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Abstract 

In This paper we make a brief note on application of incline algebra concepts and properties in probable 

reasoning choice and automata theory and many other field of mathematical science where we can use 

incline algebra concepts. 
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Introduction 

In our real life various problems related with medical sciences, engineering, political, 

financial, social deciplines and numerous different arenas involve provisional data which are 

not always necessarily in crisp, appropriate and conclusive forms due to uncertainty associated 

with these problems. Such problems are usually being handled with the help of the topics like 

probability theory, fuzzy set theory, intuitionistic fuzzy sets, interval mathematics and rough 

sets 

Application of incline algebra in different areas are very active field of research since last 20 

years. Incline algebra is generalization of both Boolean and fuzzy algebra and it is a special 

type of semi-ring which follows both a semi-ring structre and a poset structure. We take the 

basic notion and definitions from book authored Cao, Kim and Rough [1]. 

 

2. Prelimniries 
Definition 2.1. An incline is an algebraic structure (ℑ,+,*) having a non-empty set ℑ and two 

binary operations + and * such that for all x,y,z in ℑ, if the following laws hold 

 

[K1] Associative laws 

1. x + (y + z) = (x + y) +z, 

2. x * (y * z) =(x * y)* z. 

 

[K2] Commutative laws 

1. x + y = y + x, 

2. x * y = y * x. 

 

[K3] Distributive laws 

1. x * (y + z) = (x * y) + (x * z), 

2. (y + z) * x = (y * x) + (z * x). 

 

[K4] Idempotent law: x + x = x. 

 

[K5] Incline law 

1. x + (x * y) = x, 

2. y + (x * y) = y. 

https://www.mathsjournal.com/
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We shall also use the following definitions and properties in our further investigations 

Definition 2.2. Let x,y є ℑ. The incline order relation denoted as “≤” and is defined as x ≤ y ↔ x + y = y.  

From the incline axiom (K5) obiviously, we have  

1. x + y ≥ x and x + y ≥ y for x,y є ℑ, 

2. xy ≤ x and xy ≤ y for x,y є ℑ. 

Which are known as incline properties. 

 

Definition 2.3. A module over ℑ is a commutative semi-group 𝑀 provided with a binary operation ℑ × 𝑀 → 𝑀 satisfying, 

1. 𝑎(𝑥 +  𝑦) =  𝑎𝑥 +  𝑎𝑦  

2. 𝑎(𝑏𝑥) =  (𝑎𝑏)𝑥,  
3. (𝑎 + 𝑏)𝑥 = 𝑎𝑥 +  𝑏𝑥  
4. 0 +  𝑥 =  𝑥 and  

5. 1𝑥 =  𝑥 

 

 Example 2.3. A module over ℑ Let 𝐾 be an ideal in ℑ. Then 𝐾 is a module over ℑ. 

 Definition 2.4. A free module over ℑ is a module isomorphic to a direct sum of Xerox of ℑ. 

 Example 2.5. The vector space 𝑣𝑛 of all 𝑛 −tuples of elements of ℑ is a free module. A free module is itself an incline. 

 Proposition 2.6. A module over ℑ is a semi-lattice. We have 

  

𝑎𝑥 +  𝑥 =  𝑥, 𝑎 0 =  0, and if 𝑥 +  𝑦 =  0 then 𝑥 =  𝑦 =  0 

 

Proof:  

1. x + x = (1 + 1)x = 1x = x 

2. x + ax = (1 + a)x = 1x = x 

3. a0 = a0 + 0 = (a + 1)0 = (1)0 = 0. 

The last result is true in any semi-lattice.  

 

Proposition 2.7. A free module over integral ℑ has a unique basis. 

Proof: If there were two bases, the matrices 𝐴 and 𝐵 expressing each in terms of the other would satisfy 𝐴𝐵 =  𝐵𝐴 =  𝐼 By the 

previous theorem about invertible matrices over an integral incline 𝐴, 𝐵 are permutation matrices.  

The degree of a mapping from one free module to another is its algebraic degree in terms of coordinates: a linear map has degree 

1, a bilinear or quadratic map has degree 2. 

