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Abstract 

In this paper, the stability analysis of the solutions of fractional differential equations has been 

investigated. Mittag-Leffler stability analysis of fractional differential equations with and without input is 

studied for various systems of fractional differential equations. The study employs Lyapunov 

characterization, Lyapunov direct method and a novel theorem to analyze the Mittag-Leffler stability of 

fractional differential equations with and without input. Examples have been given to illustrate the 

utilization of the provisions in analyzing the Mittag-Leffler stability of the solutions of fractional 

differential equations. 

 

Keywords: Mittag-Leffler stability, Mittag-Leffler input stability, Lyapunov characterization, Lyapunov 
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1. Introduction 

Fractional calculus which is a generalization of the classical calculus has been studied for more 

than three centuries receiving attention due to its important role in modelling dynamics of 

various processes in most areas of science and engineering. Fractional derivative unarguably, 

has a long history beginning in 1695 when l’hospital asked Leibnitz and the community of 

mathematicians what 
𝑑𝑛𝑦

𝑑𝑥𝑛 would mean if 𝑛 is not an integer. The answer to the question gave 

birth to the development of many fractional derivatives such as Riemann-Liouville derivative, 

Gronwald-Letnikov derivative, Caputo derivative, Comformable derivative, Atangana-Baleanu 

derivative, Atangana-Koca-Caputo derivative, Caputo-Fabrizio derivative, Caputo-Liouville 

etc. For more on types of derivatives, see [1-7]. 

The importance of studying and examining the stability of systems cannot be over-

emphasized. Stability analysis is carried out on systems because of its time-serving and 

resources conservation benefits. Before analyzing, many physical systems are expressed or 

modelled as differential equations. The solutions of these differential equations are obtained 

and analysed with a view to establishing the stability status of the solutions. Many works 

focusing on stability analysis of differential equations for both classical and fractional order 

have been done for decades [8-18].  

To determine the stability status of fractional differential equations with and without inputs, 

many stability notions are employed. Such notions include: Asymptotic stability, global 

asymptotic stability, local stability, Mittag-Leffler stability, fractional input stability, Mittag-

Leffler input stability, conditional Mittag-Leffler input stability, practical stability, generalized 

Mittag-Leffler stability, global Mittag-Leffler stability and others. The Mittag-Leffler stability 

is one of the most important stability notions in fractional differential equations. Mittag-Leffler 

input stability is a special case of fractional input stability recently introduced in the literature 

of fractional differential equations. Mittag-Leffler stability with and without inputs has 

received attentions in recent years.  
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The following are some of the investigations: Omri F, [19] 

considered some classes of time-varying fractional systems 

and studied the problem of stabilization for these systems 

with norm-bounded controls. Time-varying Lyapunov 

functions were used in analyzing the Mittag-Leffler stability 

of these systems.  

Elif et al. [20] considered the stability analysis of a neural 

network system and presented conditions that ensured the 

Mittag-Leffler stability of the equilibrium point obtained 

using Lyapunov direct method. Studies show that Lyapunov 

direct method is a sufficient condition which means that if the 

Lyapunov function candidate is found, the system is stable. 

Also, if the Lyapunov function candidate cannot be found, the 

system may be stable. Agarwal et al. [21] studied the stability 

of generalized proportional Caputo fractional differential 

equations by Lyapunov functions and provided sufficient 

conditions for stability and asymptotic stability. Basdouri et 

al. [22] examined the practical Mittag-Leffler stability of quasi-

one-sided Lipschitz fractional order system. The study 

provided sufficient conditions for the practical Mittag-Leffler 

stability of the closed loop system with a linear and state 

feedback. Dong et al. [23] studied Mittag-Leffler stability of 

numerical solutions to linear homogeneous time fractional 

parabolic equations. The analysis proved that the strongly 

stable fractional linear multistep method combined with 

appropriate spatial discretization can accurately maintain the 

long-term optimal algebraic decay rate of the original 

continuous equation.  

