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Abstract

This study explores the behavior of the Ricci tensor under conformal transformations of Riemannian
manifolds. Conformal transformations, which preserve angles but not lengths, play a pivotal role in
differential geometry and theoretical physics, particularly in the context of conformal geometry and
general relativity. These analyze how the Ricci tensor transforms when the metric tensor undergoes a
conformal transformation. The analysis of the Ricci tensor to conformal transformations studies how
curvature responds to the resizing of the metric tensor and is of fundamental importance to the study of
geometric structures and physical phenomena in general relativity, cosmology, and conformal field
theory.

Keywords: Ricci curvature tensor, scalar curvature tensor, metric tensor christoffel symbols, manifold,
conformal transformation, space-time

1. Introduction

A tensor, in differential geometry ™M, is a mathematical entity that represents physical or
geometric quantities in a manner independent of the choice of coordinates. Under coordinate
changes, its components change following specific rules and make sure that equations hold in
any system. A transformation is a process that changes the coordinates, size, shape, position,
or orientation of geometric objects. Exciting is the conformal transformation 1, in which the
metric tensor is rescaled by a positive function e?/, phrased as g, = e?g;;, P that saves

angles but rescales lengths and areas. Curvature is the property of an intrinsic deviation of
space away from the locally flat model, quantified by curvature tensors, which measure the
rate of change of vectors in parallel translation and the rate of fan-out and convergence of
geodesics. Ricci curvature tensor R;;, a contraction of the 71 Riemannian curvature tensor,
encodes intrinsic curvature properties of a manifold because it explains how volumes in curved
space and flat space are different.

One of the most important persons to come up with the Ricci tensor is Gregorio Ricci-
Curbastro, an Italian mathematician whose effort in the late 19™ century created the basis of
tensor calculus and curvature theory. Ricci-Curbastro and Tullio Levi-Civita developed the
concept of the Ricci tensor as part of their work on absolute differential calculus (now known
as tensor calculus). In 1887-1896 [*° Ricci-Curbastro introduced the Ricci tensor by
contracting the Riemannian curvature tensor, defining it as R;; = Rj;;. This tensor, named
after him, succinctly captured the manifold’s curvature properties and became a cornerstone of
Einstein’s general relativity, fomulated in 1915 10,

Ricci-Curbastro’s contribution provided the mathematical framework to study curvature
transformations, including those under conformal changes [ €, enabling subsequent analyses
of how curvature adapts to metric rescaling. The study of the Ricci tensor under conformal
transformations is vital for applications in General relativity (e.g., analyzing asymptotically
flat space-time’s), geometric analysis (e.g., the Yamabe problem), and theoretical physics
(e.g., conformal invariance in string theory).
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Ricci-Curbastro’s pioneering work on the Ricci tensor provided the essential tools to explore these transformations, bridging
geometry and physics [©1.

2. Preliminaries
Let (M, g) be a smooth n-dimensional Riemannian manifold, where g;; is the metric tensor, i,j = 1,...,n, and n =dim(M). The

indices are raised and lowered using the metric g;; and its inverse g9, satisfying g;.g*/ = &}. We denote partial derivatives by
0; = 0/0x" and covariant derivatives by ;.

2.1 Conformal Transformation
A conformal transformation rescales the metric tensor g;; by a positive smooth function e?l. The transformed metric gi]. and its

inverse g/ are defined as follows:

g, =e"g (2.1.1)
And
G = e 2 gl (2.1.2)

2.2 Christoffel Symbols: The Christoffel symbols (connection coefficients) for the metric g,; are defined by
¥ =2g" (3ign + 09 — Agiy). (2.2.1)

Under the conformal transformation g”l.]. = ezfg,-,-, the transformed Christoffel symbols I'g are:

~k

Ty =L + 8EVif + 8fVif — 949" VS (2.2.2)
2.3 Ricci Tensor: The Ricci tensor R;; is derived from the Riemannian curvature tensor Rﬁ‘kj, defined as:

Rij = 0Ly} — OiL§ + LGl — Ll (2.3.1)

The Ricci tensor is the contraction R;; = Rﬁ‘,q-. For the transformed metric gij the transformed Ricci tensor is:
Ryj = 0, — 0,T% + Dol — File (2:3.2)
2.4 Gradient and Laplacian: The gradient of the scalar function f is:

Vif =0if.