 

Definition 2.8. A finite state machine (ℳ, 𝑋, 𝓋, 𝔷) over ℑ consists of modules ℳ, 𝑋, 𝑍 over ℑ and mappings 𝓋: ℳ × 𝑋 → ℳ and 

 𝔷: ℳ × 𝑋 → 𝑍. 
Here ℳ is the set of states, 𝑋 is the set of inputs, 𝑍 is the set of outputs, 𝓋(𝑚, 𝑥) is the next state after a given state 𝑠 and input 

𝑥 and 𝔷 (𝑚, 𝑥) is the output from state s and input 𝑥. Its degree is 𝑠𝑢𝑝 (degree 𝓋, degree 𝔷). 
 

Example 2.9. Every finite state machine yields a finite state machine over ℑ if ℑ has 0, 1, where we take ℳ, 𝑋, 𝑍 to be free 

modules and 𝓋, 𝔷 transformation matrices. 

 

Example 2.10. Let ℑ = 𝑅 + ∪ {𝑒} where 𝑒 is an identity element and let ℑ =  ℳ, 𝑋, 𝑍 and let 𝓋(𝑚, 𝑥) =  𝑚 +  𝑥 =  𝔷(𝑥). Then 

we have a machine which can count or add. 

Group choice theory is concerned with the problem of evaluating 𝑚 alternatives by a group of 𝑛 individuals. Let 𝑋 be the set of 

alternatives. In the simplest case, each individual has a preference relation on 𝑋, expressing the pairs (𝑥, 𝑦) such that he prefers 

𝑥 to 𝑦.  

This will be complete and transitive (a weak order). It will be a linear order if he values no two elements of 𝑋 exactly the same. 

Then a group choice method gives a function from 𝑛 −tuples of linear orders on 𝑋 to some binary order on 𝑋. We write 𝑋 as 

{𝑥1, 𝑥2, … … … . , 𝑥𝑛 }.  

Let 𝑃 < 𝑖 > be the matrix of person 𝑖′𝑠 preference order. 

 

Definition 2.11. A social welfare function with values in ℑ is a function 𝐹 from 𝐿𝑛 to 𝑀𝑚(ℑ) where 𝐿 is the set of 𝑚 × 𝑚 

matrices of linear. 

 

Example 2.12. If we let 𝐹 be the matrix 𝑖, 𝑗 such that 𝐹𝑖𝑗 = 1 if and only if | { 𝑘: 𝑃 < 𝑘 >𝑖𝑗  = 1} | >
𝑛

2
 then we have majority 

voting. 

We will assume that the main diagonal entries of (𝑖, 𝑖) are identically 1. Let 𝐹𝑖𝑗 denote the (𝑖, 𝑗)  − entry of 𝐹. 

 

Definition 2.13. That 𝐹 is independent of irrelevant alternatives means if 𝑃 < 𝑘 >𝑖𝑗  =  𝑅 < 𝑘 >𝑖𝑗 and 𝑃 < 𝑘 >𝑗𝑖  =  𝑅 <

𝑘 >𝑗𝑖  then, 𝐹𝑖𝑗(𝑃1, … … . . ,  𝑃𝑛) = 𝐹𝑖𝑗  (𝑅1, … … . . ,  𝑅𝑛). 
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Proposition 2.14. Here 𝐹 is independent of irrelevant alternatives if and only if 𝐹𝑖𝑗  is a function of 𝑅 < 𝑘 >𝑖𝑗. 

Proof: For linear orders 𝑅 < 𝑘 >𝑖𝑗= 𝑅 < 𝑘 >𝑗𝑖 so knowledge of 

𝑅 < 𝑘 >𝑖𝑗  is equivalent 𝑅 < 𝑘 >𝑗𝑖 and 𝑅 < 𝑘 >𝑗𝑖 The definition is equivalent to saying that is a partial function of 𝑅 < 𝑘 >𝑖𝑗  and 

𝑅 < 𝑘 >𝑗𝑖 But on 𝑅 < 𝑘 >𝑖𝑗  we have a function since the is all 𝑛 −tuples of {0, 1}. 

 

Definition 2.15. That 𝐹 is neutral means for any permutation matrix 𝑃, 𝐹(𝑃𝑅 < 1 > 𝑃𝑇 . . , 𝑃𝑅 < 𝑛 > 𝑃𝑇) = 𝑃𝐹 (𝑅 < 1 >
, . . . , 𝑅 < 𝑛 >)𝑃𝑇 That 𝐹 is anonymous means for any permutation, 𝐹(𝑅 <  𝜋 (1)  >. . . , 𝑅 <  𝜋(𝑛)  >) = 𝐹(𝑅 < 1 >, 𝑅 < 𝑛 >). 
More generally if this holds for a group 𝐺 of permutations we say 𝐹 is 𝐺 −invariant. 

