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Abstract 

This study analyzes the reliability of a 1-out-of-3 system using the Freund bivariate exponential model to 

account for dependent component failures. The mean residual life (MRL), hazard rate and reliability 

function expressions are derived and analyzed under various failure rate scenarios. Maximum likelihood 

estimation (MLE) is employed for reliability estimation and a simulation study confirms the consistency 

of the estimators. The model effectively captures dynamics of reliability, failure rate, MRL due to failure 

of components in 1-out-of-3 system making it suitable for applications in mechanical and computational 

systems with redundant configurations. 
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1. Introduction 

The dependability of a system is determined not solely by the reliability of its constituent 

components but also by the configuration of the system, the interdependence among 

components and the characteristics of their failure time distributions. Among the numerous 

configurations, the 𝑠-out-of-𝑘 system (𝑠 ≤ 𝑘) serves a pivotal role in augmenting system 

reliability, particularly within the realm of reliability engineering applications. This model 

serves to generalize the two fundamental types of systems: the parallel system (when 𝑠 = 1) 

and the series system (when 𝑠 = 𝑘). Consequently, the 𝑠-out-of-𝑘 configuration offers a 

versatile framework that reconciles the dichotomies of redundancy and susceptibility in the 

design of systems. Because, of this flexibility it is widely suitable in various practical 

scenarios, especially in mission-critical and fault-tolerant applications such as aerospace, 

communication networks, power systems and cloud computing where redundancy is a key 

design feature. But it is also true that the workload or pressure on the functioning components 

will change due to failure of components in the system. So, there will be change in the hazard 

rate of the functioning components. For instance, in cloud computing environments, data 

centers often rely on redundant server clusters to ensure high availability and fault tolerance. 

When a server within a cluster fails, the computational workload and network traffic are 

redistributed among the remaining active servers. This redistribution of load can lead to 

increased Central Processing Unit (CPU) utilization, memory consumption and thermal stress, 

which in turn elevates the failure probability of the surviving servers. Such stress-induced 

dependence among server lifetimes necessitates the use of models like the Freund distribution, 

which explicitly accounts for failure rate transitions due to component interdependence. Thus, 

despite the presence of redundancy, the reliability of the system may deteriorate more rapidly 

following failures.  

Freund (1961) [1] has proposed a bivariate exponential model capturing dependent lifetimes 

and has applied it to real-world systems like engine failures and paired organs. Extensive work 

has been done using Frend bivariate exponential distribution, and few of them are: Boardman 

(1968) [2] has developed MLE methods for mixed exponential distributions in life testing.  
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Block and Basu (1974) [3] have introduced the ACBVE model 

to generalize Freund’s distribution with continuous 

dependency, provided estimation methods and highlighted its 

practical relevance. Ross (1984) [4] has modeled failure rates 

that adjust based on the current working set of components, 

derived system failure distributions and explored repair-based 

reversibility. Hanagal (1992) [5] has extended Freund’s model 

with large-sample inference for independence and symmetry, 

confidence intervals under censoring schemes are also 

obtained. Kunchur and Munoli (1994) [6] have estimated 

reliability in Freund-based two-component systems. Kim and 

Kvam (2004) [7] have developed MLEs for systems with 

unknown load-sharing rules. Kvam and Peña (2005) [8] have 

proposed a semi-parametric estimator for dynamic load-

sharing systems. Park (2010) [9] has derived MLEs and BUEs 

under exponential and Weibull load-sharing systems. Gurler 

et al. (2015) [10] have studied mean remaining strength in 

dependent-component systems under stress. Asha et al. 

(2018) [11] have modeled load-sharing systems with frailty 

using bivariate Weibull and positive stable distributions. Zhao 

et al. (2018) [12] have built a continuous degradation model for 

load-sharing systems using log-linear stress-degradation links. 

Katagi and Munoli (2025) [13] have assessed 2-out-of-3 system 

reliability using Freund’s model with MLE and Bayesian 

methods. Kundu (2025) [14] has proposed a bivariate load-

sharing model for dependent failures with ties. 

In the present study 1-out-of-3 system, which continues to 

function until the failure of its last component is considered 

and analyzed in the context of Freund model. The model 

formulation is detailed in Section 2. Section 3 provides an 

analysis of the reliability function, hazard rate and survival 

function. Parameter estimation based on life testing and 

simulation studies are presented in Sections 4 and 5, 

respectively. The concluding remarks are outlined in Section 

6.  

