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Abstract 

The Daubechies Wavelet Function (Db 1) is also known as the Haar wavelet function. It is a sequence of 

“Square Shaped” functions which together form a wavelet family or basis which allows a target function 

over an interval to be present in terms of an orthonormal basis. In this paper, the Haar wavelets are used 

to solve optimal control problems by approximating the state and control variables using a basis of Haar 

wavelet functions. This approach transforms the original optimal control problem into a constrained 

nonlinear quadratic programming problem, which can then be solved using numerical methods like 

quasilinearization. 
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Introduction 

Wavelet analysis is similar to Fourier Analysis in that it allows a target function over an 

interval to be represented in terms of an Orthonormal basis. The Haar sequence was proposed 

in 1909 by Alfred Haar. He used these functions to give an example of an orthonormal system 

for the space of quadrically integrable function on the interval [0, 1]. The study of wavelets, 

and even the term "wavelet", did not come until much later. As a special case of the family of 

orthogonal wavelets defining a discrete wavelet transform and characterized by a maximal 

number of vanishing moments for some given support, the Haar wavelet is also known as Db1. 

The Haar wavelet is also the simplest possible wavelet. The technical disadvantage of the Haar 

wavelet is that it is not continuous, and therefore not differentiable. This property can, 

however, be advantageous for the analysis of signals with sudden transitions (discrete signals), 

such as monitoring of tool failure in machines. 

 

Overview of the Haar Wavelets 

A Haar Scaling Function is a set of shifted and scaled square summable function used for 

defining scaling and wavelet functions in multiresolution signal analysis. It satisfies 

orthonormality conditions and is a solution of a specific refinement equation with two nonzero 

coefficients. It reconstructs the approximation of the signal at different scales. It normally 

captures the low frequency signal. It has a relatively smooth shape and compact support. The 

scaling function is defined as; 

 

1,   if   [0,1]
( )

0,   if   [0,1]

t
t

t



 
 Ø

 

 

The wavelet function is derived from the scaling function through a specific process that 

involves scaling and translating the scaling function. Its defined as; 

 

 

https://www.mathsjournal.com/
https://www.doi.org/10.22271/maths.2025.v10.i7b.2107


 

~128~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

1,      if    [0,0.5]

( ) 1    if   [0.5,1]

0      if   [0,1]

t

t t

t






  

 Ø

The wavelet function often has a more localized and oscillating shape than the scaling function. 

For every pair 𝑛, 𝑘 ∈ ℤ the Haar function , ( )n k t  is defined on the real line ℝ by the formula; 

 

𝜓𝑛,𝑘(𝑡) = 2
𝑛

2  𝜓(2𝑛𝑡 − 𝑘), 𝑡 ∈ ℝ.   
 

Which is actually supported on the right open interval, , [ 2 ,( 1)2 ]n n

n kI k k    , that is, it vanishes whenever outside the 

interval. Its integral is zero and norm is one in the Hilbert space 𝐿2(ℝ)  

 

∫ 𝜓𝑛,𝑘ℝ
(𝑡)𝑑𝑡 = 0, ‖𝜓𝑛,𝑘‖

𝐿2 (ℝ)
=  ∫ 𝜓𝑛,𝑘 (𝑡)2 𝑑𝑡 = 1 

ℝ
 

 

The Haar functions are piecewise orthogonal, ∫ 𝜓𝑛1,𝑘1
 (𝑡)𝜓𝑛2,𝑘2

 (𝑡)𝑑𝑡 =  𝛿𝑛1𝑛2
 𝛿𝑘1𝑘2ℝ  when the two supporting intervals 

1 1 2 2, ,  and  n k n kI I are not equal, they are neither disjoint, or else either of the two supports, say 
1 1,n kI , is contained in the lower or 

in the upper half of the other interval, on which the function 
2 2,n k  remains constant. It follows in this case that the product of 

these two Haar functions is a multiple of the first Haar function, hence the product has integral zero. The Haar system on the real 

line is the set of functions {𝜓𝑛,𝑘(𝑡): 𝑛 ∈ ℤ, 𝑘 ∈ ℤ}. Its complete in 𝐿2(ℝ): the Haar system on the line is an orthonormal basis in 

𝐿2(ℝ). 