 

Example 2.16. If 𝐹 is a constant nonsymmetric relation then it is anonymous but not neutral. 

Anonymity is symmetry in the persons, while neutrality is symmetry in the alternatives. 

 

Definition 2.17. A social welfare function is transitive if and only if 𝐹2 ≤ 𝐹. It is Pareto if and 𝐹 =  𝑅 <  𝑛 >. 
This is a weak form of the Pareto property saying that if all individuals have identical preferences, the group preference must be 

the same as each individual's preference. 

 

Example 2.18. Majority rule has the Pareto property. Its transitive closure Sigma ∑ 𝐹𝑛 is transitive (but no longer independent of 

irrelevant alternatives). 

Example 2.19. A constant function cannot have the Pareto property. 

 

Proposition 2.20. If 𝐹 is independent of irrelevant alternatives then it is also Pareto if and only if 𝐹𝑖𝑗(0, . . . , 0)  =  0 and 

𝐹𝑖𝑗  (1, . . . ,1) = 1. 

 

Proof: The Pareto condition in this case is equivalent to saying that if all 𝑅 < 𝑘 >𝑖𝑗  =  0 and all 𝑅 < 𝑘 >𝑗𝑖= 1 then 𝐹𝑖𝑗 =

0 and 𝐹𝑗𝑖 = 1  

This proves sufficiency. But 𝑅 < 𝑘 >𝑖𝑗= 0 then 𝑅 < 𝑘 >𝑗𝑖= 1 so 𝐹𝑖𝑗 = 0 and if 𝑅 < 𝑘 >𝑖𝑗= 1 then 𝑅 < 𝑘 >𝑗𝑖= 0 so 𝐹𝑗𝑖 = 1.  

 

Proposition 2.21. Social welfare function to ℑ which are transitive, Pareto, independent of irrelevant alternatives, are in one-one 

correspondence with functions f∶  𝑉𝑛 → ℑ such that (i) f (0)  =  0, (ii) f (1)  =  1, (iii) if 𝑣 ≤ 𝑤 then f (𝑣) ≤  𝑓(𝑤), and (iv) f 

(𝑣𝑤)  ≥  𝑓(𝑣) 𝑓(𝑤), where 𝐹𝑖𝑗  (𝑅 < 1 >𝑖𝑗 , … … … , 𝑅 < 𝑛 >𝑖𝑗=  𝑓(𝑅 < 1 >𝑖𝑗 , … … … … … , 𝑅 < 𝑛 >𝑖𝑗 if there are at least three 

alternatives.  

 

Definition 2.22. A social welfare function is oligarchical (dictatorial) if and only if there exists a set 𝑆(a single person) such that 

for  
(𝑅 < 1 >, … … … . . , 𝑅 < 𝑛 >),  𝐹𝑖𝑗  (𝑅 < 1 >, … … … . . , 𝑅 < 𝑛 >) = 1 if 𝑥𝑖  𝑅 < 𝑘 > 𝑥𝑘  ∀ 𝑘 ∈ 𝑆 and 𝐹𝑖𝑗 = 0 otherwise. 

 

Example 2.23. 𝐹(𝑅 < 1 >, … … … . . , 𝑅 < 𝑛 >) = 𝑅 < 𝑛 > then we have a dictatorial social welfare function. 

 

Corollary 2.24. For ℑ = 𝛽, all social welfare functions satisfying the conditions of the theorem are oligarchical. 

 

Corollary 2.25. For ℑ = 𝛽, a social welfare function is complete and satisfies these conditions iff it is dictatorial. 

In an oligarchical social welfare function, the group prefers 𝑥𝑖 to 𝑥𝑗 if and only if every member of the oligarchy does. Members 

outside the oligarchy have no effect on group decisions. 

 

Proposition 2.26. Social welfare functions into ℑ which are anonymous, independent of irrelevant alternatives, Pareto, and 

transitive are in one-one Correspondence with functions 𝑔: {0} ∪ 𝑛 → ℑ such that  

𝑔(0)  =  0, 𝑔(1)  =  1, 𝑔(𝑛 −  𝑎 −  𝑏)  ≥ 𝑔(𝑛 −  𝑎) 𝑔(𝑛 −  𝑏) and if 𝑎 ≤  𝑏 then 𝑔(𝑎)  ≤  𝑔(𝑏). 