 

2. Model Description  
Consider a system of three components arranged in a 1-out-

of-3 configuration, that is the system functions as long as at 

least one component is operational. In such a configuration, as 

individual components experience failure sequentially, the 

parameter of the life distribution of the remaining operational 

components will change (without any form of replacement or 

repair). Specifically, let the lifetimes of the system’s 

components be independent exponential random variables 

with a common failure rate parameter 𝜆. Upon the failure of 

any one of the three components, the failure rate of the two 

remaining components changes to 𝜆1. Once the second failure 

occurs, the failure rate of the single surviving component 

changes to 𝜆2. 

Depending on the application, the relationship among the 

failure rates may vary. For example, the condition 𝜆 < 𝜆1 <
𝜆2 is typically observed in reliability engineering, where 

increased stress accelerates component degradation. In 

contrast, the condition 𝜆 > 𝜆1 > 𝜆2 may arise in ecological or 

competing species scenarios, where the failure (extinction) of 

one species reduces competition and thereby enhances the 

survival of others. 

 

3. Reliability function, hazard rate and mean residual life  

3.1 Reliability Function 
Reliability of 1-out-of-3 system with above property of 

changing life distribution upon subsequent failures at time 𝑡 is 

obtained as below 

𝑅(𝑡) = 𝑒−3𝜆𝑡 + 3 ∫ 𝜆𝑒−3𝜆𝑡1 𝑒−2𝜆1(𝑡−𝑡1)
𝑡

0

 𝑑𝑡1 + 

 

3 ∫ ∫ 𝜆𝑒−3𝜆𝑡1  𝜆1 𝑒−2𝜆1(𝑡2−𝑡1)𝑡

𝑡1
 𝑒−𝜆2(𝑡−𝑡2) 𝑑𝑡2 𝑑𝑡1

𝑡

0
  (1) 

 

The first term on the right-hand side corresponds to the event 

that all three components of the system have survived 

throughout the interval (0, 𝑡). The second term represents the 

scenario in which two out of the three components survive 

until time 𝑡, where the first failure occurs at time 𝑡1. The 

remaining two components operate with failure rate 𝜆 up to 

time 𝑡1, and subsequently with failure rate 𝜆1. The third term 

accounts for the case where only one component survives 

until time 𝑡, following both the first and second failures. The 

components initially function with rate 𝜆, transition to rate 𝜆1 

after the first failure at 𝑡1, and finally last component operates 

under rate 𝜆2 after the second failure at 𝑡2.  

Representing (1) as 

 

𝑅(𝑡) = 𝑒−3𝜆𝑡 + 𝐼1 + 𝐼2        (2) 

 

with 𝐼1 = 3 ∫ 𝜆𝑒−3𝜆𝑡1 𝑒−2𝜆1(𝑡−𝑡1)𝑡

0
 𝑑𝑡1 

 

⟹ 𝐼1 =
3𝜆(𝑒−2𝜆1𝑡−𝑒−3𝜆𝑡)

(3𝜆−2𝜆1)
        (3)  

 

𝐼2 = 3 ∫ ∫ 𝜆𝑒−3𝜆𝑡1 𝜆1 𝑒−2𝜆1(𝑡2−𝑡1)𝑡

𝑡1
 𝑒−𝜆2(𝑡−𝑡2) 𝑑𝑡2 𝑑𝑡1

𝑡

0
  

 

⟹ 𝐼2 =
3𝜆𝜆1

𝜆2−2𝜆1
{

(𝑒−2𝜆1𝑡−𝑒−3𝜆𝑡)

(3𝜆−2𝜆1)
−

(𝑒−𝜆2𝑡−𝑒−3𝜆𝑡)

(3𝜆−𝜆2)
}   (4) 

 

Substituting 𝐼1 and 𝐼2 of (3) and (4) into the Equation (2) and 

simplifying, the closed form expression for system reliability 

is obtained as 

 

𝑅(𝑡) = 𝑒−3𝜆𝑡 +
3𝜆(𝑒−2𝜆1𝑡−𝑒−3𝜆𝑡)

3𝜆−2𝜆1
+

3𝜆𝜆1

𝜆2−2𝜆1
{

(𝑒−2𝜆1𝑡−𝑒−3𝜆𝑡)

(3𝜆−2𝜆1)
−

(𝑒−𝜆2𝑡−𝑒−3𝜆𝑡)

(3𝜆−𝜆2)
}          (5) 

 

𝑅(𝑡) is well-defined, when 3𝜆 ≠ 2𝜆1, 𝜆2 ≠ 2𝜆1 and 3𝜆 ≠ 𝜆2 

and satisfies the boundary conditions 𝑅(0) = 1, 𝑅(∞) = 0 

with 𝑅(𝑡) being non-increasing in 𝑡. 

