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Abstract 

In this study, a new probability model named the Weighted Ola distribution is proposed as an extension 

of the original Ola distribution to improve its flexibility for modeling lifetime data. Several statistical 

properties of the proposed distribution are derived, including moments, order statistics, and various 

reliability measures. Parameter estimation is performed using the method of maximum likelihood. The 

applicability and efficiency of the model are demonstrated through its fit to a real lifetime dataset. 

Comparative results based on standard model selection criteria indicate that the Weighted Ola 

distribution provides a better fit compared to some existing lifetime models. 

 

Keywords: Weighted distribution, Ola distribution, lifetime data, reliability analysis, order statistics, 

moment, model selection criteria 

 

1. Introduction 

Weighted distributions are widely used in fields like biomedicine, reliability, ecology, 

economics, and branching processes. They are helpful when not all observations have the same 

chance of being recorded, which leads to biased or unequal sampling. To correct this, a weight 

function w(x) is applied to the original probability density function f(x), creating a new 

distribution that more accurately represents real-life data. The idea of weighted distributions 

was first introduced by Fisher in (1934) [1] to deal with bias in how data is collected. Later, in 

(1965) [2], Rao expanded this idea to cover cases where data points don’t all have the same 

chance of being chosen, especially in discrete distributions. Since then, many researchers have 

developed weighted forms of well-known distributions to make them more flexible and better 

suited for real-world data. In medical research, especially in cancer studies, survival analysis is 

very important. Researchers often look at how long it takes for an event to happen, like death 

or the return of cancer. This kind of time-based data is usually modeled using continuous 

probability distributions. But in many cases, patients who live longer are more likely to be 

included in the study, which creates sampling bias. Standard distributions may not handle this 

well. Weighted distributions help solve this problem by adjusting the probabilities to account 

for this unequal chance of selection. This leads to better estimates, improved model fitting, and 

more accurate results when studying cancer survival. 

Over time, many researchers have developed weighted versions of classical probability 

distributions to improve flexibility and better handle real-world data issues such as biased 

sampling. Zakerzadeh and Dolati (2009) [4] introduced the Generalized Lindley distribution, 

extending the standard Lindley model. Alzaatreh et al. (2013) proposed the T-X family, a 

general method for creating new continuous distributions, including exponential-type models. 

Ahmad A, Ahmad SP & Ahmed A, (2016) [6] introduced the length-biased weighted Lomax 

distribution, a true example of a length-biased weighted model applied to real data. 

Elbatal and Aryal (2017) [7] introduced the Weibull-Pareto distribution, a flexible 

generalization that combines the properties of the Weibull and Pareto models, to better model 

skewed lifetime data. Elangovan, R., & Anthony, M. (2020) [9] Demonstrates its application to 

real survival data and compares its performance with the original OM distribution, showing 

improved fit.  
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Helal et al. (2022) [13] proposed the weighted Shanker distribution; Mohiuddin et al. (2022) [14] introduced the weighted 

Amarendra distribution for medical data; and Chesneau et al. (2022) [15] suggested a modified weighted exponential model for 

skewed datasets. 

Ganaie and Rajagopalan (2023) [16] developed the weighted power quasi-Lindley distribution, and Hashempour and Alizadeh 

(2023) [17] presented a weighted half-logistic distribution with different estimation methods. Shanker R, Ray M & Prodhani HR 

(2023) [18] proposed Weighted Komal distribution with properties and applications to model failure-time data from engineering, 

while Ranade and Rather (2023) [19] introduced the weighted Sabur distribution for lifetime data modeling Abu Thaimer and 

Al-Omari (2025) [25] proposed the weighted Gamma-Lindley distribution, which they applied to COVID-19 data. Soujanya and 

Vijayasankara (2025) [22] introduced the weighted X-Rani distribution with a focus on reliability studies. These recent models 

demonstrate the continued interest in improving distributional models to better reflect real-world conditions and datasets. 

In this research, we propose a new two-parameter lifetime distribution, referred to as the Weighted Ola Distribution (WOD). This 

model is developed by applying a weight function to the Ola distribution, which was introduced by Al-Ta’ani and Gharaibeh 

(2023) [20] as a flexible one-parameter model suitable for lifetime data analysis. The proposed WOD enhances the flexibility of the 

original model and demonstrates superior performance when applied to real-life datasets, including cancer survival data, 

compared to several existing distributions. 

 

2. Weighted Ola distribution (WOD) 

A new one parameter life distribution name as Ola distribution. the probability density function (pdf) of the Ola distribution is 

given by  

 

𝑓(𝑥; 𝛽) =
𝛽8(𝑥7+𝑥3+1)𝑒−𝛽𝑥

𝛽7+6𝛽4+5040
;  𝑥, 𝛽 > 0                     (1) 

And cumulative distribution function of the Ola distribution is given by  

 

𝐹(𝑥; 𝛽) =
𝛽7𝑥7

𝛽7+6𝛽4+5040
;  𝑥, 𝛽 > 0                      (2) 

 

A random variable x with a probability density function 𝑓(𝑥) has been examined. Let 𝑤(𝑥)be a weight function that is not 

negative. A new probability density function should be indicated. 

 

𝑓𝑤(𝑥) =
𝑤(𝑥)𝑓(𝑥)

𝐸(𝑤(𝑥))
 ;  𝑥 > 0 

 

Where, 𝑤(𝑥) is the non-negative weight function, 𝐸[𝑤(𝑥)] = ∫𝑤(𝑥)𝑓(𝑥)𝑑𝑥 < ∞. 

 

In this paper, we have to obtain the weighted version of Ola distribution. we have considered the weight function of 𝑤(𝑥) =
𝑥𝛼 To obtain the weighted Ola distribution. the probability density function of weighted Ola distribution is given by 

  

𝑓𝑤(𝑥; 𝛽, 𝛼) =
𝑥𝛼𝑓(𝑥;𝛽)

𝐸(𝑋𝛼)
 ; 𝑥 > 0, 𝛽 > 0, 𝛼 > 0                   (3) 

 

Where, 

 

𝐸(𝑋𝛼) = ∫ 𝑥𝛼𝑓

∞

0

(𝑥; 𝛽)𝑑𝑥 

 

After simplification we get 

 

𝐸(𝑋𝛼) =
(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!

𝛽𝛼(𝛽7+6𝛽4+5040)
                      (4) 

 

We can obtain the pdf of the WUD by substituting the values of equations (1) and (4) into equation (3). 

 

𝑓𝑤(𝑥; 𝛽, 𝛼) =
𝑥𝛼 (

𝛽8(𝑥7+𝑥3+1)𝑒−𝛽𝑥

𝛽7+6𝛽4+5040
)

(
(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!

