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Abstract 

We develop a unified modular framework for Orlicz-type sequence spaces generated by either a single 

Orlicz function or a coordinatewise family of Orlicz functions. Under a uniform ∆2 growth hypothesis we 

prove that the associated Luxemburg functional induces a complete BK-topology. We then introduce 

Maddox-type variable-exponent Orlicz spaces ℓψ(p) and show that they inherit the same BK-structure. 

Finally, we study Orlicz-paranormed matrix domains ℓψ(A) under lower triangular matrices with nonzero 

diagonal, establishing completeness, inclusion criteria driven by global dominance of Orlicz functions 

and by weight monotonicity, explicit descriptions of the Kothe-Toeplitz α-, β-, and γ-duals in terms of the 

conjugate Orlicz function, and concrete Schauder bases transported via A−1. 

 

Keywords: Orlicz sequence spaces, modular sequence spaces, Luxemburg functional, ∆2 condition, 

Maddox-type spaces, variable exponent sequence spaces, BK-spaces, matrix domains, Norlund matrices, 

Kothe-Toeplitz duals, Schauder basis 

 

1. Introduction 

Orlicz sequence spaces and their modular generalizations provide a flexible replacement for 

classical ℓp scales, allowing one to model non-power growth, weighted tail control, and 

variable local behavior in a single functional-analytic setting. The modular approach (via 

Luxemburg type functionals) is particularly well adapted to matrix transformations and to the 

study of K¨othe-Toeplitz duals; see, for example, Musielak [2] and Woo [1]. The purpose of 

this paper is threefold: 

1. To present a concise, self-contained BK-space development for modular sequence spaces 

generated by a family of Orlicz functions under a uniform ∆2 condition; 

2. To introduce and formalize a Maddox-type Orlicz construction ℓψ(p) (variable exponent in 

the Orlicz input) and record its basic structural consequences; 

3. To transfer these results to Orlicz-paranormed matrix domains ℓψ(A) associated with 

lower triangular matrices (including Norlund-type matrices), and to derive dual and basis 

representations in terms of ψ∗ and A−1. 

 

Throughout, we focus on statements in theorem form and omit repetitive parallel arguments, 

referring to standard modular-space theory when appropriate. 

 

2. Preliminaries: Orlicz functions, modulars, and Luxemburg functionals 

Orlicz functions and conjugates 

Definition 2.1 (Orlicz function). A function ψ: [0,∞) → [0,∞) is an Orlicz function if: 

1. ψ(0) = 0 and ψ(u) > 0 for all u 

> 0;  

2. ψ is nondecreasing and convex 

on [0,∞); 

3. ψ(u) →∞ as u →∞. 

 

Definition 2.2 (Conjugate Orlicz function). The conjugate Orlicz function ψ∗: [0,∞) → [0,∞] is 
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A basic tool is Young’s inequality (see, e.g., [2]): 

 

uv ≤ ψ(u) + ψ∗(v) (u,v ≥ 0). (1) 

 

Modular sequence spaces 

Let ω:= {x = (xk)k≥0: xk ∈C} denote the space of all complex sequences. 

 

Definition 2.3 (Family modular). Let Ψ = (ψk)k≥0 be a sequence of Orlicz functions. For x ∈ ω and µ > 0 define the modular 

 

,  (2) 

 

and set IΨ(x):= IΨ(x;1). The modular sequence space is 

 

 for some .  (3) 

 

Definition 2.4 (Luxemburg functional). For x ∈ ℓ(Ψ) define 

 

.  (4) 

 

Definition 2.5 (Uniform ∆2 condition). We say Ψ = (ψk) satisfies a uniform ∆2 condition if there exists K ≥ 1 such that 

 

ψk(2u) ≤ K ψk(u) (u ≥ 0, k ≥ 0).  (5) 

 

Main result I: BK-structure of modular Orlicz sequence spaces 

We record the standard BK-space consequence of convex modular theory, specialized to the present family setting; see [1, 2, 3]. 

 

Theorem 3.1 (BK-property of ℓ(Ψ)). Assume Ψ = (ψk) satisfies the uniform ∆2 condition (5).  

