

ISSN: 2456-1452
 Maths 2025; 10(6): 251-254
 © 2025 Stats & Maths
<https://www.mathsjournal.com>
 Received: 16-05-2025
 Accepted: 12-06-2025

Anil Singh
 Research Scholar, Department of Mathematics, Aarni University, Himachal Pradesh, India

Dr. Mudasir Ahmad Lone
 Assistant Professor, Department of Mathematics, Aarni University, Himachal Pradesh, India

Generalized modular and orlicz-paranormed sequence spaces and their matrix domains

Anil Singh and Mudasir Ahmad Lone

DOI: <https://www.doi.org/10.22271/math.2025.v10.i6c.2235>

Abstract

We develop a unified modular framework for Orlicz-type sequence spaces generated by either a single Orlicz function or a coordinatewise family of Orlicz functions. Under a uniform Δ_2 growth hypothesis we prove that the associated Luxemburg functional induces a complete BK-topology. We then introduce Maddox-type variable-exponent Orlicz spaces $\ell_\psi(p)$ and show that they inherit the same BK-structure. Finally, we study Orlicz-paranormed matrix domains $\ell_\psi(A)$ under lower triangular matrices with nonzero diagonal, establishing completeness, inclusion criteria driven by global dominance of Orlicz functions and by weight monotonicity, explicit descriptions of the Kothe-Toeplitz α -, β -, and γ -duals in terms of the conjugate Orlicz function, and concrete Schauder bases transported via A^{-1} .

Keywords: Orlicz sequence spaces, modular sequence spaces, Luxemburg functional, Δ_2 condition, Maddox-type spaces, variable exponent sequence spaces, BK-spaces, matrix domains, Norlund matrices, Kothe-Toeplitz duals, Schauder basis

1. Introduction

Orlicz sequence spaces and their modular generalizations provide a flexible replacement for classical ℓ_p scales, allowing one to model non-power growth, weighted tail control, and variable local behavior in a single functional-analytic setting. The modular approach (via Luxemburg type functionals) is particularly well adapted to matrix transformations and to the study of Kothe-Toeplitz duals; see, for example, Musielak [2] and Woo [1]. The purpose of this paper is threefold:

1. To present a concise, self-contained BK-space development for modular sequence spaces generated by a family of Orlicz functions under a uniform Δ_2 condition;
2. To introduce and formalize a Maddox-type Orlicz construction $\ell_\psi(p)$ (variable exponent in the Orlicz input) and record its basic structural consequences;
3. To transfer these results to Orlicz-paranormed matrix domains $\ell_\psi(A)$ associated with lower triangular matrices (including Norlund-type matrices), and to derive dual and basis representations in terms of ψ^* and A^{-1} .

Throughout, we focus on statements in theorem form and omit repetitive parallel arguments, referring to standard modular-space theory when appropriate.

2. Preliminaries: Orlicz functions, modulars, and Luxemburg functionals

Orlicz functions and conjugates

Definition 2.1 (Orlicz function). A function $\psi: [0, \infty) \rightarrow [0, \infty)$ is an Orlicz function if:

1. $\psi(0) = 0$ and $\psi(u) > 0$ for all $u > 0$;
2. ψ is nondecreasing and convex on $[0, \infty)$;
3. $\psi(u) \rightarrow \infty$ as $u \rightarrow \infty$.

Definition 2.2 (Conjugate Orlicz function). The conjugate Orlicz function $\psi^*: [0, \infty) \rightarrow [0, \infty]$ is

Corresponding Author:

Anil Singh
 Research Scholar, Department of Mathematics, Aarni University, Himachal Pradesh, India

$$\psi^*(v) := \sup_{u \geq 0} uv - \psi(u), \quad v \geq 0$$

A basic tool is Young's inequality (see, e.g., [2]):

$$uv \leq \psi(u) + \psi^*(v) \quad (u, v \geq 0). \quad (1)$$

Modular sequence spaces

Let $\omega := \{x = (x_k)_{k \geq 0} : x_k \in C\}$ denote the space of all complex sequences.