 

The Haar Wavelet method 

Let [ , ]t A B  where A and B are constants. Define 2Jm   where J is the maximal level of resolution. The interval [A,B] is 

distributed in 2m submanifolds of equal length; 
( )

2

B A
t

m


   

The other two parameters are; the dilation parameter; 0,1,.......,j J  and the translation parameter 

0,1,......, 1   where   2Jk m m    and the wavelet number is given as; 1i m k    

The Haar wavelet is given by;  

 

1 2

1 2

1,        for  [ ( ), ( )]

( ) 1,     for   [ ( ), ( )]

0,       elsewhere 

i

t i i

h t t i i

 

 




  



 (1)  

 

where 1 2 3( ) 2 ,       ( ) (2 1) ,    ( ) 2( 1)      and   
M

i A k t i A k t i A k t
m

                  , specifically, 1i   

corresponds to the scaling faction 1( ) 0  for  [ , ]h t t A B  . The following integral is required ; 

 

( ) ( ) 
t

i i

A

P t h t dt    (2) 

 

These integrals can be evaluated analytically to obtain; 

 

1

1 1 2

1 2 1 3

0                                   for   ( )

( )                         for   [ ( ), ( )]
( )

( ) 2 ( )          for   [ ( ), ( )]

0                                    for   

i

t i

t i t i i
P t

t i i t i i

t



  

   





 


   

 3( )i








  (3)  

 

With 1i   , in case 1 2 31 we have  ,i A B      and hence ; 
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1( )P t t A    (4) 

So that the collocation points become; 

 

1 1
ˆ ˆ0.5( )     1,2,......,2t t t M    (5) 

 

The symbol t̂  denotes the 
th

 grid point ; t̂ A t   . Eqns. (1)-(4) are discretized by replacing t t . The Haar matrices 

( , ) ( )iH i h t are then introduced so that; ( , ) ( )iP i P t  the values of   at  iP t B  are necessary for solution of 

boundary value problems. Using eqns. (3) and (4) we obtain; 

 

    for  1
 ( )

0           for  1
i

B A i
P B

i

 
 


 

 

Let R be the matrix ; ( , ) ( , )  ( )iR i P i P B   let also 1{1,1,....,1},   {1,0,0,.....,0}E E   be any vectors with 

ˆ( ),   t t t t AE    So that the following holds ; 

 

1 1

1

ˆ,    ( )

ˆ1 1
ˆ( )

! ( 1)

E E
E P E P t AE t

H H

t
P t

H




 


    




 

 

Then we need to integrate by the Haar wavelet method of the equation;  

 

( , , ),   ( )ix f t x x x    (6) 

 

so that we seek a solution in the form; 

 

x aH  (7) 

 

and by integration we obtain; 

 

x aP c   (8) 

 

where c is the vector , an integration constant. Putting eqns. (7) and (8) into (6) we obtain a system of 2m equations which will 

enable us obtain the wavelet coefficient ( )ia a  

Consider the problem; 

 
2 2

0 0

  1

with Boundary conditions;

(0) (0) 0,   (2) 0

x dt x dt

x x x

 

  

 

  (12)  

where we interpret x  as control state variables; 
2

1 2 2 3 4

0

,   ,   ,    
t

x x x x x x u x u dt       

The state equations are given by;  

 
2

1 2 2 3 3 4

1 2 4 3 4

,   ,   ,   ;             

with boundary conditions;

(0) (0) (0) 0,   (2) 0,    (2) 1

x x x x x u x u

x x x x x

   

    

  (13)  

 

with the Hamiltonian given by; 
2

1 1 2 2 3 3 4Ĥ x x x u u       
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The adjoint system will now take the form; 

1 2 1 3 2 4,  ,  ,  0E          (14) 

 

with the transversality conditions 1 2 3(2) (2) (2) 0     

 

Firstly, we integrate Eqns. (14) with the assumption that; 

 

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4

,           

           

            (2)

0                 ,  a constant

b H b R

b H b R

b H b R



   

   

   

   

  (15)  

 

Matrix R is calculated from Eqn. (6), now, substituting Eqn. (15) into Eqn. (14), we obtain; 

 

21 1 2 3,  0,   0b H E b R b H b R b H      (16) 

 

Next, we calculate the wavelet coefficients 1 2 3,  ,  b b b  and the adjoint variables 1 2 3,  ,      Working out the optimal control 

using 
Ĥ

u




 gives us; 3 3

42 2
u



 
   


. We already know 3 , hence, we can calculate the auxiliary variable 

3ˆ
2

u u


    

 

The state variables are then developed into the Haar series using Eqns. (10) and (11);  

 

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

,   ,   ,   

,   ,   ,   

x a H x a P x a H x a P

x a H x a P x a H x a P

   

   

  (17) 

 

Using these Eqns. In Eqn. (13) we obtain;  

 

1 2 2 3

2

3 4 2

0,   0

ˆ ˆ
,   

a H a P a H a P

u u
a H a H

 

   

 

  (18) 

The Lagrange multiplier   is calculated from Eqn. (18) as 

2
2

4 4

ˆ
ˆ ,   

u
a a

H
   with the boundary condition 4 1(2)x   to give 

4 2 4 2 42 (1) 1t tx a p a     . These proceeding two Equations gives;  

 

4
ˆ2 (1)a   

 