Then 

1. qΨ is a paranorm on ℓ(Ψ) and (ℓ(Ψ),qΨ) is complete. 

2. Each coordinate functional pk(x) = xk is continuous on ℓ(Ψ). 

3. Consequently, qΨ is equivalent to a norm on ℓ(Ψ); in particular, ℓ(Ψ) is a BK-space under this topology. 

 

Proof sketch. Paranorm properties follow from convexity and monotonicity of each ψk, together with the Luxemburg definition 

(4); the triangle inequality is obtained by convexity after writing (x + y)/(λ + µ) as a convex combination of x/λ and y/µ. 

Completeness and continuity of coordinates are standard consequences of modular Cauchy criteria combined with (5); see [2, 1]. 

The final norm-equivalence is obtained by the usual renorming argument for complete K-spaces induced by convex modulars 

under ∆2; cf. [2].   

 

4. Orlicz and Maddox-type variable-exponent constructions 

Classical Orlicz sequence spaces Fix a single Orlicz function ψ. 

Definition 4.1 (Orlicz sequence space). Define 

 

 for some µ > 0}, 

 

and the Luxemburg functional 

 

. 

 

Corollary 4.2. If ψ satisfies ψ(2u) ≤ Kψ(u) for all u ≥ 0, then (ℓψ,qψ) is a BK-space. 

Proof. Apply Theorem 3.1 with ψk ≡ ψ.   

 

Maddox-type Orlicz spaces ℓψ(p) 

 

Definition 4.3 (Variable-exponent Orlicz family). Let p = (pk)k≥0 satisfy 0 < H1 ≤ pk ≤ H2 < ∞. Define ψk(u):= ψ(upk) and Ψ = 

(ψk)k≥0. Set 

 

ℓψ(p):= ℓ(Ψ), 

equipped with the Luxemburg functional qΨ from (4). Equivalently, 
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Proposition 4.4 (Inheritance of uniform ∆2). If ψ satisfies ψ(2u) ≤ Kψ(u) for all u ≥ 0 and 0 < H1 ≤ pk ≤ H2 < ∞, then Ψ = (ψk) 

satisfies a uniform ∆2 condition (5). 

Proof. For u ≥ 0, 

 

. 

 

Iterating the ∆2 inequality finitely many times yields ψ(2H2s) ≤ K′ψ(s) with K′ depending only on K,H2. Hence ψk(2u) ≤ K′ψk(u) 

uniformly in k.   

 

Corollary 4.5 (BK-property of ℓψ(p)). Under the hypotheses of Proposition 4.4, (ℓψ(p),qΨ) is a BK-space. 

Proof. Combine Proposition 4.4 with Theorem 3.1.   

 

5. Orlicz-paranormed matrix domains 

Definition and completeness 

Let A = (ank)n,k≥0 be lower triangular with ann ̸= 0. 

 

Definition 5.1 (Matrix domain of ℓψ). Assume ψ satisfies a ∆2 condition. Define 

 

ℓψ(A):= {x ∈ ω: Ax ∈ ℓψ}, qψ
A(x):= qψ(Ax). 

 

Theorem 5.2 (Completeness and BK-property). If (ℓψ,qψ) is a BK-space and A is lower triangular with nonzero diagonal, then 

(ℓψ(A),qψ
A) is a BK-space; in particular it is complete. 

Proof. The map TA: ℓψ(A) → ℓψ, TA(x) = Ax, is linear and injective. Since A has nonzero diagonal and is triangular, A−1 exists as 

a triangular matrix with finite rows, and TA is a linear isomorphism onto its range. By definition qψ
A(x) = qψ(TAx), so TA is an 

isometric embedding. 

Completeness and continuity of coordinates transfer from ℓψ to ℓψ(A) via TA and A−1.   

 

Inclusion principles: dominance and weights 

Definition 5.3 (Global dominance). For Orlicz functions ψ1,ψ2, write ψ2 ⪯ ψ1 if there exist a > 0 and C ≥ 1 such that 

ψ2(u) ≤ C ψ1(au) (u ≥ 0). 