𝛽𝛼(𝛽7+6𝛽4+5040)
)
  

 

𝑓𝑤(𝑥; 𝛽, 𝛼) =
𝑥𝛼𝛽𝛼+8(𝑥7+𝑥3+1)𝑒−𝛽𝑥

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
 ; 𝑥 > 0, 𝛽 > 0, 𝛼 > 0                (5) 

 

https://www.mathsjournal.com/


 

~137~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

We shall get, The cdf for the weighted Ola distribution is given by 

 

𝐹𝑤(𝑥; 𝛽, 𝛼) = ∫𝑓𝑤(𝑥; 𝛽, 𝛼)𝑑𝑥

𝑥

0

  

 

= ∫ (
𝑥𝛼𝛽𝛼+8(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
) 𝑑𝑥

𝑥

0

 

 

=
𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
∫ 𝑥𝛼(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥𝑑𝑥

𝑥

0

 

 

=
𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
∫ 𝑥𝛼+7𝑒−𝛽𝑥𝑑𝑥

𝑥

0

+ ∫𝑥𝛼+3𝑒−𝛽𝑥𝑑𝑥 + ∫𝑥𝛼𝑒−𝛽𝑥𝑑𝑥

𝑥

0

𝑥

0

 

 

Put 𝛽𝑥 = 𝑧, 𝑥 =
𝑧

𝛽
 𝑑𝑥 =

𝑑𝑧

𝛽
 

 

=
𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
∫ (

𝑧

𝛽
)

𝛼+7

𝑒−𝑧 (
𝑑𝑧

𝛽
)

𝛽𝑥

0

+ ∫ (
𝑧

𝛽
)

𝛼+3

𝑒−𝑧 (
𝑑𝑧

𝛽
) + ∫ (

𝑧

𝛽
)

𝛼

𝑒−𝑧 (
𝑑𝑧

𝛽
)

𝛽𝑥

0

𝛽𝑥

0

 

 

After simplification we get  

 

𝐹𝑤(𝑥; 𝛽, 𝛼) =
𝛾(𝛼+8,𝛽𝑥)+𝛽4𝛾(𝛼+4,𝛽𝑥)+𝛽7𝛾(𝛼+1,𝛽𝑥)

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
                  (6) 

 

 
 

Fig 1: Pdf plot of weighted Ola distribution 
 

https://www.mathsjournal.com/


 

~138~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

 
 

Fig 2: CDF plot of weighted Ola distribution 

 

 

3. Reliability analysis 

In this part, we will look at the reliability function, hazard rate, reverse hazard function, odds rate and mills ratio for the proposed 

weighted Ola distribution. 

 

3.1 Reliability function  

The reliability or survival function 𝑆(𝑥) is the probability of an item that will survive after a time x. using the reliability function 

of the weighted Ola distribution is given by 

 

𝑆(𝑥) = 1 − 𝐹𝑤(𝑥) 

 

𝑆(𝑥; 𝛽, 𝛼) = 1 −
𝛾(𝛼 + 8, 𝛽𝑥) + 𝛽4𝛾(𝛼 + 4, 𝛽𝑥) + 𝛽7𝛾(𝛼 + 1, 𝛽𝑥)

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
 

 

 
 

Fig 3: Survival function of weighted Ola distribution 

 

3.2 Hazard function  

The hazard function is also known as hazard rate, instantaneous failure rate or force mortality of weighted Ola distribution is 

given by 
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ℎ(𝑥; 𝛽, 𝛼) =
𝑓𝑤(𝑥; 𝛽, 𝛼)

𝑆(𝑥; 𝛽, 𝛼)
 

 

ℎ(𝑥; 𝛽, 𝛼) =
(

𝑥𝛼𝛽𝛼+8(𝑥7+𝑥3+1)𝑒−𝛽𝑥

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
)

1 − (
𝛾(𝛼+8,𝛽𝑥)+𝛽4𝛾(𝛼+4,𝛽𝑥)+𝛽7𝛾(𝛼+1,𝛽𝑥)

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
)
 

 

=
𝑥𝛼𝛽𝛼+8(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥

((𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)! − 𝛾(𝛼 + 8, 𝛽𝑥) + 𝛽4𝛾(𝛼 + 4, 𝛽𝑥) + 𝛽7𝛾(𝛼 + 1, 𝛽𝑥))
 

 

 
 

Fig 4: Hazard function of weighted Ola distribution 

 

3.3 Revers hazard rate  

Revers hazard function of weighted Ola distribution is given by 

  

ℎ𝑟(𝑥; 𝛽, 𝛼) =
𝑓𝑤(𝑥; 𝛽, 𝛼)

𝐹𝑤(𝑥; 𝛽, 𝛼)
 

 

=
(

𝑥𝛼𝛽𝛼+8(𝑥7+𝑥3+1)𝑒−𝛽𝑥

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
)

(
𝛾(𝛼+8,𝛽𝑥)+𝛽4𝛾(𝛼+4,𝛽𝑥)+𝛽7𝛾(𝛼+1,𝛽𝑥)

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
)
 

 

ℎ𝑟(𝑥; 𝛽, 𝛼) =
𝑥𝛼𝛽𝛼+8(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥

𝛾(𝛼 + 8, 𝛽𝑥) + 𝛽4𝛾(𝛼 + 4, 𝛽𝑥) + 𝛽7𝛾(𝛼 + 1, 𝛽𝑥)
 

 

3.4 Odds rate function  

Odds rate function of weighted Ola distribution is given by 

 

𝑂(𝑥) =
𝐹𝑤(𝑥; 𝛽, 𝛼)

1 − 𝐹𝑤(𝑥; 𝛽, 𝛼)
 

 

=
(

𝛾(𝛼+8,𝛽𝑥)+𝛽4𝛾(𝛼+4,𝛽𝑥)+𝛽7𝛾(𝛼+1,𝛽𝑥)

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
)

1 − (
𝛾(𝛼+8,𝛽𝑥)+𝛽4𝛾(𝛼+4,𝛽𝑥)+𝛽7𝛾(𝛼+1,𝛽𝑥)

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
)
 

 

𝑂(𝑥) =
𝛾(𝛼 + 8, 𝛽𝑥) + 𝛽4𝛾(𝛼 + 4, 𝛽𝑥) + 𝛽7𝛾(𝛼 + 1, 𝛽𝑥)

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)! − 𝛾(𝛼 + 8, 𝛽𝑥) + 𝛽4𝛾(𝛼 + 4, 𝛽𝑥) + 𝛽7𝛾(𝛼 + 1, 𝛽𝑥)
 

 

3.5 Cumulative hazard function 

Cumulative hazard function of weighted Ola distribution is given by 
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𝐻(𝑥) = − ln(1 −𝐹𝑤(𝑥; 𝛽, 𝛼)) 

 

 

𝐻(𝑥) = ln (
𝛾(𝛼 + 8, 𝛽𝑥) + 𝛽4𝛾(𝛼 + 4, 𝛽𝑥) + 𝛽7𝛾(𝛼 + 1, 𝛽𝑥)

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
− 1) 

 

3.6 Mills Ratio 

 