Wang et al. [24] analyzed the stability of fractional –order 

nonlinear systems with delay. The analysis proposed the 

Mittag-Leffler stability of time-delay system and introduce 

the fractional Lyapunov direct method by using properties of 

Mittag-Leffler function and Laplace transform. Sene [25] 

studied a particular class of fractional nonlinear systems with 

a Lyapunov characterization of the conditional Mittag-Leffler 

stability and conditional asymptotic stability of the fractional 

nonlinear systems with exogenous input. This work studies 

the properties of Mittag-Leffler functions and analyses the 

Mittag-Leffler stability of fractional differential equations 

with and without input as well as its applications. 

 

2. Definitions and Preliminary Analysis  

This section begins with some notations as will be used in the 

work. 

 

Notation 2.1 

The class PD function denotes the set of all continuous 

functions 𝛼: ℝ≥0 → ℝ≥0 satisfying. Satisfying 𝛼(0) = 0, and 

𝛼(𝑠) > 0 for all 𝑠 > 0. A class K function is an increasing PD 

function. The class K∞  represents the set of all unbounded 

K functions. 

 

Notation 2.2 

A continuous function 𝛽: ℝ≥0 → ℝ≥0 is said to be of class KL 

if 𝛽(. , 𝑡) ∈ K for any 𝑡 ≥ 0, and 𝛽(𝑠, . ) is non-increasing and 

tends to zero as its arguments tend to infinity. 

 

Notation 2.3 

Given 𝑥 ∈ 𝑅𝑛, ‖𝑥‖ stands for its Euclidean norm. ‖𝑥‖ ≔

√𝑥1
2 + ⋯ + 𝑥𝑛

2 

 

Notation 2.4 

For a matrix 𝐴, 𝜆𝑚𝑎𝑥(𝐴) 𝑎𝑛𝑑 𝜆𝑚𝑖𝑛(𝐴) denote the maximal 

and minimal eigenvalue of 𝐴, respectively. 

The following are some definitions that will be needed. 

Definition 2.1 

In the solutions of classical systems, one of the frequently 

used functions is the exponential function. Similarly, the 

Mittag-Leffler function is frequently used in the solutions of 

fractional-order systems. The Mittag-Leffler function is 

defined as 

  

 𝐸𝛼(𝑧) = ∑
𝑧𝑘

𝛤(𝛼𝑘 + 1)

∞

𝑘=0

, 

 

Where 𝛼 > 0, and 𝑧 ∈ ℂ.  
 

The Mittag-Leffler function with two parameters is used more 

often and is defined by the series. 

 

 𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

𝛤(𝛼𝑘 + 𝛽)

∞

𝑘=0

, 

 

Where the parameters 𝛼 > 0, 𝛽 ∈ ℝ and 𝑧 ∈ ℂ. For 𝛽 =
1, 𝐸𝛼(𝑧) = 𝐸𝛼,1(𝑧). 

 

If 𝛼 = 1 𝑎𝑛𝑑 𝛽 = 1, then 𝐸1,1(𝑧) = 𝑒𝑥. 

 

Definition 2.2  
The Caputo fractional derivative is given by  

 

(𝐷𝛼
𝑐𝑓)(𝑡) =

1

𝛤(1 − 𝛼)
∫

𝑓′(𝑠)

(𝑡 − 𝑠)𝛼

𝑡

0

𝑑𝑠, 

 

For all 𝑡 > 0, where the order 𝛼 ∈ (0,1), and 𝛤(… . ) is the 

gamma function. 

 

Definition 2.3 

Given a function 𝑓 ∶ [0, +∞[→ ℝ. Then, the Riemann-

Liouville fractional derivative of 𝑓 of order 𝛼 is defined by 

  

(𝐷𝛼
𝑅𝐿𝑓)(𝑡) =

1

𝛤(1 − 𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑓(𝑠)

𝑡

0

𝑑𝑠, 

 

For 𝑡 > 0, 𝑎𝑛𝑑 𝛼 ∈ (0,1).  
 

Definition 2.4 

Let the function 𝑓 ∶  ℝ+ × ℝ𝑛 → ℝ𝑛 be continuous and 

locally Lipschitz with Lipschitz constant L, then. 

 

‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖.  