The Laplacian of function f is the trace of the Hessian, computed using the inverse metric:

Vi ka = gkm VicVinf

2.5 Dimensional Parameter: The dimension of the manifold is denoted n = dim(M), which appears in the transformation
equation of the Ricci tensor and affects the scaling of curvature terms.

3. Confromal Transformation of Ricci Tensor
Definition 3.1 (Behavior of the Ricci Tensor under Conformal Transformation). Under the conformal transformation g, =

ezfgij the transformed Ricci tensor f{ij is derived from the transformed Riemannian tensor, incorporating contributions from the
original curvature, the conformal factor f, and its derivatives.

Theorem 3.1. Let (M, g) be a Riemannian manifold of dimension n with Ricci tensor R;;. Under the conformal transformation

gy = e?/ g;; the Ricci tensor transforms as follows:

Rij =R +VVif —(n—1DVVif — gV V*f + [@n—3) VifVif —(n—2) gV fV*f + C (3.1.1)
Where,

C are terms involving the Christoffel symbols expressed as follows:

C=m=2LVnf + gulimV™f + gimlinVEf — 9i; LV f - (3.1)
And

o n=dim(M) (3.ii)

~g~
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e Original Ricci tensor: R;;. (3.iii)
e Symmetric second derivative: V;V; f (3.iv)
e Asymmetric second derivative correction: —(n — 1) V;V;f. (B.v)

e  Laplacian term: g;;V, V*f (3.vi)

e  Gradient directional effect: [(2n — 3) V;fV;f. (3.vii)
e Gradient magnitude correction: (n — 2) g;; Vi fVEf (3.viii)
e  Christoffel-gradient interaction: (n — 2) I;;" . f . (3.ix)
e Mixed Christoffel term: g [;x V™ f. (3.x)

e Symmetric counterpart: g, [;" VES. (3.xi)

e  Trace-related Christoffel term: —g;; I}, V™" f. (3.xii)

NB: Index Analysis: These indices in the transformation equation are defined as follows:
* Indices i, j: Represent local coordinates on the manifold M, ranging from 1 to n, where

n = dim(M).

* Index k: A summation index under the Einstein convention, running over all dimensions’

k=1,....,n

* Index m: Appears in terms involving Christoffel symbols and the gradient ¥, f, also summing over m = 1, ..., n.
3.2 Proof of theorem 3.1

Step 1: Metric Tensor under Conformal Transformation
Consider a Riemannian manifold (M, g) of dimension n, with metric tensor g;;. Under a conformal transformation defined by a

positive smooth function e?/ where £ is a conformal factor, the transformed metric and its inverse are given by (2.1.1) and (2.1.2)
respectively.

Step 2: Christoffel Symbols under Conformal Transformation. The Christoffel symbols for the Levi-Civita connection of the
original metric g;;are:

1
Fi;'( =—gM (0igj1 + 9;9u — 019ij)- (3.2.1)

2
For the transformed metric g;, the transformed Christoffel symbols are:
I =2 6" (0d, + 0,4, — .4,). (322)
Substituting g;; = ezfgij and computing the partial derivatives yields:
0.9, = 0; (e* g;) = 2e*1(0:f) gj + e* 0,95 (3.2.3)

Similarly, computing 9;4/;, and a,gi]. gives:

0;,g; = 9; (e* gy) = 2e*7(9;f) gy + e* ;94 (3.2.4)
And
a1g;, =0, (e¥ g;) = 2¢¥(3,f) gji + ¥ .9, (3.2.5)

Again since g*' = e/ g the transformed Christoffel symbols become:
fy =3 9% @ugy + 9,9, — 0.4,).

I =% e g ([2e*1(0:f)g;; + €*0,95]) + [2e*(0;f) gu + €* 0 gu; -
[2e*/(0,f) g;; + € 0,95 1).