𝑀𝑖𝑙𝑙𝑠 𝑅𝑎𝑡𝑖𝑜 =
1

ℎ𝑟(𝑥; 𝛽, 𝛼)
 

 

 

=
1

𝑥𝛼𝛽𝛼+8(𝑥7+𝑥3+1)𝑒−𝛽𝑥

𝛾(𝛼+8,𝛽𝑥)+𝛽4𝛾(𝛼+4,𝛽𝑥)+𝛽7𝛾(𝛼+1,𝛽𝑥)

 

 

 

Mills Ratio =
γ(α + 8, βx) + β4γ(α + 4, βx) + β7γ(α + 1, βx)

xαβα+8(x7 + x3 + 1)e−βx
 

 

4. Statistical Properties  

In this section, we derived the structural properties of weighted Ola distribution 

  

4.1 Moments  

Let 𝑋𝑤 denoted the random variable following Ola distribution then 𝑟𝑡ℎ order moment 𝐸(𝑋𝑟)is obtained as  

 

𝐸(𝑋𝑟) = 𝜇𝑟
′ = ∫ 𝑥𝑟𝑓(𝑥; 𝛽, 𝛼)𝑑𝑥

∞

0

 

 

𝜇𝑟
′ = ∫ 𝑥𝑟 (

𝑥𝛼𝛽𝛼+8(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
)

∞

0

𝑑𝑥 

 

𝜇𝑟
′ =

𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
∫ 𝑥𝑟 . 𝑥𝛼

∞

0

(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥𝑑𝑥 

 

After simplification  

 

𝐸(𝑋𝑟) = 𝜇𝑟
′ =

Γ(𝑟 + 𝛼 + 8) + 𝛽4Γ(𝑟 + 𝛼 + 4) + 𝛽7Γ(𝑟 + 𝛼 + 1)

𝛽𝑟((𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!)
 (7) 

 

Putting r=1,2,3,4 in equation (7), the mean of weighted Ola distribution is obtained as  

 

𝜇1
′ =

Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2)

𝛽((𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!)
 

 

𝜇2
′ =

Γ(𝛼 + 10) + 𝛽4Γ(𝛼 + 6) + 𝛽7Γ(𝛼 + 3)

𝛽2((𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!)
 

 

𝜇3
′ =

Γ(𝛼 + 11) + 𝛽4Γ(𝛼 + 7) + 𝛽7Γ(𝛼 + 4)

𝛽3((𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!)
 

𝜇4
′ =

Γ(𝛼 + 12) + 𝛽4Γ(𝛼 + 7) + 𝛽7Γ(𝛼 + 5)

𝛽4((𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!)
 

 

Variance = 𝜇2
′ − (𝜇1

′ )2 

 

https://www.mathsjournal.com/


 

~141~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

= (
Γ(𝛼 + 10) + 𝛽4Γ(𝛼 + 6) + 𝛽7Γ(𝛼 + 3)

𝛽2((𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!)
) − (

Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2)

𝛽1((𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!)
)

2

 

 

 

=
(𝛽2((𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!))(Γ(𝛼+10)+𝛽4Γ(𝛼+6)+𝛽7Γ(𝛼+3))−Γ(𝛼+9)+𝛽4Γ(𝛼+5)+𝛽7Γ(𝛼+2)

(𝛽2((𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!))
2   

 

Standard Deviation  

 

𝑆. 𝐷(𝜎) = √
(𝛽2((𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!))(Γ(𝛼+10)+𝛽4Γ(𝛼+6)+𝛽7Γ(𝛼+3))−Γ(𝛼+9)+𝛽4Γ(𝛼+5)+𝛽7Γ(𝛼+2)

(𝛽2((𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!))
2    

 

 

4.2 Harmonic Mean 

The harmonic Mean of the weighted Ola distribution is defined as  

 

𝐻.𝑀 = ∫
1

𝑥
 𝑓𝑤

∞

0

(𝑥; 𝛽, 𝛼)𝑑𝑥 

 

𝐻.𝑀 = ∫
1

𝑥
 

∞

0

(
𝑥𝛼𝛽𝛼+8(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
) 𝑑𝑥 

 

𝐻.𝑀 =
𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
∫

1

𝑥

∞

0

𝑥𝛼(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥 𝑑𝑥 

  

𝐻.𝑀 =
𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
 ∫ 𝑥𝛼−1(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥

∞

0

 𝑑𝑥 

 

𝐻.𝑀 =
𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
 ∫ 𝑥𝛼+6𝑒−𝛽𝑥

∞

0

𝑑𝑥 + ∫ 𝑥𝛼+2𝑒−𝛽𝑥

∞

0

𝑑𝑥 + ∫ 𝑥𝛼−1𝑒−𝛽𝑥

∞

0

𝑑𝑥 

 

 𝐻.𝑀 =
𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
[
Γ(𝛼 + 7)

𝛽𝛼+7
+

Γ(𝛼 + 3)

𝛽𝛼+3
+

Γ(𝛼)

𝛽𝛼
] 

 

 

 𝐻.𝑀 =
𝛽𝛼+8

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
[
Γ(𝛼+7)+𝛽4Γ(𝛼+3)+𝛽7Γ(𝛼)

𝛽𝛼+7 ] 

 

𝐻.𝑀 =
𝛽𝛼(Γ(𝛼 + 7) + 𝛽4Γ(𝛼 + 3) + 𝛽7Γ(𝛼))

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
 

 

4.3 Moment Generating function and Characteristic function 

Let 𝑋𝑤 follows weighted Ola distribution then the Moment Generating Function (MGF) of X is obtained as 

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑥) 

𝑀𝑋(𝑡) = ∫ 𝑒𝑡𝑥𝑓(𝑥; 𝛽, 𝛼)𝑑𝑥

∞

0

 

 

Using Taylor’s series expansion 

 

𝑀𝑋(𝑡) = ∫ (1 + 𝑡𝑥 +
(𝑡𝑥)2

2!
+

(𝑡𝑥)3

3!
+ ⋯)

∞

0

𝑓(𝑥)𝑑𝑥 

 

𝑀𝑋(𝑡) = ∫ ∑
𝑡𝑗

𝑗!

∞

𝑗=0

∞

0

𝑥𝑗𝑓(𝑥)𝑑𝑥 
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𝑀𝑋(𝑡) = ∑
𝑡𝑗

𝑗!

∞

𝑗=0

∫ 𝑥𝑗𝑓(𝑥)𝑑𝑥

∞

0

 

 

𝑀𝑋(𝑡) = ∑
𝑡𝑗

𝑗!

∞

𝑗=0

 𝜇𝑗
′  

 

𝑀𝑋(𝑡) = ∑
𝑡𝑗

𝑗!

∞

𝑗=0

 𝜇𝑗
′  

 

𝑀𝑋(𝑡) = ∑
𝑡𝑗

𝑗!

∞

𝑗=0

Γ(𝑟 + 𝛼 + 8) + 𝛽4Γ(𝑟 + 𝛼 + 4) + 𝛽7Γ(𝑟 + 𝛼 + 1)

𝛽𝑗((𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!)
 