 

Definition 2.5 

The class PD function denotes the set of all continuous 

functions 𝛼: ℝ≥0 → ℝ≥0 satisfying 𝛼(0) = 0, and 𝛼(𝑠) > 0 

for all 𝑠 > 0. A class K function is an increasing PD function. 

The class K∞  represents the set of all unbounded K 

functions. 

 

Definition 2.6 

A continuous function 𝛽: ℝ≥0 → ℝ≥0 is said to be of class KL 

if 𝛽(. , 𝑡) ∈ K for any 𝑡 ≥ 0, and 𝛽(𝑠, . ) is non-increasing and 

tends to zero as its arguments tend to infinity. 

To study stability notion with input, it is important to examine 

some of the properties of input stability. When an input is 

introduced, a solution is generated. If the input introduced is 

convergent, then, the generated solution is also convergent. 

This property is known as Converging-Input-Converging-
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State (CICS). If the input is bounded, the generated solution is 

bounded. This is known as Bounded-Input-Bounded-State 

(BIBS). Also, if the input is zero, then, the trivial solution of 

the fractional differential equation without input is stable. The 

above properties offer alternative method of analyzing 

stability notion with input. These properties will be used later 

for further analysis. The following stability notions are 

defined as follows. 

 

Definition 2.7 

The origin of the fractional differential equation (without 

input) defined by  𝐷𝛼
𝑐 𝑥 = 𝑓(𝑥, 0) is said to be Mittag-Leffler 

stable, if for any initial condition 𝑥0, it solution satisfies. 

 

‖𝑥(𝑡, 𝑥0)‖ ≤ [𝑚(‖𝑥0‖)𝐸𝛼(𝜆(𝑡 − 𝑡0)𝛼)]
1

𝑞 

 

Where 𝑞 > 0, 𝑎𝑛𝑑 𝑚 is locally Lipschitz on a domain 

contained in ℝ𝑛 with a Lipschitz constant 𝐾, and satisfies 

𝑚(0) = 0. 
 

Definition 2.8 

The fractional differential equation defined by  𝐷𝛼
𝑐𝑥 =

𝑓(𝑥, 𝑢) is said to be Mittag-Leffler input stable if for any 

input 𝑢 ∈ ℝ𝑛, there exists a class 𝐾∞ function 𝛾 such that for 

any initial condition 𝑥(𝑡0), its solution satisfies  

‖𝑥(𝑡, 𝑥0, 𝑢)‖ ≤ [𝐺(‖𝑥0‖)𝐸𝛼(𝜆(𝑡 − 𝑡0)𝛼)]
1

𝑞 + 𝛾(‖𝑢‖∞) 
 

Where 𝐺 𝑎𝑛𝑑 𝑞 > 0 are nonnegative constants. 

 

Definition 2.9 

The fractional differential equation defined by  𝐷𝛼
𝑐𝑥 =

𝑓(𝑥, 𝑢) is said to be fractional input stable if for any input 𝑢 ∈
ℝ𝑛, there exists a class KL function 𝜇, and a class K∞ 

function 𝛾 such that for any initial condition 𝑥(𝑡0), its 

solution satisfies  

 

‖𝑥(𝑡, 𝑥0, 𝑢)‖ ≤ 𝜇(‖𝑥0‖, 𝑡 − 𝑡0) + 𝛾(‖𝑢‖∞) 

 

Where 𝛾 is the asymptotic gain.  

 

Definition 2.10  

The trivial solution to system 𝐷𝛼
𝑐𝑥 = 𝑓(𝑡, 𝑥, 0) is said to be 

stable if, for every 𝜖 > 0, there exists a 𝛿 = 𝛿(𝜖) such that for 

any initial condition ‖𝑥0‖ < 𝛿, the solution 𝑥(𝑡) of the 

system 𝐷𝛼
𝑐 𝑥 = 𝑓(𝑡, 𝑥, 0) satisfies the inequality ‖𝑥0‖ < 𝜖 for 

all 𝑡 > 𝑡0. 

The trivial solution to system 𝐷𝛼
𝑐𝑥 = 𝑓(𝑡, 𝑥, 0) is said to be 

asymptotically stable if it is stable and furthermore 

lim
𝑡→∞

𝑥(𝑡) = 0. 

