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Abstract 

We study the new mathematical model of micropolar fluid on continuous moving surface with suspended 

particles. The proposed model incorporates a thermal boundary condition known as Newtonian heating. 

We compared the numerical solution with previous work and examined the validity of the model. 
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1. Introduction 

The study of micropolar and viscoelastic fluid dynamics has emerged as a vital branch of fluid 

mechanics, particularly due to its ability to model complex fluids exhibiting microstructural 

behaviours. Unlike classical Newtonian fluids, micropolar fluids possess intrinsic angular 

momentum and micro-rotation effects, making them suitable for describing fluids with 

suspended particles, colloidal suspensions, polymers, and biological fluids such as blood. The 

foundational theories proposed by Eringen [10, 11] provided a mathematical framework for 

analyzed such fluids, where microelements can undergo both translational and rotational 

motion. These theories have since been expanded to account for various physical phenomena 

such as couple-stress, magnetic fields, porous media, and thermal gradients. 

Boundary layer flow over stretching surfaces is a classical problem in fluid mechanics, with 

significant applications in industrial processes such as extrusion, fibre drawing, and wire 

coating. Sakiadis [18] first addressed the boundary layer development on a continuous solid 

surface, laying the groundwork for subsequent investigations. Ishak et al. [13] further extended 

this to the case of micropolar fluids on moving surfaces, emphasizing the influence of micro-

rotation and spin-gradient viscosity. Qasim et al. [17] and Turkyilmazoglu [22] also investigated 

similar flows, considering Newtonian heating and porous stretching sheets, respectively, 

thereby enriching the understanding of heat transfer in micropolar systems. 

In recent years, researchers have increasingly focused on incorporating additional complexities 

such as magnetic fields, rotation, and porous media into micropolar fluid models. For example, 

Ali-Sharifi et al. [1] performed a numerical investigation of Casson micropolar fluid flow over 

a stretching sheet under convective boundary conditions. Their results illustrated how the 

Casson parameter and convective effects influence velocity and temperature profiles, 

highlighting the importance of considering non-Newtonian and thermal boundary effects in 

realistic flow configurations. 

Thermal convection and couple-stress effects are particularly relevant in micropolar and 

viscoelastic fluid dynamics. Couple-stress theory, which accounts for the size effects of fluid 

elements, enhances the modelling of microstructural stress distributions. Kumawat and 

colleagues have made significant contributions in this domain. Kumawat and Pankaj [2] 

investigated the thermal instability of couple-stress micropolar fluid flow, emphasizing the 

role of stress tensors in influencing the onset of convection. In another study, Kumawat and 

Mehta [3] examined the effects of suspended particles and rotation on micropolar fluid flow 

through a porous medium, revealing how such factors affect stability and thermal behaviour. 
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The integration of dust particles and electromagnetic forces further complicates the dynamics of micropolar flows. Kumawat et al. 
[4] studied the influence of dust particles and Hall current on micropolar fluid flow through a porous medium. Their findings 

suggest that dust concentration and magnetic parameters significantly modify the flow field and energy distribution. Similar 

themes were explored in Kumawat et al. [5–6], where couple-stress and Hall effects on viscoelastic fluid flows were analyzed, 

showing considerable alterations in velocity and temperature fields due to electromagnetic interactions. 

Suspended particles, porous media, and rotation remain central topics in many studies, particularly in the context of industrial and 

geophysical applications. Kumawat et al. [7] proposed a mathematical model for micropolar fluids with suspended particles, 

offering insights into particle-fluid interaction mechanisms. In another investigation, Kumawat, Mehta, and Lal [8] analyzed the 

role of couple-stress in micropolar fluids under thermal convection, extending the applicability of such models in high-

temperature and rotating systems. Their work was complemented by Kumawat et al. [9, 14, 15, 16, 23], who conducted numerical and 

analytical studies on the influence of magnetic fields, thermal instability, and rotating porous media, with a consistent focus on 

microstructural effects and energy transport. 

Entropy generation and thermal conductivity variations further contribute to the complexity of heat and mass transfer in 

micropolar systems. Sharma and Khanduri [19] analyzed entropy generation in magnetohydrodynamic (MHD) flows with 

temperature-dependent properties, while Sharma et al. [20] studied soret effects and chemical reactions in magneto-micropolar 

fluids. These studies underscore the importance of considering thermal non-linearity and chemical interactions in advanced 

micropolar flow models. 