 

Proof: That a social welfare function is anonymous means 𝑓(𝑣) depends only on the number of ones in 𝑣. Let 𝑔(𝑎) be 𝑓(𝑣) 

where 𝑣 has a ones. Then the conditions of the last theorem translate directly to those here. 

 

Proposition 2.27. Suppose ℑ has no nilpotent elements Then every Pareto, anonymous, and transitive social welfare function is a 

multiple of the unanimity function in which the group prefers 𝑖 to 𝑗 if and only if all individuals do. 

Therefore, this holds for ℑ1 and ℑ3. However for ℑ2 there does exist a social welfare function which precisely represents majority 

rule. Here 0, 1 are switched. 

 

Proposition 2.31. A logical formula can be expressed solely in terms → if and only if it has the form 𝑝1 ∨ 𝑧 for some basic 

variable 𝑧 and formula 𝑝1. 

1. Proof: From 𝑦 →  𝑧 we have ~𝑦 ∨  𝑧 for all 𝑧. 
2. If 𝑝1 ∨ 𝑧 is obtained then (𝑝1 ∨ 𝑧) → 𝑧 gives (~𝑝1 ∧∼ 𝑧) ∨ 𝑧 =∼ 𝑝1 ∨ 𝑧. 
3. If 𝑝1 ∨ 𝑧 and 𝑝2 ∨ 𝑧 are obtained we obtain (𝑝1 ∨ 𝑧) → (𝑝2 ∨ 𝑧) or (~𝑝1 ∧∼ 𝑧) ∨ 𝑝2 ∨ 𝑧 =∼ 𝑝1 ∨ 𝑝2 ∨ 𝑧. 
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So the class of 𝑝1 which can be obtained contains ∼ 𝑦 for all variables and is closed under negation and or. So it consists of all 

formulas 𝑝1. We have a formula 𝑝1 → 𝑝2 then we have ∼ 𝑝1 ∨ 𝑝2. By induction we may suppose 𝑝2 has the form 𝑝3 ∨ 𝑧. So all 

obtainable formulas have this form.  

The operation ∨ can be defined solely in terms by 

 

 𝑥 ∨ 𝑦 = (𝑥 → 𝑦) →  у. 
 

Therefore, if → is defined in a structure, it must be a semi-lattice under ∨. 

 

Proposition 2.32. The element 𝑧 =  𝑥 →  𝑦 in any Boolean algebra is uniquely characterized by (i) 𝑧 ≥  𝑦 (ii) 𝑧 ∨  𝑥 =  1, and 

(iii) 𝑧 ∧ (𝑥 ∨  𝑦) = 𝑦.  
These equations can define operations with some of the properties of → (if then). 

However, it does not exist in most inclines. For example, if the incline is linearly ordered, and 0 <  𝑥 <  1 and 𝑥 ≰ 𝑦, then (ii) 

implies 𝑧 =  1 but this contradicts (iii) of Proposition 5.2.32. 

 

Example 2.28. For ℑ2 let 𝐹𝑖𝑗 be 
𝑘

𝑛
 where 𝑘 is the number of voters who do not prefer 𝑖 to 𝑗. 

This gives a social welfare function which is transitive, Pareto optimal, neutral, and independent of irrelevant alternatives. 

 

3. Application of Incline Algebra in Probable Reasoning Choice and Automata theory 

Inclines can be used in decision theory. Let 𝐴 =  (𝑎𝑖𝑗) be the matrix of a decision table, that is 𝑎𝑖𝑗  is the value of choice 𝑖 under 

state 𝑗 of nature. Then a decision rule is to maximize 𝑓(𝑎𝑖1, 𝑎𝑖2, … … . , 𝑎𝑖𝑛) where 𝑓 is some function. For the maxmin rule 𝑓 𝑖𝑠 

infimum. Then we find ∑ ∏ 𝑎𝑖1, 𝑎𝑖2, … … . , 𝑎𝑖𝑛 for the incline ℑ1 (or its dual). For the Nash bargaining solution (assigning 0 as 

disagreement value) we use the same formula for the incline ℑ3. This maximizes the ordinary product 𝑎1𝑎2 … … … . . 𝑎𝑛. Other 

inclines give other choice rules. 

 

Example 3.1. We can apply this to a choice between two alternatives 𝑎, 𝑏 under three possibilities 1, 2, 3: 
1. 𝑎 0. 4 0.7 0.8 

2. 𝑏 0.5 0.5 0.5 
 

Then under the ℑ1 choice rule we have 𝑠𝑢𝑝{ 0.4, 0.5 } =  0.5 so 𝑏is chosen. But under the ℑ3 rule we have sup 

{(0.4) (0.7) (0.8), ((0.5)3  = (0.4)(0.7)(0.8) so 𝑎 is chosen. 

