 = R48R63 − R54R57, R67 = R49R63 + 

R48R64 − R54R58 −R55R57, R68 = R50R63 + R49R64 + 

R48R65 − R54R59 − R55(R58 + R59), R69 = R49 R65 + 

R64R30 − R55R59 − R56R58, R70 = R50R65 − R56R59, 

R71 = R51R63 − R60R54, R72 = R49R63 + R48R64 − 

R54R61 − R55R60, R73 = R53R63 + R52R64 + R51R65 − 
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R54 R62 − R55R61 − R56R60, R74 = R52R65 + R53R64 − 

R56R61 − R55R62, R75 = R53R65 − R56R62. 

 

Appendix D 

b1j = −a41kj2 cos2 θj − a42kj2 sin2 θj − a41η3j − a41η4j + 

a44η1j + a45η2j, b17 = a43k72 cosθ7 sinθ7, b2j = −2a43kj2 

cosθj sinθj, b27 = a43k72(−cos2 θ7 + sin2 θ7), b3j = ιkj 

cosθj(−a46η1j − a47η2j + a48η5j), b38 = a48ιk8 sinθ8, b4j = 

ιkj cosθj(−a47η1j − a49η2j + a50η5j), b48 = a50ιk8 sinθ8, b5j 

= η3j, b6j = η4j, b7j = kj2η5j(−a51 + a52 cos2 θj), b78 = 

k82a52 cosθ8 sinθ8, b8j = kj2a52 cosθj sinθj, b88 = k82(−a53 

sin2 θj + a54 cos2 θ8), b18 = b28 = b37 = b47 = b57 = b58 = 

b67 = b68 = b77 = b87 = 0, j = (1,2,...,6) M1 = −a41k12 cos2 

θ1 − a42k12 sin2 θ1 − a41η31 − a41η41 + a44η11 + a45η21, 

M2 = 2a43k12 cosθ1 sinθ1, M3 = ιk1 cosθ1(a46η11 + a47η21 

− a48η51), M4 = ιk1 cosθ1(a47η11 + a48η21), M5 = −η31, 

M6 = −η41, M7 = k12η51(a51 − a52 cos2 θ1), M8 = k12a52 

sinθ1 cosθ1η51. 
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