From a modelling and computational standpoint, the resolution of complex nonlinear differential equations often requires 

sophisticated analytical or numerical methods. Kumawat et al. [12] addressed this by applying the Kamal integral transform and 

Adomian decomposition to fractional differential equations, contributing to the mathematical toolbox used in modelling non-

Newtonian fluid dynamics. 

Finally, the influence of rotation and ferromagnetic properties has also been analyzed in studies such as that by Singh [21], who 

considered micropolar ferromagnetic dusty fluids in porous media. These investigations provide important insights into how 

magnetic and rotational forces shape the stability and motion of fluid layers, especially in rotating astrophysical or geophysical 

contexts. 

Taken together, the body of literature reveals an increasing sophistication in modelling micropolar and viscoelastic fluid flows by 

incorporating microstructure, electromagnetic forces, thermal convection, and porous media effects. The present study seeks to 

build upon this extensive foundation, focusing on the coupled behaviour of micropolar fluids under the combined influence of 

suspended particles, couple-stresses, and thermal gradients in a porous medium. This work not only contributes to the theoretical 

understanding of such flows but also provides potential applications in chemical, mechanical, and environmental engineering. 

In view of the above discussion, application of the work in geophysics, film lubrication, engineering science, chemical technology 

and industry. In this paper, we attempt to study the new mathematical model of the micropolar fluid on a continuous moving 

surface with suspended particles. To the best of our knowledge, the Boussinesq approximations model has not yet been used to 

study this problem. 

 

2. Model 

We considered the new model of the micropolar fluid on continuous moving surface with suspended particles. We governing the 

equations of continuity, momentum, angular momentum, and temperature using the boundary layer and the Boussinesq 

approximation. 

 

 
 

Fig 1: Governing equations for micropolar fluid with suspended particles 
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The equations of continuity, momentum and temperature for the suspended particles are 
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where, ,u v  – Fluid velocity, 
,

s s
u v

 – Particles velocity components of x and y directions,   – Vortex viscosity, 


 – Density, 

s


 – Density of particles, N – Micro rotation, m


 – Velocity relaxation time of particles, T


 – Thermal velocity relaxation time 

of particles, j – Micro inertia, 


 – Spin (micro rotation), T – Temperature, s
T

 – Temperature of particles,   – Thermal 

diffusivity, v
C

 – Specific heat and s
C

 – Specific heat of particles. 
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3. Mathematical Formulation 

The similarity transformations are 
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Where, 
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-Stream function defined as 
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Using the above transformations in equations (2.1) to (2.7), we have 
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It is clear that the equation of continuity is satisfy 
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Putting the value of equations (3.3) to (3.7) in equation (2.2), we obtained 
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Putting the value of equations (3.10) to (3.12) in equation (2.3), we have 
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Putting the value of equations (3.15) to (3.17) in equation (2.4), we obtained 
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It is clear that the equation of continuity for suspended particles is satisfy. 
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Putting the value of equations (3.20) to (3.22) in equation (2.6), we have 
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Putting the value of equations (3.24) to (3.26) in equation (2.7), we obtained 
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Boundary conditions (2.8), become 
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We obtained the following equation using the above model 
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4. Validation and Numerical Analysis of the Work 

 

Now, we the comparison of 
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In this part, we verify the work done with [17] and [22].  

 
Table 1: Comparison of numerical results for micropolar fluid flow with suspended particles 

 

K   Present Qasim et al. Turkyilmazoglu 

0 1.0000000 1.00000000 1.000000 1.00000000 

1 0.8164965 1.22474487 1.224741 1.22474487 

2 0.7071067 1.41421356 1.414218 1.41421356 

4 0.57735026 1.73205080 1.733052 1.73205081 
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Fig 2: Analytical solution under fixed parameter configuration 

 

To illustrate, the specific set of fixed parameter values shown in Fig.1, where all variables intersect at a single point is given by 
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4. Conclusion 

In this paper, we have studied the new mathematical model of the micropolar fluid on continuous moving surface with suspended 

particles. In order to reduce the solver equations to a non-linear ordinary differential equation, the model of the micropolar fluid 

and suspended particles was used. This resulting equation is valid compared to previous study and will provide researchers, 

especially mathematicians and fluid mechanics, advance understanding of micropolar fluids on a continuously moving surface 

with models of suspended particles. 
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