 

3. Analysis of Mittag-Leffler stability with and without 

input 

Consider the fractional differential equation represented by  

 

𝐷𝛼
𝑐 𝑥 = 𝐺𝑥 + 𝑄𝑢          (3.1) 

 

Where 𝑥 ∈ ℝ𝑛 is the state variable, 𝐺 ∈ ℝ𝑛×𝑚, 𝑄 is 𝑛 matrix 

in ℝ𝑛×𝑚 and 𝑢 ∈ ℝ𝑛 is the input. 

 

The solution of equation (3.1) is the following 

 

 𝑥(𝑡) = 𝑥0𝐸𝛼(𝐺(𝑡 − 𝑡0)𝛼) + ∫ (𝑡 − 𝑠)𝛼−1𝑡

𝑡0
𝐸𝛼,𝛼(𝐺(𝑡 −

𝑠)𝛼)𝑄𝑢(𝑠)𝑑𝑠          (3.2) 

Applying the norm to the solution, we have 

 

‖𝑥(𝑡)‖ ≤ ‖𝑥0‖‖𝐸𝛼(𝐺(𝑡 − 𝑡0)𝛼)‖ + ‖𝑄‖‖𝑢‖∞ ∫ ‖(𝑡 −
𝑡

𝑡0

𝑠)𝛼−1𝐸𝛼,𝛼(𝐺(𝑡 − 𝑠)𝛼)‖𝑑𝑠       (3.3) 

 

Let the matrix 𝑮 satisfies the Magtinon condition, then, 

there exists a positive constant 𝑯 such that  

 

 ∫ ‖(𝑡 − 𝑠)𝛼−1𝐸𝛼,𝛼(𝐺(𝑡 − 𝑠)𝛼)‖𝑑𝑠
𝑡

𝑡0
≤ 𝐻    (3.4) 

 

Consequently, equation (3.3) becomes 

 

 ‖𝑥(𝑡)‖ ≤ ‖𝑥0‖‖𝐸𝛼(𝐺(𝑡 − 𝑡0)𝛼)‖ + ‖𝑄‖‖𝑢‖∞𝐻  (3.5) 

 

Equation (3.5) is in the form of definition 2.8 

 

Where ‖𝑥0‖‖𝐸𝛼(𝐺(𝑡 − 𝑡0)𝛼)‖ = 𝜇(‖𝑥0‖, 𝑡 −
𝑡0) 𝑎𝑛𝑑 𝛾(‖𝑢‖∞) = ‖𝑄‖‖𝑢‖∞𝐻. 
 

Since Mittag-Leffler input stability is a special case of 

fractional input stability,if 𝜇(‖𝑥0‖, 𝑡 − 𝑡0) =

[𝐾‖𝑥0‖‖𝐸𝛼(𝜆(𝑡 − 𝑡0)𝛼)‖
1

𝑞, then, the solution of (3.1) is 

Mittag-Leffler input stable. 

 

From equation (3.5), if 𝑢 = 0, then the solution of the 

fractional differential equation is given by 

 

‖𝑥(𝑡)‖ ≤ ‖𝑥0‖‖𝐸𝛼(𝐺(𝑡 − 𝑡0)𝛼)‖ 

 

Therefore, the unforced equation (3.1), i.e. 𝐷𝛼
𝑐 𝑥 = 𝐺𝑥 is 

Mittag-Leffler stable. 

Another method of establishing Mittag-Leffler input stability 

of fractional differential equations with inputs is Lyapunov 

characterization. The following theorem which was first 

stated and proved by Sontag [26] for the case of integer 

differential equations is stated.  

 

Theorem 3.1 

If there exists a positive function 𝑅+ × 𝑅𝑛 → 𝑅 that is 

continuous and differentiable, a 𝐾∞ function 𝛺1, 𝛺2, and class 

𝐾 function Ω, satisfying the following conditions: 

 

 ‖𝑥‖𝑞 ≤ 𝑉(𝑡, 𝑥) ≤  𝛺1(‖𝑥‖) 

 If for any ‖𝒙‖ ≥ 𝛺2(‖𝑢‖) 

 

 ⇒ 𝐷𝛼
𝑐𝑉(𝑡, 𝑥) ≤ −𝑘𝑉(𝑡, 𝑥) + 𝛺3(‖𝑢‖) 

 

Where 𝑞 > 0. Then, the fractional differential equation 

𝐷𝛼
𝑐 𝑥 = 𝑓(𝑥, 𝑢) is Mittag-Leffler input stable. 