 

𝑀𝑋(𝑡) =
1

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
∑

𝑡𝑗

𝑗! 𝛽𝑗

∞

𝑗=0

(Γ(𝑟 + 𝛼 + 8) + 𝛽4Γ(𝑟 + 𝛼 + 4) + 𝛽7Γ(𝑟 + 𝛼 + 1)) 

 

Similarly, we can get the characteristic function of weighted Ola distribution can be obtained as 

 

𝜙𝑋(𝑡) = 𝑀𝑋(𝑖𝑡) 

 

𝜙𝑋(𝑡) = ∑
𝑖𝑡𝑗

𝑗!

∞

𝑗=0

 𝜇𝑗
′  

 

𝜙𝑋(𝑡) =
1

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
∑

𝑖𝑡𝑗

𝑗! 𝛽𝑗

∞

𝑗=0

(Γ(𝑟 + 𝛼 + 8) + 𝛽4Γ(𝑟 + 𝛼 + 4) + 𝛽7Γ(𝑟 + 𝛼 + 1)) 

 

 

5. Order Statistics  

Let 𝑋(1), 𝑋(2), 𝑋(3), … . , 𝑋(𝑛) be the order statistics of a random sample 𝑋1, 𝑋2, 𝑋3, … . , 𝑋𝑛 drawn from the Continuous Population 

with probability density function 𝑓𝑋(𝑥) and 𝐹𝑋(𝑥) then the pdf of 𝑟𝑡ℎ order statistics 𝑋(𝑟) is given by 

 

𝑓𝑋(𝑟)(𝑥) =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
𝑓𝑋(𝑥)[𝐹𝑋(𝑥)]𝑟−1[1 − 𝐹𝑋(𝑥)]𝑛−𝑟 (8) 

 

Inserting equation (5) and (6) in equation (8), the probability density function of 𝑟𝑡ℎ order statistic 𝑋(𝑟) of the weighted Ola 

distribution is given by 

 

𝑓𝑋(𝑟)
(𝑥) =

𝑛!

(𝑟−1)!(𝑛−𝑟)!
(

𝑥𝛼𝛽𝛼+8(𝑥7+𝑥3+1)𝑒−𝛽𝑥

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
) [

𝛾(𝛼+8,𝛽𝑥)+𝛽4𝛾(𝛼+4,𝛽𝑥)+𝛽7𝛾(𝛼+1,𝛽𝑥)

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
]
𝑟−1

[1 −
𝛾(𝛼+8,𝛽𝑥)+𝛽4𝛾(𝛼+4,𝛽𝑥)+𝛽7𝛾(𝛼+1,𝛽𝑥)

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
]
𝑛−𝑟

  

 

Therefore, the pdf of higher order statistics 𝑿(𝒏)of weighted Ola distribution can be obtained as  

 

𝑓𝑋(𝑛)
(𝑥) = 𝑛 (

𝑥𝛼𝛽𝛼+8(𝑥7+𝑥3+1)𝑒−𝛽𝑥

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
) [

𝛾(𝛼+8,𝛽𝑥)+𝛽4𝛾(𝛼+4,𝛽𝑥)+𝛽7𝛾(𝛼+1,𝛽𝑥)

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
]
𝑛−1

  

 

For r = 1, we will determine the probability density function of first order statistic 𝑿(𝟏)of weighted Ola distribution as 

 

𝑓𝑋(1)
(𝑥) = 𝑛 (

𝑥𝛼𝛽𝛼+8(𝑥7+𝑥3+1)𝑒−𝛽𝑥

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
) [1 −

𝛾(𝛼+8,𝛽𝑥)+𝛽4𝛾(𝛼+4,𝛽𝑥)+𝛽7𝛾(𝛼+1,𝛽𝑥)

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
]
𝑛−1

  

 

Quantile function 

The quantile function of a distribution with cumulative distribution function 𝐹𝑤(𝑥; 𝛽, 𝛼) is defined by 𝑞 = 𝐹𝑞(𝑥; 𝛽, 𝛼) whether 

0<q<1. Thus, the quantile function of weighted Ola distribution is the real solution of the equation. 

 

1 − 𝑞 = 1 −
𝛾(𝛼 + 8, 𝛽𝑥) + 𝛽4𝛾(𝛼 + 4, 𝛽𝑥) + 𝛽7𝛾(𝛼 + 1, 𝛽𝑥)

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
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6. Likelihood Ratio Test  

This section uses the weighted Ola distribution to derive the likelihood ratio test.  

Consider 𝑋(1), 𝑋(2), 𝑋(3), … . , 𝑋(𝑛)as a random sample from the weighted Ola distribution.  

 

The null and alternative hypotheses are used to test the hypothesis.  

 

𝐻0: 𝑓(𝑥) = 𝑓(𝑥; 𝛽) 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1: 𝑓(𝑥) = 𝑓𝑤(𝑥; 𝛽, 𝛼)  
 

The following test statistics are used to determine if a randomly selected sample of size n originates from the Ola distribution or 

the weighted Ola distribution. 

 

∆=
𝐿1

𝐿0

= ∏
 𝑓𝑤(𝑥𝑖; 𝛽, 𝛼) 

𝑓(𝑥𝑖; 𝛽)

𝑛

𝑖=1

 

 

∆=
𝐿1

𝐿0

= ∏
(

𝑥𝑖
𝛼𝛽𝛼+8(𝑥𝑖

7+𝑥𝑖
3+1)𝑒−𝛽𝑥𝑖

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
) 

(
𝛽8(𝑥7+𝑥3+1)𝑒−𝛽𝑥

𝛽7+6𝛽4+5040
)

𝑛

𝑖=1

 

 

∆= ∏ (
𝑥𝑖

𝛼𝛽𝛼+8(𝑥𝑖
7 + 𝑥𝑖

3 + 1)𝑒−𝛽𝑥𝑖

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
) (

𝛽7 + 6𝛽4 + 5040

𝛽8(𝑥𝑖
7 + 𝑥𝑖

3 + 1)𝑒−𝛽𝑥𝑖
)

𝑛

𝑖=1

 

 

∆= ∏ (
𝑥𝑖

𝛼𝛽𝛼(𝛽7 + 6𝛽4 + 5040)

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
)

𝑛

𝑖=1

 

 

∆=
𝐿1

𝐿0

= (
𝛽𝛼(𝛽7 + 6𝛽4 + 5040)

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
)

𝑛

∏ 𝑥𝑖
𝛼

𝑛

𝑖=1

 

 

We have rejected the null hypothesis, if  

 

∆=
𝐿1

𝐿0

= (
𝛽𝛼(𝛽7 + 6𝛽4 + 5040)

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
)

𝑛

∏ 𝑥𝑖
𝛼

𝑛

𝑖=1

> 𝑘 

 

Equivalently, we also reject null hypothesis, where  

 

∆∗= ∏𝑥𝑖
𝛼

𝑛

𝑖=1

> 𝑘 (
𝛽𝛼(𝛽7 + 6𝛽4 + 5040)

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
)

𝑛

 

∆∗= ∏𝑥𝑖
𝛼

𝑛

𝑖=1

> 𝑘∗ 𝑤ℎ𝑒𝑟𝑒 𝑘∗ = 𝑘 (
𝛽𝛼(𝛽7 + 6𝛽4 + 5040)

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
)

𝑛

 

 

for large sample size n, 2 log ∆ is distribution as chi-square variates with one degree of freedom. Thus, we rejected the null 

hypothesis, when the probability value is given by 𝑝(∆∗> 𝛼∗), where 𝛼∗ = ∏ 𝑥𝑖
𝛼𝑛

𝑖=1  is less than level of significance and 

∏ 𝑥𝑖
𝛼𝑛

𝑖=1  is the observed value of the statistics ∆∗. 