Definition 2.3 (Family modular). Let $\Psi = (\psi_k)_{k \geq 0}$ be a sequence of Orlicz functions. For $x \in \omega$ and $\mu > 0$ define the modular

$$I_\Psi(x; \mu) := \sum_{k=0}^{\infty} \psi_k(\mu|x_k|) \in [0, \infty], \quad (2)$$

and set $I_\Psi(x) := I_\Psi(x; 1)$. The modular sequence space is

$$\ell(\Psi) := \{x \in \omega : I_\Psi(x; \mu) < \infty \text{ for some } \mu > 0\}. \quad (3)$$

Definition 2.4 (Luxemburg functional). For $x \in \ell(\Psi)$ define

$$q_\Psi(x) := \inf \{\lambda > 0 : I_\Psi(x/\lambda) \leq 1\}. \quad (4)$$

Definition 2.5 (Uniform Δ_2 condition). We say $\Psi = (\psi_k)$ satisfies a uniform Δ_2 condition if there exists $K \geq 1$ such that

$$\psi_k(2u) \leq K \psi_k(u) \quad (u \geq 0, k \geq 0). \quad (5)$$

Main result I: BK-structure of modular Orlicz sequence spaces

We record the standard BK-space consequence of convex modular theory, specialized to the present family setting; see [1, 2, 3].

Theorem 3.1 (BK-property of $\ell(\Psi)$). Assume $\Psi = (\psi_k)$ satisfies the uniform Δ_2 condition (5).

Then

1. q_Ψ is a paranorm on $\ell(\Psi)$ and $(\ell(\Psi), q_\Psi)$ is complete.
2. Each coordinate functional $p_k(x) = x_k$ is continuous on $\ell(\Psi)$.
3. Consequently, q_Ψ is equivalent to a norm on $\ell(\Psi)$; in particular, $\ell(\Psi)$ is a BK-space under this topology.

Proof sketch. Paranorm properties follow from convexity and monotonicity of each ψ_k , together with the Luxemburg definition (4); the triangle inequality is obtained by convexity after writing $(x + y)/(\lambda + \mu)$ as a convex combination of x/λ and y/μ . Completeness and continuity of coordinates are standard consequences of modular Cauchy criteria combined with (5); see [2, 1]. The final norm-equivalence is obtained by the usual renorming argument for complete K-spaces induced by convex modulars under Δ_2 ; cf. [2].

4. Orlicz and Maddox-type variable-exponent constructions

Classical Orlicz sequence spaces Fix a single Orlicz function ψ .

Definition 4.1 (Orlicz sequence space). Define

$$I_\psi(x; \mu) := \sum_{k=0}^{\infty} \psi(\mu|x_k|), \quad \ell_\psi := \{x \in \omega : I_\psi(x; \mu) < \infty \text{ for some } \mu > 0\},$$

and the Luxemburg functional

$$q_\psi(x) := \inf \{\lambda > 0 : I_\psi(x/\lambda; 1) \leq 1\}.$$

Corollary 4.2. If ψ satisfies $\psi(2u) \leq K\psi(u)$ for all $u \geq 0$, then (ℓ_ψ, q_ψ) is a BK-space.

Proof. Apply Theorem 3.1 with $\psi_k \equiv \psi$.

Maddox-type Orlicz spaces $\ell_\psi(p)$

Definition 4.3 (Variable-exponent Orlicz family). Let $p = (p_k)_{k \geq 0}$ satisfy $0 < H_1 \leq p_k \leq H_2 < \infty$. Define $\psi_k(u) := \psi(u^{p_k})$ and $\Psi = (\psi_k)_{k \geq 0}$. Set

$$\ell_\psi(p) := \ell(\Psi),$$

equipped with the Luxemburg functional q_ψ from (4). Equivalently,

$$\ell_\psi(p) = \left\{ x \in \omega : \exists \mu > 0 \text{ s.t. } \sum_{k=0}^{\infty} \psi((\mu|x_k|)^{p_k}) < \infty \right\}.$$

Proposition 4.4 (Inheritance of uniform Δ_2). If ψ satisfies $\psi(2u) \leq K\psi(u)$ for all $u \geq 0$ and $0 < H_1 \leq p_k \leq H_2 < \infty$, then $\Psi = (\psi_k)$ satisfies a uniform Δ_2 condition (5).