 

Proof 

From conditions 1 and 2, it obvious that  

 

‖𝑥‖𝑞 ≤ 𝛺3(‖𝑢‖)         (3.6) 

 

Where 𝛺3(‖𝑢‖) ∈ 𝐾∞. Also, from (3), there exists a positive 

constant such that  

 

‖𝒙‖ ≥ 𝛺3(‖𝑢‖),  

⇒ 𝐷𝛼
𝑐 𝑉(𝑡, 𝑥) ≤ −𝛺3(‖𝑥‖) ≤ −𝑘𝑉(𝑡, 𝑥)  

 

It follows from (3.6) that  

‖𝑥‖𝑞 ≤ 𝑉(𝑡, 𝑥)  

https://www.mathsjournal.com/
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‖𝑥‖ ≤ [𝑉(𝑡, 𝑥)]
1

𝑞          (3.7) 

 

Combining (3.6) and (3.7), we have the following 

‖𝑥‖ ≤ [𝑉(𝑡, 𝑥)]
1

𝑞 + 𝛺3(‖𝑢‖). 

 

Lyapunov Characterization  

 

To analyze using Lyapunov characterization, we choose a 

Lyapunov candidate function  

 

𝑉(𝑡, 𝑥) = 𝑥𝑇𝑃𝑥, 𝑤ℎ𝑒𝑟𝑒 𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄 𝑎𝑛𝑑 𝑃 = 𝐼𝑛  
 

The time derivative of 𝑉 along the solution path of (3.1) is 

given by 

 

𝐷𝛼
𝑐 𝑉(𝑡, 𝑥) ≤ 2𝑥𝑇𝑃𝐷𝛼

𝑐 𝑥 = [𝐴𝑥 + 𝐵𝑢]𝑇𝑃𝑥 + 𝑥𝑇𝑃[𝐴𝑥 + 𝐵𝑢] 
= 𝑥𝑇(𝐴𝑇𝑃 + 𝑃𝐴)𝑥 + (𝐵𝑢)𝑇𝑃𝑥 + 𝑥𝑇𝑃(𝐵𝑢) 
 

≤ −𝜆𝑚𝑖𝑛(𝑄)‖𝑥‖2 + 2𝜆𝑚𝑎𝑥(𝑃)‖𝐵‖‖𝑢‖‖𝑥‖ 
 

Choose 𝜃 ∈ (0,1) and let 𝑘 =
2‖𝑃‖‖𝐵‖

𝜆𝑚𝑖𝑛(𝑄)−𝜃
 and 𝛺4(𝑟) = 𝑘𝑟 

 

If ‖𝒙‖ ≥ 𝜴𝟒(‖𝒖‖), it implies that  

 

𝐷𝛼
𝑐 𝑉(𝑡, 𝑥) ≤ −𝜃‖𝑥‖2 = −𝜃𝑉(𝑡, 𝑥) 

 

Thus, the given fractional differential equation is Mittag-

Leffler input stable. 

 

4. Bilinear Fractional Differential Equations 

Consider the bilinear fractional differential equation defined 

by 

 

𝐷𝛼
𝑐 𝑥 = 𝐺𝑥 + 𝑄𝑢𝑥         (4.1) 

 

Where 𝑥 ∈ ℝ𝑛 is a state variable, where 𝐺 is a matrix in 

where ℝ𝑛×𝑛, 𝑄 is a matrix in ℝ𝑛×𝑚, and 𝑢 ∈ ℝ is the input. 