 

Proposition 5.4 (Inclusion under dominance). Let ψ1,ψ2 satisfy ∆2 and assume ψ2 ⪯ ψ1. Then ℓψ1 ⊆ ℓψ2 continuously, and for any 

triangular A with nonzero diagonal, ℓψ1(A) ⊆ ℓψ2(A) continuously. 

 

Proof. Let y ∈ ℓψ1 so P
k ψ1(λ|yk|) < ∞ for some λ. Dominance gives ψ2((λ/a)|yk|) ≤ Cψ1(λ|yk|); summing yields y ∈ ℓψ2. Continuity 

follows by comparing Luxemburg functionals using dominance and ∆2 (standard; see [2]). The matrix-domain inclusion follows 

by applying the first part to Ax.   

 

Definition 5.5 (Weighted Orlicz sequence space). For weights w = (wk)k≥0 with wk > 0, define 

 

 
 

Lemma 5.6 (Monotonicity in weights). If 0 < wk ≤ vk for all k, then ℓψ(v) ⊆ ℓψ(w) continuously. 

Proof. Since ψ is nondecreasing, ψ(wk|xk|) ≤ ψ(vk|xk|) termwise, so the modular for w is bounded by the modular for v. Luxemburg 

functional comparison is immediate.  

 

6. Duals and Schauder bases in Orlicz-paranormed matrix domains 

Kothe-Toeplitz duals 

For a sequence space X ⊆ ω define: 

 

Xα:= {y ∈ ω: ∑ k |xkyk| < ∞∀x ∈ X}, 

 

Xβ:= {y ∈ ω: ∑k xkyk converges for all x ∈ X}, 

 

Xγ:= {y ∈ ω: sup n | ∑ k=0 xkyk| < ∞∀x ∈ X}. 

 

 

Proposition 6.1 (Duals of ℓψ). If ψ satisfies ∆2, then 

 

(ℓψ)α = (ℓψ)β = (ℓψ)γ = ℓψ∗. 
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Proof sketch. Young’s inequality (1) yields ℓψ∗ ⊆ (ℓψ)α. Conversely, the classical representation of the K¨othe dual of an Orlicz 

sequence space identifies continuous coordinatewise functionals with ℓψ∗ under ∆2; see [2, 4, 5].   

 

Theorem 6.2 (Duals of ℓψ(A)). Let ψ satisfy ∆2 and let A be triangular with nonzero diagonal. 

Let B = A−1 = (bnk). Then 

 

(ℓψ(A))α = (ℓψ(A))β = (ℓψ(A))γ = {y ∈ ω: yB ∈ ℓψ∗}, 

 

where . 

 

Proof. For matrix domains of BK-spaces, Kothe-Toeplitz duals transform by the inverse matrix: 

. Applying this with X = ℓψ and using Proposition 6.1 

gives the result.   

 

Schauder bases 

Proposition 6.3 (Canonical basis of ℓψ). If ψ satisfies ∆2, then the unit vectors e(n) = (δkn)k≥0 form a Schauder basis of ℓψ. 

Proof sketch. Since c00 is dense in ℓψ and coordinate functionals are continuous (Corollary 4.2), the standard coordinate 

projections  converge to x in the Luxemburg topology; see [2].   

 

Theorem 6.4 (Schauder basis of ℓψ(A)). Let ψ satisfy ∆2 and A be triangular with nonzero diagonal. Let B = A−1 = (bnk) and define 

-th column of B). Then  is a Schauder basis of ℓψ(A), and every x ∈ ℓψ(A) has the unique 

expansion  

 

 
 

Proof. The map TA: ℓψ(A) → ℓψ, TA(x) = Ax, is an isometric isomorphism onto ℓψ. Transport the canonical basis of

 is exactly the n-th column of B. Coefficients are forced to be (Ax)n by applying A and using 

uniqueness in ℓψ.  

 

7. Concluding remark 

The preceding results provide a modular toolkit that simultaneously handles: (i) non-power growth (Orlicz control), (ii) 

coordinatewise variability (Maddox-type exponents), and (iii) matrixgenerated domains relevant in summability and operator 

theory. In concrete applications (e.g. N¨orlund matrices attached to special integer sequences), Theorem 6.2 and Theorem 6.4 

reduce dual and basis computations to explicit formulas for A−1. 
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