= % g ([2@:Ngj + 0ign] +1200;) gu + 0;9u — [2(0:f) g0 + 0,19 1)-

~g~
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1

=k _1
ni —-2

1
0 = 2 9" [0:971+0;9uy — 0,951 + g [(0:f)gji + (0;f)gu — (Ouf) 9ji)-
I =15+ [0:)9" 950 + (9;) 9" 9u — (0.5)9" g;i]

Tk =1k + [65@) + 65(8;f) — (D)9 gji]

O = I + [6/Vif +6EVif — g g;if]

https://www.mathsjournal.com

g* ([2@:N)gji + 2(0;f)gu — 2(0:f) gji) + [0:91+0;9u — 019;:] ).

Where 1is dummy index which can take any index like say m, hence the above equation is equivalent to:

~k
Uy =LF+ 8fVf + 6/Vif — 99" Vuf
Where V,f = 9,f is the gradient of the scalar function f.

3.3 Step 3: Ricci Tensor under Conformal Transformation.

(3.2.6)

The Ricci tensor for the original metric is defined as the contraction of the Riemann curvature tensor:-

Rij = 0h ¥ — 0;Lk + LI — Lot
For the transformed metric, the Ricci tensor is:
~k ~m

~ ~k ~k ~k ~
Rij = 0,5 — 0,T5 + Tomly — Dinlik.

3.4 Step 4: Evaluating R;; Step by Step
First Term: akf“ﬁ-Substitute the transformed Christoffel symbols:

[y = [ + 81T + 8T = 99" Vuf
Compute the divergence:

0Ty = O (I + SLVif + 8V — 99" V] ).
0Ty = 0L + 01 (BLTf) + 9 (8] Vif) ~0r (949" ™ Fnf ).
Break into components:

o (51V;f) = ViV,

Ok (5}( Vif):Vj Vif,

Ok (919" ™V f)=—9:; Vi V¥ f,

Ol = 0Tk + VV,f + G = gyWVef.

1. Second Term: ajfﬁ‘k Compute:

B =T + 8KV + SEVif — 9ucg ™ Vnf . (3.4.5)
Since 8k = nand g;,g*™ = 6™ simplify:

l‘:‘:.'(k = I—;Ik{f + Vlf + nVlf_Vlf
(3.4.6)

Fik = I—;IIE + nVif.

~10~
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Then

~k
3;f = 0T+ NV, V. f. (3.4.9)

3.5. Step 5: Combining the Terms Subtract the second term from the first:

s "
oLy — 0T = Oklif — Ol +ViVif + ViVif — gyViV*f — nVVif. (35.1)
V,Vif —nVVif=(1-n) nV,V;f. (35.2)
Thus:

~k ~
ol — ol = 0y — LK + ViVif — (n — VD VVf — gy WiV f. (3.5.3)

4.1 Step 1: Substitute Christoffel Symbols

Consider a Riemannian manifold (M, g) of dimension n, with metric g;;. Under the conformal transformation, the transformed
metric is given by equations (2.1.1) and (2.1.2).

Reacall from equation (3.2.6), we have:

From the transformed metric, the Christoffel symbols are:

~k

Uy = Lf + 8{Vif + §fVif — gyV*f

Where V;f = 9;f, and VX f = g™ f.

4.2 Step 2: Expanding I‘ﬁml'g-‘. We first evaluate the nonlinear term f],:m and I::;-l:

~k
Fkm = Lim + 8KVnf + 63Vief — GimV*f (4.2.1)
Since 8% = n we have

~k

Fim = I—;cI;n + nVnf + Vnf — gkmka (4.7.2)
His simplifies to

~k

Phem = Fk];n + Vnf + Unf — Vnf (4.22)
i =rk +ap 4.23
km = Dem + 1V f (4.2.3)
Similarly, expanding I';;

I =L+ 6M'Uif + SP'Vif — gyV™f (4.2.4)

Compute the product:

~k ~
Femli5=[ i + nUnf 1IGT + 87'V,f + 8"Vif — gyV™f 1. (4.2.5)
Expand:

= [l + LEVif + LEVif— gL V™ f1 + [N Vuf + nVifVif + nVifVif — ng;VufV™f.] (4.2.6)
Simplify:

~k ~

Benll = [T + LKV f] + [REVE — gyl V™ f] + [nLPVf + 200,fV,f — ngyVufVTf]. (4.2.7)

~11~
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4.3 Step 3: Expanding I‘}‘m T, Computing we get:

~k

ij = I—]'fn + SJkaf + (S‘TI;V]f - gjmka (431)
And

Tk =L+ SMVif + SIVif — guV™f (4.3.2)

Expand the product
=k am m m m m
Fimlie = Gy + 85 Vnf + S8Vf — gumV*F) Ui + 6"Vief + S8'Vif — guV™f). (4.3.3)

Terms include

Lo Tt = Gl (4.0)
Lo STV )= Vi f (4.ii)
Lk, (STVf)=DEVf (4iii)
Lo 9V ™ )= gV ™ f (4.iv)
8 Unf - (G=L] Vi f (4.v)
SKTnf . (STV)=VSVf (4.vi)
8 Vuf . SRV fVif (4.vii)
8 Vnf. (=g V™ ) =91}V fV™ (4.viii)
SEV,f. ()=Imv,f (%)
SmVif - (6" Vi )=V, fVif (4.x)
SmVif  (SRV)=VifVif (4.xi)
SmVif- CguV™ )=V, fVif (4.xii)
— GimV"*f- (=T gjmV"f (4.xiii)
— GV f. BTV f)=—g ;i Vi fVEf (4.xiv)
= gimV*f (SRVif)==guV*fVif = =VifVif (4.xv)
= GimV*f- 9uV™ V=9 jmuVief Vi f = Vif Vif (4.xvi)

Kk o~

l"]-ml“ﬁ =Lnlt + LEVf + GiVif + LPVf + LnVif + 3VifVif — gulmV™f — gimlie V¥ — 9ijVnf V"f —
9iiVefVEf =2V fVif +2VifVif. (4.34)
Simplify

“k o~
i =Ll + GEVef + GEVif + LPVf + LVif + 3VifVif — gulimV™f — gjmlie VEf — 2 9;Vi fV*f. (4.35)
4.4 Step 4: Simplify TS, It - T T

-k ~ “k o~

Fimly = Tl = [Tl + TEVif + LEVE — gy R V™f + nLTUf + 20V, fVif — ngyVnfV™f] = [ GG +
CEVf + GEVif + L1Vuf + TVif + 3VifVif — gulmV™f — 9imlin V¥ f — 2 9;Vif V¥ f] (4.4.1)

~1Q~
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Beml = Timlie = IRl = LELE] + [LEVF + LV = LEVf — DEVF — [PVf — LRV +nllWnf] +
LGaT 7™ + GV f — Gy 7] + [2 gV f VEF — ngyUuf V] + [200,17;f — 30,7,/] (4.42)

kaFL] Fk m = E(m[‘m - Fm ik T (Tl— Z)Fmvmf'i' [gik me +g1m ka gl,kame] - [(n—
2)9i;Vief V""f] v [(Zn 3)VifVif] (4.4.3)

kaFL] ijrlk = Ecmrm I—]'m ik T [(Tl Z)Fmvmf] + [glk me +g]m ka - gurkmvmf] [(Tl -
2) gijVifV*f] + [(2n — 3)VifVif] (4.4.4)

4.5 Step 5: Combine all terms to generate Rij from prior derivations, the nonlinear terms are:

K
- ak L} - 0; Flk + kaFL] - F}mr‘:;lc (4.5.1)
And
Rij = 0lif — OiTik + LD — Gl (4.5.2)
Kk ~k
Olyy — 0y = akri}c - ajrillé +VWif —(m - DHVVf - giijka; (4.5.3)

Combining all the collected contributions, the transformed Ricci tensor becomes:
Rij =Ry +VVif —(n—-1DVV;f - giijka + [2n=3) VifVif — (n—2) giijkaf + C, (4.5.4)
Where C are terms involving the Christoffel symbols

=m-2)L}'Vaf + gikl},’flef + gjmrilrcnka - gijrk,;nvmf- (4.5.5)
In general, the transformed Ricci tensor is explicitly given as:

Ry =Ry +W0f — (= DTIS =gy Blf + [@n=3)WfVf = (1= 2 gy lfVf + (0= D [JVuf +

glk me + g]m ka gl][;cmvmf (4-5-6)
Hence the proof.