Proof. For $u \geq 0$,

$$\psi_k(2u) = \psi(2u)^{p_k} = \psi(2^{p_k}u^{p_k}) \leq \psi(2^{H_2}u^{p_k}).$$

Iterating the Δ_2 inequality finitely many times yields $\psi(2^{H_2}s) \leq K'\psi(s)$ with K' depending only on K, H_2 . Hence $\psi_k(2u) \leq K'\psi_k(u)$ uniformly in k .

Corollary 4.5 (BK-property of $\ell_\psi(p)$). Under the hypotheses of Proposition 4.4, $(\ell_\psi(p), q_\psi)$ is a BK-space.

Proof. Combine Proposition 4.4 with Theorem 3.1.

5. Orlicz-paranormed matrix domains

Definition and completeness

Let $A = (a_{nk})_{n,k \geq 0}$ be lower triangular with $a_{nn} \neq 0$.

Definition 5.1 (Matrix domain of ℓ_ψ). Assume ψ satisfies a Δ_2 condition. Define

$$\ell_\psi(A) := \{x \in \omega : Ax \in \ell_\psi\}, q_\psi^A(x) := q_\psi(Ax).$$

Theorem 5.2 (Completeness and BK-property). If (ℓ_ψ, q_ψ) is a BK-space and A is lower triangular with nonzero diagonal, then $(\ell_\psi(A), q_\psi^A)$ is a BK-space; in particular it is complete.

Proof. The map $T_A : \ell_\psi(A) \rightarrow \ell_\psi$, $T_A(x) = Ax$, is linear and injective. Since A has nonzero diagonal and is triangular, A^{-1} exists as a triangular matrix with finite rows, and T_A is a linear isomorphism onto its range. By definition $q_\psi^A(x) = q_\psi(T_Ax)$, so T_A is an isometric embedding.

Completeness and continuity of coordinates transfer from ℓ_ψ to $\ell_\psi(A)$ via T_A and A^{-1} .

Inclusion principles: dominance and weights

Definition 5.3 (Global dominance). For Orlicz functions ψ_1, ψ_2 , write $\psi_2 \leq \psi_1$ if there exist $a > 0$ and $C \geq 1$ such that $\psi_2(u) \leq C\psi_1(au)$ ($u \geq 0$).

Proposition 5.4 (Inclusion under dominance). Let ψ_1, ψ_2 satisfy Δ_2 and assume $\psi_2 \leq \psi_1$. Then $\ell_{\psi_1} \subseteq \ell_{\psi_2}$ continuously, and for any triangular A with nonzero diagonal, $\ell_{\psi_1}(A) \subseteq \ell_{\psi_2}(A)$ continuously.

Proof. Let $y \in \ell_{\psi_1}$ so $\sum_k \psi_1(\lambda|y_k|) < \infty$ for some λ . Dominance gives $\psi_2(\lambda|y_k|) \leq C\psi_1(\lambda|y_k|)$; summing yields $y \in \ell_{\psi_2}$. Continuity follows by comparing Luxemburg functionals using dominance and Δ_2 (standard; see [2]). The matrix-domain inclusion follows by applying the first part to Ax .

Definition 5.5 (Weighted Orlicz sequence space). For weights $w = (w_k)_{k \geq 0}$ with $w_k > 0$, define

$$\ell_\psi(w) := \left\{ x \in \omega : \sum_{k=0}^{\infty} \psi(w_k|x_k|) < \infty \right\}.$$

Lemma 5.6 (Monotonicity in weights). If $0 < w_k \leq v_k$ for all k , then $\ell_\psi(v) \subseteq \ell_\psi(w)$ continuously.

Proof. Since ψ is nondecreasing, $\psi(w_k|x_k|) \leq \psi(v_k|x_k|)$ termwise, so the modular for w is bounded by the modular for v . Luxemburg functional comparison is immediate.