From which the state variables are then calculated. The exact solutions are given by; 
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6 3

3

1 1 4 72 152
[ ( 2) ( 2) ]

12 120 3 5 15

1
( 2)[( 2) 32]

48

0.7559

ex

ex

ex

x t t t

u t t







      

    



 

 

The error estimates below are then introduced for the purpose of estimating the accuracy of the results; 

 

max ( ) ( )

max ( ) ( )

x ex i i
i

u ex i i
i

ex

x t x t

u t u t







  

 

 

 

 

 

The computer simulations then gives; 

 

4 6.5 4 6.3 4 3.8 7

5 1.6 4 1.6 4 3.8 7

6 4.0 5 4.0 5 3.8 7

x uJ

E E E

E E E

E E E

  

  

  

  

 

 

These results show that a small number of points (J = 4; 32 grid points) guarantees sufficient accuracy. 

Brysan and Ho (1975) solved the following problem analytically. 

 
1

1

0

1 2 2 1 1 2 2

1
 min,

2

,  ,  (0) (1) 0,  (0) (1) 1

I u dt x

x x x u x x x x

  

      



  (18) 

 

where 0 is a given constant 

 

We introduce Haar wavelet method of solution to compare with the analytical solution. Consider the case where 1( )x t   with 

1 2[ , ]t t t . This subinterval cannot be near the boundaries 0  or  1t t   because in this case the boundary conditions cannot 

be satisfied. 

Let 1( )x t   for some interval 1 1[0, ]  and  ( )   for  [ ,0.5]t t x t t t   . Now the Hamiltonian takes the form 

2 1 1 2

1ˆ
2

H u x u    . The fact that 
ˆ

0  
H

u
u


   


. Again, the adjoint system; 

1 2,   [ , ]  
H

s t t t
x




     


and in the present case 1 2,  ,  (0,1)g x s x s      which leads to; 

 

1 2 10,          (19) 

 

where 1( ) 0  for  [0, ]t t t   . Now, consider the subinterval 1[ ,0.5)t t , since 1x   it follows from the state equation 

that 2 0x u   and consequently 2 0  . When we integrate Eqn. (19), we get 1 1 1,   ( )c t c    where 1c  is the constant 

of integration. Eqn. (18) can be written as; 
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1

2

0

1 2 2 1 2 1 1 2 1

1
 min

2

,  ,  (0) 0,  (0) 1,   ( ) ,  ( ) 0

t

I u dt

x x x u x x x t x t

 

     



  (20) 

 

From Eqns. (10) and (11), we seek the wavelet solution in matrix form thus; 

 

1 1 1 1 2 2 2 2

1 1 1 1 1 2 2 2 2 2

                                                       ( )

                                     ( )

x a H x a P x a H x a P E i

b H b P c E b H b P c E ii

    

         

 (21) 

 

The matrix H and P is gotten from Eqns. (1), (2), and (3) assuming that 10,   A B t  Putting Eqn. (21) into Eqn. (20) and the 

adjoint system (19), we obtain; 

 

1 2 2 2 2

1 2 1 1

     

0                 

a H a P E a H b P c E

b H b H b H c E

   

   

 

 

which implies that; 1
1 2 1 1 2 1 10,     ,     

c E
b b c E c c t

H
      and due to continuity 1( ) 0t   we have it that 

2 1 1( )c t E t u     

 

The second equation of Eqn. (21) can be integrated to obtain; 

 

2 1 1 2 1 2

2 1( ) ( )

a H c E P c E c t c E

E t
x c P P E

H H

     

   

 

 

Using Eqns. (7) and (8), this result can be put in the form; 2 1 1( 0.5 ) 1x c t t t   Since 

2

2 1 1 1 1 1 1( ) ( )
2

t E t
a P c P c t P c c t t

H H
       then 

2

2 1 1
1 1

( )

2

a P E c t tt E
a c

H H H H


      and 

2

1 1
1 1 ( )

2

c t tt E
x c P P P

H H H
     so that 

2

1 1 1

1
( )
6 2

t
x c t t t     

 

The constants 1 1  and  c t  are calculated from the boundary conditions; 1 1 2 1( ) ,   ( ) 0x t x t  from which we get; 

 
2

1 1 1

2

1

1

2

1

3 ,    2 /

( 3 3),   

2
(1 ) ,   (1 )

3

t c t

t
x

t

x u

   

 

  

   

    

 

 

Which is actually the same result as the one obtained by Bryson and Ho (1975) [10] 

Finally, suppose we now consider an optimal control problem with control inequality constraints. Let; 
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1

2 2 2

1 2 0

0

1 2 2 2 1 2

( ) min,   

,  ,  (0) 0,  (0) 1

I x x u dt u u

x x x x u x x

    

      



 

 

be the optimal control problem with the assumption that the control is smooth, implying that the function ( )u t  is continuous. 