4.6 Conclusion

This theorem provides a rigorous framework to understand how curvature properties of a manifolds transform under conformal
scaling. The detailed expression is essential in areas like differential geometry, GR, and CFT. Each term has specific geometric
meaning, helping to analyze distortions introduced by the scaling function f.

5. Conformal Transformation of Scalar Curvature Tensor,R.

Definition 5.1 (Scalar Curvature Tensor). The scalar curvature Tensor R of a Riemannian manifold (M, g) of dimension n is the
trace of the Ricci tensor with respect to the metric defined as:

Definition 5.2 (Transformed scalar curvature tensor.) Under a conformal transformation
~ _ Zf
gij =e gij:

The transformed scalar curvature tensor R, of the original scalar curvature tensor R, is given by:
Where R;; is the transformed Ricci tensor

Theorem 5.2 Let (M, g)be a Riemannian manifold of dimension n with scalar curvature tensor R. Under a conformal
transformation gi; = ey, j» the transformed scalar curvature R is given as follows:

R=e[R-2n—-1)VV*f-(n—1) (n=3) BV*f + (n—2)g"L[]'Vf —

(n —2) G5 V™f] (5.2.2)

~13~


https://www.mathsjournal.com/

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com

Proof.
The scalar curvature is the trace of the Ricci tensor. For the transformed metric gy = e? g,;, the inverse metric is g9 =e gy,
and the transformed scalar curvature is:

R = gURU = e—ngi]'Rij. (523)
Using equation (4.5.6), equation (5.2.3) reduces to

R =e 2 gU[R; +V,V;f —(n—1)VVif —gi;ViV*f + [(2n—3) VifVif —

(n=2) giiVifV*f + (0= 2) GJ'Vnf + gulimV™"f + Gimlie VEf = 9iiLinV ™ f1- (5.2.4)
R”: e [g"Ry; + g"[ViVif — (0= DVVif = gy WiV*f] + g7 [2n = IVVif — (0 — 2)g; ViV f] + g7 (n — 2) I} Vo f +
9 [guTim V™S + gl VEf = gy TV f]] (5.2.5)

R=e ¥ [R + [V — (0 = DV VEf — W V*f] + [2n = 3V T — (n — 2)nV, V*f] + g (n — )LV, f +

(61557 f + Sulv* f — nhk, 7] (5.2.6)
R=e " [R+[-2(n— DVI*f — (= D(n = VI 1+ (n— g LT f + [ V™ f + L™ f —nLk,77f]] (52.7)
R=e[R+[-2(n - DVIV*f —(n = D(n =3IV V*f1+ (n = 2)g" L]V f + [V — (0 = DLLV™f]]  (5.2.8)
R=e[R-2n-DVV*f —(n—-Dn-3)V,V*f + (n—2)g" ]V f —

(n —2) L5, V™ f] (5.2.9)
This completes the proof

5.3 Conclusion

The scalar curvature under a conformal transformation involves contributions from:

e The original curvature R

e  The Laplacian of the conformal factor f which encodes how rapidly the metric is scaled.
e  The gradient of f, which measures how non-uniform the scaling is across the manifold.

5.4 Geometric interpretation of scalar curvature under conformal transformation in equation (5.2.9) shows how dimensionality
(n = 1,n = 2,n = 3) uniquely affects the behavior of this scalar curvature. This is summarized in the following two theorems.

5.5 Conformal Scalar Curvature Transformations by Dimension
Theorem 5.5 (Scalar Curvature in Dimension N=1). Let (M, g) be a Riemannian manifold of dimension n, and let g be the metric
tensor being transformed conformally as g;; = e?f Jij-

Then conformal transformation has no geometric effect on the scalar curvature for manifold of dimension n = 1.

