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Abstract

We develop a unified modular framework for Orlicz-type sequence spaces generated by either a single
Orlicz function or a coordinatewise family of Orlicz functions. Under a uniform Az growth hypothesis we
prove that the associated Luxemburg functional induces a complete BK-topology. We then introduce
Maddox-type variable-exponent Orlicz spaces £,(p) and show that they inherit the same BK-structure.
Finally, we study Orlicz-paranormed matrix domains ¢,(A) under lower triangular matrices with nonzero
diagonal, establishing completeness, inclusion criteria driven by global dominance of Orlicz functions
and by weight monotonicity, explicit descriptions of the Kothe-Toeplitz a-, §-, and y-duals in terms of the
conjugate Orlicz function, and concrete Schauder bases transported via A,
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1. Introduction

Orlicz sequence spaces and their modular generalizations provide a flexible replacement for

classical ¢, scales, allowing one to model non-power growth, weighted tail control, and

variable local behavior in a single functional-analytic setting. The modular approach (via

Luxemburg type functionals) is particularly well adapted to matrix transformations and to the

study of K othe-Toeplitz duals; see, for example, Musielak ! and Woo ™. The purpose of

this paper is threefold:

1. To present a concise, self-contained BK-space development for modular sequence spaces
generated by a family of Orlicz functions under a uniform A, condition;

2. To introduce and formalize a Maddox-type Orlicz construction £,(p) (variable exponent in
the Orlicz input) and record its basic structural consequences;

3. To transfer these results to Orlicz-paranormed matrix domains £,(A) associated with
lower triangular matrices (including Norlund-type matrices), and to derive dual and basis
representations in terms of y*and A™!.

Throughout, we focus on statements in theorem form and omit repetitive parallel arguments,
referring to standard modular-space theory when appropriate.

2. Preliminaries: Orlicz functions, modulars, and Luxemburg functionals
Orlicz functions and conjugates
Definition 2.1 (Orlicz function). A function y: [0,00) — [0,0) is an Orlicz function if:
1. y(0)=0and y(u) >0 for all u
>0;
2.y is nondecreasing and convex
on [0,);
3. y(u) —oo as U —c0.

Definition 2.2 (Conjugate Orlicz function). The conjugate Orlicz function y* [0,00) — [0,00] is
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P*(v) = sup uv — w(u)), v>0
u>0

A basic tool is Young’s inequality (see, e.g., I):
uv <y(u) +y*(v)(uv=0). (1)

Modular sequence spaces
Let o:= {X = (Xk)k=0: Xk EC} denote the space of all complex sequences.

Definition 2.3 (Family modular). Let ¥ = (y«)k=0 be a sequence of Orlicz functions. For x € @ and p > 0 define the modular
o0

Iy(z;p) == Z Vi plagl) € 0,00 ()
k=0

and set l¢(x):= ly(X;1). The modular sequence space is

(W) = {:L‘ ew: Iy(x;p) < oo for somep > 0}. 3)

Definition 2.4 (Luxemburg functional). For x € £(¥) define

qu(z) == mf{A>0: Ty(z/X) <1} (4)

Definition 2.5 (Uniform A, condition). We say ¥ = () satisfies a uniform A, condition if there exists K > 1 such that
wk(2u) <K yi(u) (u=0,k>0). (5)

Main result I: BK-structure of modular Orlicz sequence spaces
We record the standard BK-space consequence of convex modular theory, specialized to the present family setting; see [*:2 %1,

Theorem 3.1 (BK-property of £(¥)). Assume ¥ = () satisfies the uniform A, condition (5).

Then

1. qQgis aparanorm on £(¥) and (£(¥),qv) is complete.

2. Each coordinate functional pk(X) = Xk is continuous on £(¥).

3. Consequently, gy is equivalent to a norm on £(¥); in particular, £(¥) is a BK-space under this topology.

Proof sketch. Paranorm properties follow from convexity and monotonicity of each y, together with the Luxemburg definition
(4); the triangle inequality is obtained by convexity after writing (x + y)/(A + ) as a convex combination of x/A and y/p.
Completeness and continuity of coordinates are standard consequences of modular Cauchy criteria combined with (5); see 11,
The final norm-equivalence is obtained by the usual renorming argument for complete K-spaces induced by convex modulars
under Ay; cf. 2,

4. Orlicz and Maddox-type variable-exponent constructions
Classical Orlicz sequence spaces Fix a single Orlicz function .
Definition 4.1 (Orlicz sequence space). Define

o0
Ty (w;p) := Ze EAE by ={x €w: Iy(x;p) < oo forsome >0},
k=0

and the Luxemburg functional
ge(x) == inf{A > 0: Ly(xz/X;1) <1},

Corollary 4.2. If y satisfies y(2u) < Kwy(u) for all u > 0, then (¢,,qy) is a BK-space.
Proof. Apply Theorem 3.1 with y«= .

Maddox-type Orlicz spaces £(p)

Definition 4.3 (Variable-exponent Orlicz family). Let p = (pk)ieo Satisfy 0 < Hi < px < H < o0. Define yi(u):= y(uP) and ¥ =
(wi)k>o. Set

Cy(p):= L(Y),
equipped with the Luxemburg functional gy from (4). Equivalently,
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fulp) = {.l' €w: Ju>0sit. Z L'((;ll]‘kl]p*) < \}

k=0

Proposition 4.4 (Inheritance of uniform Ay). If y satisfies y(2u) < Ky(u) for all u> 0 and 0 < H; < px < Hz < o0, then ¥ = (yx)
satisfies a uniform A, condition (5).
Proof. For u>0,

Y (2u) =¥ (2u)P*) =1p 2PRuPR) <4 QHQUP"‘).