 

7. Bonferroni and Lorenz Curves and Gini Index 

In this section, we have derived the Bonferroni and Lorenz curves and Gini index from the weighted Ola distribution. 

The Bonferroni and Lorenz curve is a powerful tool in the analysis of distributions and has applications in many fields, such as 

economies, insurance, income, reliability, and medicine. The Bonferroni and Lorenz cures for a be the random variable of a unit 

and 𝑓(𝑥)be the probability density function of x. 𝑓(𝑥)𝑑𝑥 will be represented by the probability that a unit selected at random is 

defined as 

 

𝐵(𝑝) =
1

𝑝𝜇
∫ 𝑥 

𝑞

0

𝑓𝑤(𝑥; 𝛽, 𝛼)𝑑𝑥 

 

And  

𝐿(𝑝) =
1

𝜇
∫𝑥 

𝑞

0

𝑓𝑤(𝑥; 𝛽, 𝛼)𝑑𝑥 
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Where, 

 

𝑞 = 𝐹−1(𝑝); 𝑞𝜖[0,1] 
 

And 𝜇 = 𝐸(𝑋) 

 

Thus, the Bonferroni and Lorenz curves of our distribution are, determined by 

 

𝜇 =
Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2)

𝛽1((𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!)
 

 

𝐵(𝑝) =
1

𝑝 (
Γ(𝛼+9)+𝛽4Γ(𝛼+5)+𝛽7Γ(𝛼+2)

𝛽((𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!)
)
∫𝑥 

𝑞

0

(
𝑥𝛼𝛽𝛼+8(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
) 𝑑𝑥 

 

𝐵(𝑝) =
𝛽

𝑝(Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2))
∫𝑥 𝑥𝛼𝛽𝛼+8(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥 

𝑞

0

𝑑𝑥 

 

𝐵(𝑝) =
𝛽

𝑝(Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2))
. 𝛽𝛼+8 ∫𝑥𝛼+1(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥 

𝑞

0

𝑑𝑥 

 

𝐵(𝑝) =
𝛽𝛼+9

𝑝(Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2))
( ∫𝑥𝛼+8𝑒−𝛽𝑥 

𝑞

0

𝑑𝑥 + ∫𝑥𝛼+4𝑒−𝛽𝑥  

𝑞

0

𝑑𝑥 + ∫𝑥𝛼+1𝑒−𝛽𝑥  

𝑞

0

𝑑𝑥) 

 

 

Put 𝛽𝑥 = 𝑡, 𝑥 =
𝑡

𝛽
, 𝑑𝑥 =

𝑑𝑡

𝛽
  

 

When 𝑥 ⟶ 0, 𝑡 ⟶ 0 𝑎𝑛𝑑 𝑥 ⟶ 𝑥, 𝑡 ⟶ 𝛽𝑞  

 

𝐵(𝑝) =
𝛽𝛼+9

𝑝(Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2))
 

(

 ∫ (
𝑡

𝛽
)
𝛼+8

𝑒−𝑡 

𝛽𝑞

0

(
𝑑𝑡

𝛽
) + ∫ (

𝑡

𝛽
)
𝛼+4

𝑒−𝑡 

𝛽𝑞

0

(
𝑑𝑡

𝛽
) + ∫ (

𝑡

𝛽
)
𝛼+1

𝑒−𝑡 

𝛽𝑞

0

(
𝑑𝑡

𝛽
)

)

  

 

𝐵(𝑝) =
𝛽𝛼+9

𝑝(Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2))
 

(

 (
1

𝛽𝛼+9)∫ 𝑡𝛼+8𝑒−𝑡  

𝛽𝑞

0

𝑑𝑡 + (
1

𝛽𝛼+5)∫ 𝑡𝛼+4𝑒−𝑡  

𝛽𝑞

0

𝑑𝑡 + (
1

𝛽𝛼+2)∫ 𝑡𝛼+1𝑒−𝑡 

𝛽𝑞

0

𝑑𝑡

)

  

𝐵(𝑝) =
𝛽𝛼+9

𝑝(Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2))
 

(

 (
1

𝛽𝛼+9)∫ 𝑡(𝛼+9)−1𝑒−𝑡 

𝛽𝑞

0

𝑑𝑡 + (
1

𝛽𝛼+5)∫ 𝑡(𝛼+5)−1𝑒−𝑡  

𝛽𝑞

0

𝑑𝑡 + (
1

𝛽𝛼+2)∫ 𝑡(𝛼+2)−1𝑒−𝑡 

𝛽𝑞

0

𝑑𝑡

)

  

 

𝐵(𝑝) =
𝛽𝛼+9

𝑝(Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2))
 ((

1

𝛽𝛼+9
) 𝛾(𝛼 + 9, 𝛽𝑞) + (

1

𝛽𝛼+5
) 𝛾(𝛼 + 5, 𝛽𝑞) + (

1

𝛽𝛼+2
) 𝛾(𝛼 + 2, 𝛽𝑞)) 

 

𝐵(𝑝) =
𝛽𝛼+9

𝑝(Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2))
×

𝛾(𝛼 + 9, 𝛽𝑞) + 𝛽4𝛾(𝛼 + 5, 𝛽𝑞)+𝛽7𝛾(𝛼 + 2, 𝛽𝑞)

𝛽𝛼+9
 

 

𝐵(𝑝) =
𝛾(𝛼 + 9, 𝛽𝑞) + 𝛽4𝛾(𝛼 + 5, 𝛽𝑞)+𝛽7𝛾(𝛼 + 2, 𝛽𝑞)

𝑝(Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2))
 

 

Where, 

 

𝐿(𝑝) = 𝑝𝐵(𝑝) 

 

𝐿(𝑝) = 𝑝 (
𝛾(𝛼 + 9, 𝛽𝑞) + 𝛽4𝛾(𝛼 + 5, 𝛽𝑞)+𝛽7𝛾(𝛼 + 2, 𝛽𝑞)

𝑝(Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2))
)  
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𝐿(𝑝) = (
𝛾(𝛼 + 9, 𝛽𝑞) + 𝛽4𝛾(𝛼 + 5, 𝛽𝑞)+𝛽7𝛾(𝛼 + 2, 𝛽𝑞)

(Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2))
) 

 

Gini index  

The information in the Lorenz Curve is often summarized in a single measure called the Gini index (proposed in a 1912 paper by 

the Italian statistician Corrado Gini. It is often used as a gauge of economic inequality, measuring income distribution. The Gini 

index is defined as Therefore, the Gini index is for weighted Ola distribution 

 

𝐺 = 1 − 2∫𝐿(𝑝)𝑑𝑝

1

0

 

 

𝐺 = 1 − 2∫(
𝛾(𝛼 + 9, 𝛽𝑞) + 𝛽4𝛾(𝛼 + 5, 𝛽𝑞)+𝛽7𝛾(𝛼 + 2, 𝛽𝑞)

(Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2))
) 𝑑𝑝

1

0

 

 

𝐺 = 1 − 2(
𝛾(𝛼 + 9, 𝛽𝑞) + 𝛽4𝛾(𝛼 + 5, 𝛽𝑞)+𝛽7𝛾(𝛼 + 2, 𝛽𝑞)

(Γ(𝛼 + 9) + 𝛽4Γ(𝛼 + 5) + 𝛽7Γ(𝛼 + 2))
) 

 

8. Stochastic Ordering 
Stochastic ordering is an important tool in finance and reliability to assess the comparative performance of the models. Let X and 

Y be two random variables with pdf, cdf, and reliability functions 𝑓(𝑥), 𝑓(𝑦), 𝐹(𝑥), 𝐹(𝑦). 𝑆(𝑥) = 1 − 𝐹(𝑥)𝑎𝑛𝑑 𝐹(𝑦) 

1. Likelihood ratio order (𝑋 ≤𝐿𝑅  𝑌)𝑖𝑓 
𝑓𝑋𝑤(𝑥)

𝑓𝑌𝑤(𝑥)
decreases in 𝑥 

2. Stochastic order (𝑋 ≤𝑆𝑇  𝑌) if 𝐹𝑋𝑤
(𝑥) ≥ 𝐹𝑌𝑤

(𝑥) for all 𝑥 

3. Hazard rate order(𝑋 ≤𝐻𝑅  𝑌) if ℎ𝑋𝑤
(𝑥) ≥ ℎ𝑌𝑤

(𝑥) for all 𝑥 

4. Mean residual life order(𝑋 ≤𝑀𝑅𝐿  𝑌) if 𝑀𝑅𝐿𝑋𝑤
(𝑥) ≥ 𝑀𝑅𝐿𝑌𝑤

(𝑥) for all 𝑥 

 

Show that length biased Loai distribution satisfies the strongest ordering (likelihood ratio ordering) Suppose X and Y are 

independent random variables with probability distribution functions 𝑓𝑤𝑥
(𝑥; 𝛽, 𝛼) and 𝑓𝑤𝑦

(𝑥; 𝜃, 𝜆).If β< θ and 𝛼 <λ, then. 

 

Λ =
𝑓𝑤𝑥

(𝑥; 𝛽, 𝛼) 

𝑓𝑤𝑦
(𝑥; 𝜃, 𝜆)

 

 

Λ =
(

𝑥𝛼𝛽𝛼+8(𝑥7+𝑥3+1)𝑒−𝛽𝑥

(𝛼+7)!+𝛽4(𝛼+3)!+𝛽7(𝛼)!
)

(
𝑥𝜆𝜃𝜆+8(𝑥7+𝑥3+1)𝑒−𝜃𝑥

(𝜆+7)!+𝜃4(𝜆+3)!+𝜃7(𝜆)!
)

 

 

Λ = (
𝑥𝛼𝛽𝛼+8(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
) × (

(𝜆 + 7)! + 𝜃4(𝜆 + 3)! + 𝜃7(𝜆)!

𝑥𝜆𝜃𝜆+8(𝑥7 + 𝑥3 + 1)𝑒−𝜃𝑥
) 

 

Λ = (
𝑥𝛼𝛽𝛼+8(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥

𝑥𝜆𝜃𝜆+8(𝑥7 + 𝑥3 + 1)𝑒−𝜃𝑥
) × (

(𝜆 + 7)! + 𝜃4(𝜆 + 3)! + 𝜃7(𝜆)!

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
) 

 

Λ =
𝛽𝛼+8(𝜆 + 7)! + 𝜃4(𝜆 + 3)! + 𝜃7(𝜆)!

𝜃𝜆+8(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
 ×  

𝑥𝛼(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥

𝑥𝜆(𝑥7 + 𝑥3 + 1)𝑒−𝜃𝑥
 

 

log Λ = log (
𝛽𝛼+8(𝜆 + 7)! + 𝜃4(𝜆 + 3)! + 𝜃7(𝜆)!

𝜃𝜆+8(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
) + log(𝑥𝛼(𝑥7 + 𝑥3 + 1)) − log(𝑥𝜆(𝑥7 + 𝑥3 + 1)) − (𝛽 − 𝜃)𝑥 

 

log Λ = log (
𝛽𝛼+8(𝜆 + 7)! + 𝜃4(𝜆 + 3)! + 𝜃7(𝜆)!

𝜃𝜆+8(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
) + log( 𝑥𝛼+7 + 𝑥𝛼+3 + 𝑥𝛼) − log(𝑥𝜆+7 + 𝑥𝜆+3 + 𝑥𝜆) − (𝛽 − 𝜃)𝑥 

 

Differentiate with respect to x, we get. 

 

∂log Λ

𝜕𝑥
=

(𝛼 + 7)𝑥(𝛼+6) + (𝛼 + 3)𝑥(𝛼+2) + 𝛼𝑥(𝛼−1)

𝑥(𝛼+7) + 𝑥(𝛼+3) + 𝑥𝛼
−

(𝜆 + 7)𝑥(𝜆+6) + (𝜆 + 3)𝑥(𝜆+2) + 𝜆𝑥(𝜆−1)

𝑥(𝜆+7) + 𝑥(𝜆+3) + 𝑥𝜆
+ (𝛽 − 𝜃) = 0 

 

Hence 
𝜕𝑙𝑜𝑔 [𝛬]

𝜕𝑥
< 0 𝑖𝑓 β <  θ and 𝛼 < λ  
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9. Entropies 

In this part, we used the weighted Ola distribution to calculate Shannon, Renyi, and Tsallis entropies. 

It is commonly known that entropy and information can be used to measure uncertainty or the randomness of probability 

distributions. It is used in a variety of disciplines, including engineering, finance, information theory, and biomedicine. The 

entropy functionals for the probability distribution were developed using a variational concept of uncertainty.  