Proof.
In dimension N=1, a Riemannian manifold is a curve, and the metric is locally g4, = 1.

R=e[R-2(1-DVVf —(1-1) (n=3) RV*f + 1 =29 ["Vuf — (1 —2) [5V™f]
R=e2[0-0-0+0-0]=0(55.1)

5.5.1 Geometric interpretation for N=1

e Inone dimension, there is no intrinsic curvature, as the scalar curvature R identically vanishes.

e Conformal transformations do not change this, as the curvature of a one-dimension manifold is trivial.

Theorem 5.6 (Scalar Curvature in Dimension N=2). Let (M, g) be a Riemannian manifold of dimension n = 2, and let the metric
transform conformally as gi; = e"# g;;. The transformed scalar curvature depends entirely on the Laplacian of f and the

intrinsic curvature of the manifold:

R =e? [R -2V, V¥f]. (5.6.1)

~14~
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Proof

For n = 2, the scalar curvature transformation under g”ij = e_zfgl-jis derived from the general formula (equation) (5.2.9)
R=e[R-2m -1 VVf —(n—1) (n=3) NV f + (n—2)9"L]'Vuf — (n —2) LS, V™f]

Substitute n = 2:

R=e[R-22-DVVf -2-1)Q2-3)WV*f + (2-2) g"L]'Vf —

(2 — 2) [X,V™f] (5.6.2)

~ R=e? [R-2VVFf — (-1)(-1)VV*f +0-0] (5.6.3)

The term involving n = 2 vanish because n — 2 = 0. The term—(n — 1) (n — 3) V,.V*f also vanishes because (n — 3) = —1,
leaving no contribution. The results are:

R=e"% [R—2W,V¥f].0(5.64)

5.6.5 Geometric interpretation forn = 2

¢ Intwo dimensions, the scalar curvature R is proportional to the Gaussian curvature, which measures the intrinsic curvature of
a two-dimension surface.

e The term —2V,V*f shows how the Laplacian of the conformal factor f modifies the scalar curvature. This reflects the
stretching or compression caused by the conformal transformation.

e This case is foundational in complex geometry and two-dimension conformal field theory, where conformal transformations
are angle-preserving but alter lengths and areas.

e  This case is foundational in complex geometry and two-dimension conformal field theory, where conformal transformations
are angle-preserving but alter lengths and areas.

Theorem 5.7 (Scalar Curvature in Dimension n = 3). Let (M, g) be a Riemannian manifold of dimension n > 3, and suppose
the metric transforms conformally as gij =e%f gij» where f is a (conformal factor) smooth function on M. While the conformal

function e~?/ is independent of the dimension n, the effect on the scalar curvature depends critically on n. Specifically, the

transformation involves the conformal factor f, its gradients, higher-order curvature terms, and the Christoffel symbols, with the

precise impact varying with n:

R=e 2[R -4V V*f + gYLVuf — L V™[] (5.7.1)

Proof.

For G/ = e~2f g¥, the transformed scalar curvature is:

R = gljﬁl] = e_zfgijﬁij.

R=e[R-2B-DVV*f-B-1)B-3)VV*f + (3 -2)g"I]'V,f -

(3 — )Lk, 7™f] (5.72)

R=e[R—4VV*f -0 + gV f — L5 V™f]

» R=e Y[R -4V, V*f + ULV f — LV f] (5.7.3)

This completes the proof.

5.7.4 Geometric interpretation for N=3

e In three dimensions, the scalar curvature measures how the manifold bends in three-dimension space. Its encodes both the
intrinsic curvature and the influence of f.

e The Laplacian term —4V, V¥ f dominates, showing the effects of £ on volume changes.

e The Christoffel-dependent terms, g”I"m of and —LX V™ f, reflect directional variations introduced by the conformal
transformation.

e For dimensions n = 3, the scalar curvature is influenced by the conformal factor, which introduces dependence on-order
curvature terms, including the gradients of f and the Christoffel symbols.

~15~
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6.

Conclusion

These theorems underscores the critical role of dimensionality in the interplay between geometry and conformal transformations.
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