Iterating the A, inequality finitely many times yields y(2"%s) < K'y(s) with K’ depending only on K,H,. Hence yw(2u) < K'yk(u)
uniformly in k.

Corollary 4.5 (BK-property of £,(p)). Under the hypotheses of Proposition 4.4, (¢,(p),qw) is a BK-space.
Proof. Combine Proposition 4.4 with Theorem 3.1.

5. Orlicz-paranormed matrix domains
Definition and completeness
Let A = (an)n>0 be lower triangular with a,.~ 0.

Definition 5.1 (Matrix domain of £,). Assume v satisfies a A, condition. Define
0y(A):= {x € ©: AX € £, },q,*(X):= qy(AX).

Theorem 5.2 (Completeness and BK-property). If (£,,q,) is a BK-space and A is lower triangular with nonzero diagonal, then
(Ly(A),q,”) is a BK-space; in particular it is complete.

Proof. The map Ta. £y(A) — £, Ta(X) = Ax, is linear and injective. Since A has nonzero diagonal and is triangular, A™! exists as
a triangular matrix with finite rows, and Ta is a linear isomorphism onto its range. By definition q,A(x) = g,(TaX), S0 Tais an
isometric embedding.

Completeness and continuity of coordinates transfer from €, to ¢,(A) via Taand A~

Inclusion principles: dominance and weights
Definition 5.3 (Global dominance). For Orlicz functions y1,y», write w2 < y; if there exista > 0 and C > 1 such that
y2(u) < C yi(au) (u=>0).

Proposition 5.4 (Inclusion under dominance). Let w1,y satisfy A, and assume y2 < yi1. Then £y1 S L2 continuously, and for any
triangular A with nonzero diagonal, £,1(A) S £,2(A) continuously.

Proof. Lety € 04150 Pkyi(Myk]) < o for some A. Dominance gives y2((Ma)|yx]) < Cy1(Alyw]); summing yields y € £,,. Continuity
follows by comparing Luxemburg functionals using dominance and A, (standard; see [?). The matrix-domain inclusion follows
by applying the first part to Ax.

Definition 5.5 (Weighted Orlicz sequence space). For weights w = (w)k=0 with wy > 0, define

X

byulw) == {.r Ew: Z U(wglrg]) < o }
k=0

Lemma 5.6 (Monotonicity in weights). If 0 < wi < vk for all k, then £,(v) S £,(w) continuously.
Proof. Since vy is nondecreasing, y(wiXx|) < w(Vvi|xx|) termwise, so the modular for w is bounded by the modular for v. Luxemburg
functional comparison is immediate.
6. Duals and Schauder bases in Orlicz-paranormed matrix domains
Kothe-Toeplitz duals
For a sequence space X € o define:

X*={y € o: Y k[xyK < o¥x € X},

XP={y € o: Yk xkykconverges for all x € X}, Xr'={y € ®: Sup n| X k=0 XkYx| < 0¥x € X}.

Proposition 6.1 (Duals of £,). If v satisfies A, then

()= (6y)P = ()7 = Ly*.
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Proof sketch. Young’s inequality (1) yields €,* < (€,)® Conversely, the classical representation of the K othe dual of an Orlicz
sequence space identifies continuous coordinatewise functionals with €, under Ay; see [> 451,

Theorem 6.2 (Duals of €,,(A)). Let y satisfy Aoand let A be triangular with nonzero diagonal.
Let B=A"'=(bw). Then

(Lu(A)*= (Lu(A)P = (Ly(A) = {y € w1 yB € Ly},
where (yB)TF = Z?;n ykhkn'

Proof. For matrix domains of BK-spaces, Kothe-Toeplitz duals transform by the inverse matrix:
4 =1{y: yB e X*} for » € {aF ,~}. Applying this with X = ¢, and using Proposition 6.1
gives the result.

Schauder bases

Proposition 6.3 (Canonical basis of €,). If y satisfies Az, then the unit vectors ™ = (Sxn)k=o form a Schauder basis of €.

Proof sketch. Since cgo is dense in £, and coordinate functionals are continuous (Corollary 4.2), the standard coordinate
projections Sy (z) = Zﬁf: 0 x,,e(™ converge to X in the Luxemburg topology; see (2.

Theorem 6.4 (Schauder basis of £,(A)). Let y satisfy A, and A be triangular with nonzero diagonal. Let B = A™' = (by) and define
e‘(f) := (bkn)r>0 (the n-th column of B). Then (e‘(f))nzo is a Schauder basis of £,(A), and every x € £,(A) has the unique
expansion

vl
x= Y (Ax) el with convergence in ({y(A).qy*).
n=0

Proof. The map Ta. &,(A) — L, Ta(X) = AX, is an isometric isomorphism onto £,. Transport the canonical basis of

£y via T/;l =B: cEf) = Be™ js exactly the n-th column of B. Coefficients are forced to be (Ax), by applying A and using
uniqueness in £y

7. Concluding remark

The preceding results provide a modular toolkit that simultaneously handles: (i) non-power growth (Orlicz control), (ii)
coordinatewise variability (Maddox-type exponents), and (iii) matrixgenerated domains relevant in summability and operator
theory. In concrete applications (e.g. N"orlund matrices attached to special integer sequences), Theorem 6.2 and Theorem 6.4
reduce dual and basis computations to explicit formulas for A™'.
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