 

9.1 Shannon Entropy 

The Shannon entropy of the random variable X that defines the weighted Ola distribution 

 

𝑠𝜆 = −∫ 𝑓(𝑥) log(𝑓(𝑥))𝑑𝑥
∞

0
 ; 𝜆 > 0, 𝜆 ≠ 1 

 

𝑠𝜆 = −∫ 𝑓(𝑥; 𝛽, 𝛼) log(𝑓(𝑥; 𝛽, 𝛼))𝑑𝑥
∞

0
  

 

𝑠𝜆 = −∫ (
𝑥𝛼𝛽𝛼+8(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
) log (

𝑥𝛼𝛽𝛼+8(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
) 𝑑𝑥

∞

0

 

 

9.2 Renyi Entropy  

Entropy is described as a random variable. X represents the variation of the uncertainty. Engineering, statistical mechanics, 

finance, information theory, biology, and economics are among the domains where it is applied. The entropy is the Renyi of order, 

which is defined as 

 

𝑅𝜆 =
1

1 − 𝜆
log∫[𝑓(𝑥)]𝜆𝑑𝑥 ; 𝜆 > 0, 𝜆 ≠ 1 

∞

0

 

 

𝑅𝜆 =
1

1 − 𝜆
log∫[𝑓(𝑥; 𝛽, 𝛼)]𝜆𝑑𝑥 

∞

0

 

 

𝑅𝜆 =
1

1 − 𝜆
log∫ (

𝑥𝛼𝛽𝛼+8(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
)

𝜆

𝑑𝑥 

∞

0

 

 

𝑅𝜆 =
1

1 − 𝜆
log (

𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
)

𝜆

∫ 𝑥𝛼𝜆(𝑥7 + 𝑥3 + 1)𝜆𝑒−𝜆𝛽𝑥𝑑𝑥

∞

0

 

 

Using Binomial expansion, we get 

 

𝑅𝜆 ==
1

1 − 𝜆
log (

𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
)

𝜆

∑∑(
𝜆
𝑖
)

𝑖

𝑗=0

𝜆

𝑖=0

(
𝑖
𝑗
)∫ 𝑥𝛼𝜆+3𝑖+4𝑗𝑒−𝜆𝛽𝑥𝑑𝑥

∞

0

 

Using gamma function  

 

𝑅𝜆 ==
1

1 − 𝜆
log (

𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
)

𝜆

∑ ∑(
𝜆
𝑖
)

𝑖

𝑗=0

𝜆

𝑖=0

(
𝑖
𝑗
)
Γ(𝛼𝜆 + 3𝑖 + 4𝑗 + 1)

(𝜆𝛽)𝛼𝜆+3𝑖+4𝑗+1
 

 

9.3 Tsallis Entropy  

The Boltzmann-Gibbs (B-G) statistical properties initiated by Tsallis have received a great deal of attention. This generalization of 

(B-G) statistics was first proposed by introducing the mathematical expression of Tsallis entropy (Tsallis, (1988) for continuous 

random variables, which is defined as 

 

𝑇𝜆 =
1

𝜆 − 1
[1 − ∫[𝑓𝑤(𝑥)]𝜆𝑑𝑥

∞

0

] ; 𝜆 > 0, 𝜆 ≠ 1 

 

𝑇𝜆 =
1

𝜆 − 1
[1 − ∫[𝑓𝑤(𝑥;  𝛽, 𝛼)]𝜆𝑑𝑥

∞

0

] 

 

𝑇𝜆 =
1

𝜆 − 1
[1 − ∫ (

𝑥𝛼𝛽𝛼+8(𝑥7 + 𝑥3 + 1)𝑒−𝛽𝑥

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
)

𝜆

𝑑𝑥

∞

0

] 
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𝑇𝜆 =
1

𝜆 − 1
[1 − (

𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
)

𝜆

∫ 𝑥𝛼𝜆(𝑥7 + 𝑥3 + 1)𝜆𝑒−𝜆𝛽𝑥𝑑𝑥

∞

0

] 

 

Using Binomial expansion, we get 

 

𝑇𝜆 =
1

𝜆 − 1
[1 − (

𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
)

𝜆

∑∑(
𝜆
𝑖
)

𝑖

𝑗=0

𝜆

𝑖=0

(
𝑖
𝑗
)∫ 𝑥𝛼𝜆+3𝑖+4𝑗𝑒−𝜆𝛽𝑥𝑑𝑥

∞

0

] 

 

Then using gamma function 

 

𝑇𝜆 =
1

𝜆 − 1
[1 − (

𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
)

𝜆

∑∑(
𝜆
𝑖
)

𝑖

𝑗=0

𝜆

𝑖=0

(
𝑖
𝑗
)
Γ(𝛼𝜆 + 3𝑖 + 4𝑗 + 1)

(𝜆𝛽)𝛼𝜆+3𝑖+4𝑗+1
] 

 

10. Estimations of parameter 
This section provides the MLE and Fisher's information matrix for the Weighted Ola distribution. 

 

MLE and Fisher’s Information Matrix 

Assume 𝑋(1), 𝑋(2), 𝑋(3), … . , 𝑋(𝑛)is a random sample of size n from the weighted Ola distribution with parameter and the likelihood 

function, which is defined as 

 

𝐿(𝑥;  𝜃, 𝛼) = ∏𝑓𝑤(𝑥𝑖; 𝛽, 𝛼)

𝑛

𝑖=1

 

 

𝐿(𝑥;  𝜃, 𝛼) = ∏(
𝑥𝑖

𝛼𝛽𝛼+8(𝑥𝑖
7 + 𝑥𝑖

3 + 1)𝑒−𝛽𝑥𝑖

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7(𝛼)!
) 

𝑛

𝑖=1

 

 

𝐿(𝑥;  𝜃, 𝛼) = (
𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7𝛼!
)∏  𝑥𝑖

𝛼(𝑥𝑖
7 + 𝑥𝑖

3 + 1)𝑒−𝛽𝑥𝑖  

𝑛

𝑖=1

 

 

The log likelihood function is given by 

 

log 𝐿 = log (
𝛽𝛼+8

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7𝛼!
) log∏  𝑥𝑖

𝛼(𝑥𝑖
7 + 𝑥𝑖

3 + 1)𝑒−𝛽𝑥𝑖  

𝑛

𝑖=1

 

 

log 𝐿 = 𝑛 log(𝛽𝛼+8) − 𝑛 log((𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7𝛼!) + ∑ log𝑥𝑖
𝛼(𝑥𝑖

7 + 𝑥𝑖
3 + 1) + log 𝑒−𝛽 ∑ 𝑥𝑖

𝑛
𝑖=1

𝑛

𝑖=1

 

 

log 𝐿 = 𝑛 (𝛼 + 8) log(𝛽) − 𝑛 log((𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7𝛼!) + ∑ 𝛼 log 𝑥𝑖(𝑥𝑖
7 + 𝑥𝑖

3 + 1) − 𝛽 ∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
𝑖=1     (9) 

 

Equation (9) with respect to parameters 𝜷 and α. We obtain the normal equations as 

 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽
=

𝑛(𝛼 + 8)

𝛽
− 𝑛

(4𝛽3(𝛼 + 3)! + 7𝛽6𝛼!)