We assume that the matrix 𝐺 satisfies the classical Matignon 

condition |arg (𝜆(𝐺))| >
𝛼𝜋

2
. If the input 𝑢 = 0, equation (4.1) 

becomes 

 

𝐷𝛼
𝑐 𝑥 = 𝐺𝑥           (4.2) 

 

The solution of equation (4.2) is given by 

 

𝑥(𝑡) = 𝑥0𝐸𝛼(𝐺(𝑡 − 𝑡0)𝛼) 

 

Therefore, the fractional differential equation (4.2) without 

input is Mittag-Leffler stable. 

If 𝑢 ≠ 0, the solution of equation (4.1) is not generally 

Mittag-Leffler input stable even though it satisfies CICS and 

BIBS properties. 

 

For example, consider  

 

𝐷𝛼
𝑐 𝑥 = −3𝑥 + 4𝑥𝑢.         (4.3) 

 

If 𝑢(𝑡) = −2, the equation becomes 𝐷𝛼
𝑐 𝑥 = −11𝑥 and the 

solution is given by  

 

𝑥(𝑡) = 𝑥0𝐸𝛼(−11(𝑡 − 𝑡0)𝛼) 

 

The above solution is MLIS. On the other hand, if 𝑢(𝑡) = 2, 

equation (4.3) becomes 𝐷𝛼
𝑐 𝑥 = 5𝑥. The solution is given by  

 𝑥(𝑡) = 𝑥0𝐸𝛼(5(𝑡 − 𝑡0)𝛼)       (4.4) 

 

The solution of equation (4.4) is obviously divergent. 

Therefore, it is not MLIS. 

 

5. Applications  

Example 1 

Consider the RC electrical circuit described by  
 

𝐷𝛼
𝑐 𝑥 = −

𝜎1−𝛼

𝑅𝐶
𝑥 + 𝑢         (5.1) 

 

With the initial boundary condition defined by 𝑥(0) = 𝑥0, 

where 𝜎 is associated with the temporal components in the 

differential equation and 𝑢 represents the input. Let the 

Lyapunov candidate function be defined by 𝑉(𝑥) =
1

4
‖𝑥‖2. 

The derivative of the Lyapunov function along the trajectories 

is given by  

 

𝐷𝛼
𝑐 𝑉(𝑡, 𝑥) = −

𝜎1−𝛼

𝑅𝐶
𝑥2 + 𝑥𝑢 

 

≤ −
𝜎1−𝛼

𝑅𝐶
‖𝑥‖2 +

1

4
‖𝑥‖2 +

1

4
‖𝑢‖ 

 

≤ −(
𝜎1−𝛼

𝑅𝐶
−

1

4
)‖𝑥‖2 +

1

4
‖𝑢‖ 

 

Letting 𝒑 =
𝝈𝟏−𝜶

𝑹𝑪
−

𝟏

𝟒
 and 𝜽 ∈ (𝟎, 𝟏), we have the following 

 

𝐷𝛼
𝑐 𝑉(𝑡, 𝑥) ≤ −(1 − 𝜃)𝑝‖𝑥‖2 + 𝑝‖𝑥‖2 +

1

4
‖𝑢‖   (5.2) 

 

If ‖𝑥‖ ≥
‖𝑥‖

2𝑝𝜃
, equation (5.2) reduces to  

 

𝐷𝛼
𝑐 𝑉(𝑡, 𝑥) ≤ −(1 − 𝜃)𝑝‖𝑥‖2 

 

Therefore, the RC electrical circuit system (5.1) is Mittag-

Leffler input stable. If the input 𝑢 = 0 in equation (5.1), the 

electrical RC circuit system is Mittag-Leffler stable. 

 

Example 2 

Consider the system of fractional differential equations 

described by 

 

𝐷𝛼
𝑐 𝑥1 = −3𝑥1 +

1

3
𝑥2 +

1

3
𝑢1 

 

𝐷𝛼
𝑐 𝑥2 = −2𝑥2 +

1

3
𝑢2         (5.3) 

 

𝐷𝛼
𝑐 𝑥3 = −𝑥1 +

1

3
𝑥3 +

1

3
𝑢3 

 

Where 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅3 and 𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ 𝑅3 

represents the input. Let the Lyapunov function be defined 

by 𝑉(𝑥) =
1

3
(𝑥1

2 + 𝑥2
2 + 𝑥3

2). The Lyapunov function along 

the trajectories is given by 

 