With the Hamiltonian 
2 2 2

1 2 1 2 2 2
ˆ ( ) ( )H x x u x x u        together with the adjoint system; 

 

1 1 2 2 1 2

1 2

ˆ ˆ
2 ,    2

H H
x x

x x

 
         

 
  (23) 

 

Accordingly, 1 2(1) (1) 0   in the region where 0u u  it follows that 2 2 u   from the admissible control 

conditions , that is., 
ˆ

0
H

u





 

Assume that  for [0, ]ou u t t   and 0  for [ ,1]u u t t  we will calculate the value of 1t  for the unknown; we shall assign 

some value to 1t  and subsequently integrate the state equation for 1[0, ]t t  

Then the matrices H and P are worked out for 1( 0,  )a b t  from Eqns. (10) and (11); 

 

1 1 1 1

2 2 2 2

,   

,   

x a H x a P

x a H x a P E

 

  

  (24) 

 

Using the state equations , 1 2 2 2 0  and  x x x x u     we obtain; 

 

1 2

2( ) (1 )o

a H a P E

a H P u E

  

  

 

 

Now, solving this system, we got the wavelet coefficients 1 2,  a a and calculate the function 1 2,  x x  using Eqn. (24). We need the 

values 1 1 2 2( ) and ( )x x t x x t   while   follows from Eqn. (3) that 1 1 1 1( )  and ( ) 0 for 1iP t t P t i   . Using Eqn. (24), 

we find that 1 1 1 2 2 1(1)   and  (1) 1x a t x a t    . 

Let the subinterval be divided into 2 m equal parts and we calculate the matrices H, P and R using Eqns. (11), (3) and (4) with the 

assumption that; 1 1,   1A t B t   . We need a solution in the form; 

 

1 1 1 1 1 2 2 2 2 2

1 1 1 1 2 2 2 2

ˆ ˆ ˆ ˆ,   ,   ,  

ˆ ˆ ˆ ˆ,   ,   ,  

x a H x a P x E x a H x a P x E

b H b R b H b R

     

       

  (25) 

 

The matrix R is gotten via Eqn. (6) and 1 2 1 2
ˆ ˆˆ ˆ,  ,   a a b b  are the wavelet coefficients for the subinterval 1[ ,1]t t . Then 

substituting Eqn. (25) in Eqn. (22) and (23) and recalling that 2 2 u   we obtain; 

 

1 2 2 2 2 2

1 1 1 2 1 2 2

1 ˆˆ ˆ ˆ ( )
2

ˆ ˆ ˆˆ ˆ2 2 , 2 ( ) 2

a H a P x a H P b R x E

a P b H x E a P b R b H R E


 

 

    

       

  (26) 
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Eqn. (26) is numerically solved. The fact that ( )u t  must be continuous at t t , however, in the case of an arbitrary chosen 

value, t  the requirement is not met. This requires the estimation by the function; 

 

1 1 1 0

1 2 1 2 2 1

( 0) ( 0)   ( 0)

1 1 1ˆ ˆ( 0) ( 0) (1)(1 )
2 2 2

u t u t u t u

u t t b R b t
  

      

       

 

 

Which then gives; 

 

2 1 0

1 ˆ (1)(1 )
2

b t u


      (27) 

 

The value of t  was varied until the condition 0   was fulfilled with the necessary exactness. Simulation was done for 

0 0.5,   0.5u   . The exactness of the solution was estimated by calculating the values of 1 1 2,  (1),  (1)t x x  at different 

levels of resolution J as per the table below 

 

1 1 2(1) (1)

4 0.338569 0.48679 0.20527

5 0.338570 0.48676 0.20535

6 0.338574 0.48675 0.20536

J t x x

 

 

 

 

 

These are the values of parameter 1t  and boundary values of Eqn. (22). The values of compare with the simulated values hence 

the effectiveness of the Haar wavelet method. 

 

Conclusion 

From the three different case solutions above, it’s clear that the Haar Wavelet method proves to be an effective and reliable 

approach for solving optimal control problems. Its piecewise constant structure enables efficient handling of complex boundary 

conditions and discontinuities, making it particularly well-suited for problems with non-smooth solutions. Furthermore, the 

method offers significant computational advantages due to its sparse matrix representation and fast convergence properties. 

Numerical results demonstrate that the Haar Wavelet method achieves high accuracy with relatively low computational cost, 

validating its applicability to a wide range of control problems in engineering and applied sciences. The method provides accurate 

solutions, even with a relatively small number of collocation points. This is actually in concurrence with Sengeta, Singh and 

Kumar (2014) [9] who also noted that the Haar wavelet method presented simple and straight forward numerical technique in 

solving Differential equations 
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