6. Duals and Schauder bases in Orlicz-paranormed matrix domains

Kothe-Toeplitz duals

For a sequence space $X \subseteq \omega$ define:

$$X^\alpha := \{y \in \omega : \sum_k |x_k y_k| < \infty \forall x \in X\},$$

$$X^\beta := \{y \in \omega : \sum_k x_k y_k \text{ converges for all } x \in X\},$$

$$X^\gamma := \{y \in \omega : \sup_n |\sum_{k=0}^n x_k y_k| < \infty \forall x \in X\}.$$

Proposition 6.1 (Duals of ℓ_ψ). If ψ satisfies Δ_2 , then

$$(\ell_\psi)^\alpha = (\ell_\psi)^\beta = (\ell_\psi)^\gamma = \ell_\psi^*.$$

Proof sketch. Young's inequality (1) yields $\ell_\psi^* \subseteq (\ell_\psi)^\alpha$. Conversely, the classical representation of the K^* the dual of an Orlicz sequence space identifies continuous coordinatewise functionals with ℓ_ψ^* under Δ_2 ; see [2, 4, 5].

Theorem 6.2 (Duals of $\ell_\psi(A)$). Let ψ satisfy Δ_2 and let A be triangular with nonzero diagonal.

Let $B = A^{-1} = (b_{nk})$. Then

$$(\ell_\psi(A))^\alpha = (\ell_\psi(A))^\beta = (\ell_\psi(A))^\gamma = \{y \in \omega : yB \in \ell_\psi^*\},$$

where $(yB)_n := \sum_{k=n}^{\infty} y_k b_{kn}$.

Proof. For matrix domains of BK-spaces, Kothe-Toeplitz duals transform by the inverse matrix:

$X_A^* = \{y : yB \in X^*\}$ for $\star \in \{\alpha\beta, \gamma\}$. Applying this with $X = \ell_\psi$ and using Proposition 6.1 gives the result.

Schauder bases

Proposition 6.3 (Canonical basis of ℓ_ψ). If ψ satisfies Δ_2 , then the unit vectors $e^{(n)} = (\delta_{kn})_{k \geq 0}$ form a Schauder basis of ℓ_ψ .

Proof sketch. Since c_{00} is dense in ℓ_ψ and coordinate functionals are continuous (Corollary 4.2), the standard coordinate projections $S_N(x) = \sum_{n=0}^N x_n e^{(n)}$ converge to x in the Luxemburg topology; see [2].

Theorem 6.4 (Schauder basis of $\ell_\psi(A)$). Let ψ satisfy Δ_2 and A be triangular with nonzero diagonal. Let $B = A^{-1} = (b_{nk})$ and define $e_A^{(n)} := (b_{kn})_{k \geq 0}$ (the n -th column of B). Then $(e_A^{(n)})_{n \geq 0}$ is a Schauder basis of $\ell_\psi(A)$, and every $x \in \ell_\psi(A)$ has the unique expansion

$$x = \sum_{n=0}^{\infty} (Ax)_n e_A^{(n)} \quad \text{with convergence in } (\ell_\psi(A), q_\psi^A).$$

Proof. The map $T_A: \ell_\psi(A) \rightarrow \ell_\psi$, $T_A(x) = Ax$, is an isometric isomorphism onto ℓ_ψ . Transport the canonical basis of ℓ_ψ via $T_A^{-1} = B$: $e_A^{(n)} = Be^{(n)}$ is exactly the n -th column of B . Coefficients are forced to be $(Ax)_n$ by applying A and using uniqueness in ℓ_ψ .

7. Concluding remark

The preceding results provide a modular toolkit that simultaneously handles: (i) non-power growth (Orlicz control), (ii) coordinatewise variability (Maddox-type exponents), and (iii) matrixgenerated domains relevant in summability and operator theory. In concrete applications (e.g. Nörlund matrices attached to special integer sequences), Theorem 6.2 and Theorem 6.4 reduce dual and basis computations to explicit formulas for A^{-1} .

References

1. Woo J. On modular sequence spaces. *Studia Math.* 1973;58:271-289.
2. Musielak J. *Orlicz spaces and modular spaces*. Lecture Notes in Mathematics, Vol. 1034. Berlin: Springer; 1983.
3. Parashar SD, Choudhary B. Sequence spaces defined by Orlicz functions. *Indian J Pure Appl Math.* 1994;25(4):419-428.
4. Lindenstrauss J, Tzafriri L. *Classical Banach spaces I: sequence spaces*. Berlin: Springer; 1977.
5. Rao MM, Ren ZD. *Theory of Orlicz spaces*. New York: Marcel Dekker; 1991.