𝐷𝛼
𝑐(𝑡, 𝑥) = −3𝑥1

2 +
1

3
𝑥1𝑥2 +

1

3
𝑥1𝑢1 − 2𝑥2

2 +
1

3
𝑥2𝑢2 − 𝑥3𝑥1 +

1

3
𝑥3

2 +
1

3
𝑥3𝑢3 
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≤ −
1

3
𝑥1

2 −
1

3
𝑥2

2 −
1

3
𝑥3

2 +
1

9
‖𝑢‖2 

≤ −𝑉(𝑥) +
1

9
‖𝑢‖2 

 

Where 𝛺3(‖𝑢‖) =
1

9
‖𝑢‖2. According to theorem 3.1, the 

system of the fractional differential equations is Mittag-

Leffler input stable. 

 

If 𝒖 = 𝟎, equation (5.3) reduces to  

 

 𝐷𝛼
𝑐 𝑥1 = −3𝑥1 +

1

3
𝑥2 

 

 𝐷𝛼
𝑐 𝑥2 = −2𝑥2         (5.4) 

 

𝐷𝛼
𝑐 𝑥3 = −𝑥1 +

1

3
𝑥3 

 

Where 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅3. Equation (5.4) is obviously 

Mittag-Leffler stable. 

 

Example 3 

Consider the fractional-order differential LC electrical system 

defined by 

 

𝐷𝛼
𝑐 𝑥 = −

1

√𝐿𝐶
𝑥 + 𝑢         (5.5) 

 

Where C denotes the capacitance, L represents the inductance, 

and 𝑥 measures the intensity across the inductor. The solution 

of equation (5.5) is given by 

  

𝑥(𝑡) = ℎ𝐸𝛼(-
1

√𝐿𝐶
(

𝑡𝑘

𝑘
)

𝛼

) + ∫ (
𝑠𝑘−𝑡𝑘

𝑘
)𝛼−11

0
𝐸𝛼,𝛼(−

1

√𝐿𝐶
(

𝑡𝑘

𝑘
)

𝛼

𝑢(𝑠)𝑑𝑠 

 

Let 𝑀 = ∫ (
𝑠𝑘−𝑡𝑘

𝑘
)𝛼−11

0
𝐸𝛼,𝛼(−

1

√𝐿𝐶
(

𝑡𝑘

𝑘
)

𝛼

𝑢(𝑠)𝑑𝑠 

 

Applying the norm, we have  

 

 ‖𝑥(𝑡)‖ ≤ ‖ℎ‖ ‖𝐸𝛼 (−
1

√𝐿𝐶
(

𝑡𝑘

𝑘
)

𝛼

)‖ + ‖𝑢‖‖𝑀‖   (5.6) 

 

Equation (5.6) is in the form of (3.5). 

 

If ‖ℎ‖ ‖𝐸𝛼 (−
1

√𝐿𝐶
(

𝑡𝑘

𝑘
)

𝛼

)‖ = 𝜇(‖𝑥0‖, 𝑡 − 𝑡0) =

{‖ℎ‖ ‖𝐸𝛼 (−
1

√𝐿𝐶
(

𝑡𝑘

𝑘
)

𝛼

)‖}

1

𝑞

 and  

 

𝛾(‖𝑢‖∞) = ‖𝑢‖‖𝑀‖ 

 

With BIBS and CICS duly satisfied, equation (5.5) is Mittag-

Leffler input stable. If 𝑢 = 0, equation (5.5) is Mittag-Leffler 

stable. 

 

4. Conclusion 

Stability analysis of solutions of fractional differential 

equations is still occupying the interest of researchers due to 

its importance. Mittag-Leffler input stability as a special case 

of fractional input stability has been investigated in various 

fractional differential equations. It has been shown that when 

the input is zero, the system of fractional differential 

equations is generally Mittag-Leffler stable. The nature of the 

Mittag-Leffler input stability either in general or not in 

general is a function of the input. Examples have been given 

to illustrate the Mittag-Leffler stability analysis of fractional 

differential equations with and without input. 
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