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7𝛼!
− ∑𝑥𝑖

𝑛

𝑖=1

= 0 (10) 

 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛼
= 𝑛 log(𝛽) − 𝑛

(Ψ(𝛼 + 7) + 𝛽4Ψ(𝛼 + 3) + 𝛽7Ψ(𝛼))

(𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7𝛼!
+ ∑log 𝑥𝑖 = 0 (11)

𝑛

𝑖=1

 

 

The maximum likelihood estimates of the parameters of the distribution are obtained by solving this nonlinear system of 

equations. Therefore, we use R and wolfram mathematics for estimating the parameters of the newly proposed distribution. 

We apply asymptotic normality results to get the confidence interval. If 𝜆̂ = (𝜃̂) represents the MLE of 𝜆 = (𝜃), we can state the 

following results:√𝑛(𝜆̂ − 𝜆) → 𝑁2(0, 𝐼−1(𝜆)) 

Where I(λ) is Fisher's information matrix. i.e., 
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𝐼(𝜆) =
1

𝑛

[
 
 
 
 𝐸 [

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛼2
] 𝐸 [

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛼𝜕𝛽
]

𝐸 [
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛽𝜕𝛼
] 𝐸 [

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛽2
]
]
 
 
 
 

 

 

𝐸 [
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛼2 ] = 𝑛 [
((𝛼+7)!+𝛽4(𝛼+3)!+𝛽7𝛼!)∗(Ψ′(𝛼+7)+𝛽4Ψ′(𝛼+3)+𝛽7Ψ′(𝛼))−(Ψ′(𝛼+7)+𝛽4Ψ′(𝛼+3)+𝛽7Ψ′(𝛼))

2

((𝛼+7)!+𝛽4(𝛼+3)!+𝛽7𝛼!)
2 ]  

 

𝐸 [
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛽2
] = −𝑛

𝑛(𝛼 + 8)

𝛽2
+ 𝑛 [

(12𝛽2(𝛼 + 3)! + 48β5α!) ∗ ((𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7𝛼!) − (4𝛽3(𝛼 + 3)! + 7𝛽6𝛼!)2

((𝛼 + 7)! + 𝛽4(𝛼 + 3)! + 𝛽7𝛼!)
2 ] 

 

𝐸 [
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛼𝜕𝛽
] = 𝐸 [

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛽𝜕𝛼
] =

𝑛

𝛽
+ 𝑛 [

(4𝛽3Ψ(𝛼+3)+7𝛽6Ψ(𝛼))∗((𝛼+7)!+𝛽4(𝛼+3)!+𝛽7𝛼!)−(4𝛽3(𝛼+3)!+7𝛽6𝛼!)∗(Ψ(𝛼+7)+𝛽4Ψ(𝛼+3)+𝛽7Ψ(𝛼))

((𝛼+7)!+𝛽4(𝛼+3)!+𝛽7𝛼!)
]  

 

Since 𝜆 being unknown, we estimate 𝐼−1(𝜆) by 𝐼−1(𝜆̂) and this can be used to obtain asymptotic confidence interval for 𝛽, 𝛼. 

 

11. Applications 

Data set 1 

This application is from [3] and it is about the remission times (in months) of 128 patients suffering from bladder cancer.  This data 

has been analyzed recently in many papers, such as [10,12]. The dataset values are as follows: 

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 

25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 

10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 

5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 

2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 

8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69 

 

Data set 2  

Survival time for 44 patients diagnosed by Head and Neck cancer disease from [49] and ana lyzed recently by [11] is considered. 

The dataset are:  

12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 94, 110, 112, 119, 127, 

130, 133, 140, 146, 155, 159, 173, 179, 194,195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776 

To compare to the goodness of fit of the fitted distribution, the following criteria: Akaike Information Criteria (AIC), Bayesian 

Information Criteria (BIC), Akaike Information Criteria Corrected (AICC) and -2log L. 

AIC, BIC, AICC and -2log L can be evaluated by using the formula as follows. 

 

𝐴𝐼𝐶 = 2𝐾 − 2 log 𝐿,  𝐵𝐼𝐶 = 𝑘 log 𝑛 − 2 log 𝐿  𝑎𝑛𝑑 𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑘(𝑘+1)

(𝑛−𝑘−1)
  

 

Where, k=number of parameters, n sample size and -2log L is the maximized value of loglikelihood function. 

 
Table 1; MLEs AIC, BIC, AICC, and -2log L of the fitted distribution for the given data set 1 

 

Distribution ML Estimates -2 log L AIC BIC AICC 

Weighted Ola distribution 
𝛽̂ =1.0743(0.1292) 

𝛼̂ =0.0100(0.9222) 
976.5193 980.5193 986.1108 980.6209 

Ola distribution 𝛽̂ =0.5977(0.0193) 1180.7568 1182.7568 1185.5442 1182.7909 

Exponential distribution 𝜃 =0.336(0.0030) 1072.8796 1074.8796 1077.6918 1074.9130 

Lindley distribution 𝜃 =0.595(0.0038) 1124.5673 1126.5673 1129.4194 1126.5993 

 
Table 2; MLEs AIC, BIC, AICC, and -2log L of the fitted distribution for the given data set 2 

 

Distribution ML Estimates -2 log L AIC BIC AICC 

Weighted Ola distribution 
𝛽̂ = 0.0504 (0.0113) 

𝛼̂ = 0.0100 (1.7335) 
621.1025 625.1025 628.5296 625.4182 

Ola distribution 𝛽̂ = 0.0353 (0.0019) 798.5262 800.5262 802.3104 800.6237 

Exponential distribution 𝜃 =0.000509 (0.000081) 795.6823 797.6823 799.3711 797.7875 

Lindley distribution 𝜃 = 0.0010 (0.0001) 912.5921 914.5921 916.4207 914.6830 

 

From table 1, and 2 it can be clearly observed and seen from the results that the weighted Ola distribution have the lesser AIC, 

BIC, AICC, -2log𝐿, and values as compared to the Ola, exponential and Lindley distributions, which indicates that the weighted 

Ola distribution better fits than the Ola, exponential and Lindley distributions. Therefore, it can be concluded that the weighted 

Ola distribution provides a better fit than the other compared distributions. 
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12 Conclusion 

In this study, we introduced the Weighted Ola distribution as an extended form of the standard Ola distribution to provide greater 

flexibility for modeling lifetime data. We derived several statistical properties of the proposed distribution, including moments, 

reliability functions, and order statistics. The parameters were estimated using the method of maximum likelihood. The practical 

application of the Weighted Ola distribution was demonstrated using real-life cancer survival data. The model was compared with 

the original Ola, Exponential, and Lindley distributions. Based on model selection criteria such as AIC, BIC, AICC, and −2LogL, 

the Weighted Ola distribution showed the best fit among all the models considered. Overall, the results confirm that the Weighted 

Ola distribution is a more accurate and flexible model for lifetime data analysis and can be effectively used in medical and 

reliability studies. 
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