These rules can be applied to selection of an individual for promotion. 

 

Example 3.2. Consider an individual's score on three attributes: human relationships, job performance, education. Let these be 

0.2, 0.3, 0.8 for individual 𝑎;  0.3, 0.3, 0.7 for individual 𝑏; 0.6, 0.6, 0.6 for individual 𝑐. Then by the ℑ3 choice rule we consider 

the supremum of the products 0.048, 0.063, 0.216 and so the last individual is chosen. 

Ma and Cao (1982a, 1982b, 1983) give applications of inclines to multistage evaluation in psychological measurement and 

decision-making. 

Logic is an algebra with operators and, or, if then, not, if and only if. The operations and, or are structurally analogous to sum, 

product in inclines. What about if then? We can consider logic as a structure solely in this operation. 

Firstly method to use inclines in probable reasoning suppose each of a set of statement 𝑖 supports by some conclusion 𝐶.let if 

statement 𝑖 supports conclusion 𝐶 to a degree 𝑎𝑖 , and one's supports in statement 𝑖 is 𝑝𝑖 . then one's supports in conclusion 𝐶 can be 

taken as at least 𝑠𝑢𝑝{𝑎 𝑖  𝑝𝑖}. 
If in fact all data were i known to be independent a higher value could be obtained by 

 

1 − (1 − 𝑎1𝑝1) (1 − 𝑎2𝑝2) … … … … … . (1 − 𝑎𝑛𝑝𝑛).  
 

However for most values the lower value 𝑠𝑢𝑝{𝑎𝑖 𝑝𝑖} is a good approximate value. 

 

Proposition 3.3: if 𝑥, 𝑦 are independent and uniformly distributed in [0,1] the approximated value of 1 − (1 − 𝑥) (1 − 𝑦) −
𝑠𝑢𝑝{𝑥, 𝑦} is 1/12. 
 

Proof: Here we have 

 

2 ∬ {1 −  (1 − 𝑥)(1 − 𝑦) −  𝑦} 𝑑𝑥 𝑑𝑦 = 1/12
𝒚

𝟎

 

 

In general, 𝑠𝑢𝑝 { Prob (𝑝𝑖) } can be used to estimate of the probability of  𝑝1  ∨ 𝑝2 ∨ … … . .∨ 𝑝𝑛. and it is a lower bound and will 

be exact if and only if some 𝑝𝑖  implies rest of 𝑝𝑖 . 

If it is desired to have the quantity 𝑥𝑖 as well as the utility enter the calculation, we may use a product structure. Then 

𝑠𝑢𝑝 {(𝑎𝑖𝑥𝑖 , 𝑥𝑖)} represents the utility and quantity chosen where we effectively order the pairs according to the first factor only. 

This can be achieved, for example by a lexicographic linear order or a partial order. 

We can consider finite machines over an incline ℑ in basically the same way as linear systems. 
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A cybernetic mechanism can govern a process by optimizing some quantity which is its goal. For instance, it can minimize the 

distance from an ideal state. If the quantity can be expressed as a for choice of 𝑖 then again we have 𝑠𝑢𝑝 (𝑎𝑖𝑥𝑖) Inclines can be 

used to represent binary relations in which there is a notion of degree as well as existence or nonexistence of the relationship, and 

in which the composition may have lesser degree than its factors. 

Furthermore, inclines can be used to represent choice or decision behavior by a consumer or a mechanism governing some 

process. For example, a consumer is assumed to choose the bundle of goods giving him the highest utility among all those he can 

purchase. Therefore, if he can afford amount 𝑥𝑖 of good 𝑖 and the utility of this to him is ai per unit, his utility is 𝑠𝑢𝑝 (𝑎𝑖𝑥𝑖) over 𝑖. 
Inclines can be used to indicate quality as opposed to quantity, or order of magnitude, since sums preserve values. The sum of two 

items of quality 𝑥 may be taken as quality 𝑥. 
 

4. Conclusion 

In this paper, we defined some new concept and properties of incline algebra and use this to application in probable reasoning 

choice and automata theory. Also gathered application of incline algebra in different fields.  

 

Acknowledgement: The authors are very grateful to the Editor and Reviewer for their effective suggestions to bring the paper in 

the current form. 
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