 

3.2 Hazard Rate 
Hazard rate is the probability that a unit that has functioned 

without failure up to the instant 𝑡 will fail in the interval 
(𝑡, 𝑡 + ∆𝑡) and is denoted by ℎ(𝑡) 

 

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
            (6) 

 

With 𝑓(𝑡) being probability density function (PDF) of the 

system lifetime, which is given by −
𝑑𝑅(𝑡)

𝑑𝑡
 and is obtained as: 

 

𝑓(𝑡) = 3𝜆𝑒−(3𝜆𝑡) +
3𝜆(2𝜆1𝑒−2𝜆1𝑡 − 3𝜆𝑒−3𝜆𝑡)

3𝜆 − 2𝜆1

− 

 
3𝜆𝜆1

𝜆2−2𝜆1
{

(3𝜆𝑒−3𝜆𝑡−2𝜆1𝑒−2𝜆1𝑡)

(3𝜆−2𝜆1)
−  

(3𝜆𝑒−3𝜆𝑡−𝜆2𝑒−𝜆2𝑡)

(3𝜆−𝜆2)
}  (7) 

 

which is valid under the same conditions imposed for 

Equation (5), ensuring that all denominators of Equation (7) 

are non-zero. 
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Hazard rate of the model is derived as:- 

 

ℎ(𝑡) =
3𝜆𝑒−(3𝜆𝑡)+

3𝜆(2𝜆1𝑒−2𝜆1𝑡−3𝜆𝑒−3𝜆𝑡)

3𝜆−2𝜆1
−

3𝜆𝜆1
𝜆2−2𝜆1

{
(3𝜆𝑒−3𝜆𝑡−2𝜆1𝑒−2𝜆1𝑡)

(3𝜆−2𝜆1)
−

(3𝜆𝑒−3𝜆𝑡−𝜆2𝑒−𝜆2𝑡)

(3𝜆−𝜆2)
}

𝑒−3𝜆𝑡+
3𝜆(𝑒−2𝜆1𝑡−𝑒−3𝜆𝑡)

3𝜆−2𝜆1
+

3𝜆𝜆1
𝜆2−2𝜆1

{
(𝑒−2𝜆1𝑡−𝑒−3𝜆𝑡)

(3𝜆−2𝜆1)
−

(𝑒−𝜆2𝑡−𝑒−3𝜆𝑡)

(3𝜆−𝜆2)
}

          (8) 

 

The behavior of the ℎ(𝑡) is analyzed under two distinct sets of parameter values, and the corresponding results are illustrated 

graphically in Figure 1. 

 

3.3 Mean Residual Life  

The mean residual life (𝑀𝑅𝐿) at time 𝑡, denoted by 𝑀𝑅𝐿(𝑡), represents the expected remaining lifetime of the system, 

conditioned on survival up to time 𝑡. It is given by  

 

𝑀𝑅𝐿(𝑡) =
∫ 𝑅(𝑥) 

∞
𝑡 𝑑𝑥

𝑅(𝑡)
                       (9) 

 

Let the integrated reliability function be 𝑅∗(𝑡) = ∫ 𝑅(𝑥) 𝑑𝑥
∞

𝑡
. 

 

Using the reliability function 𝑹(𝒙) from Equation (5), the expression for 𝑹∗(𝒕) is obtained as follows:- 

 

𝑅∗(𝑡) =
𝑒−3𝜆𝑡

3𝜆
+

3𝜆

3𝜆−2𝜆1
(

𝑒−2𝜆1𝑡

2𝜆1
−

𝑒−3𝜆𝑡

3𝜆
) +

3𝜆𝜆1

𝜆2−2𝜆1
{

1

3𝜆−2𝜆1
(

𝑒−2𝜆1𝑡

2𝜆1
−

𝑒−3𝜆𝑡

3𝜆
) −  

1

3𝜆−𝜆2
(

𝑒−𝜆2𝑡

𝜆2
−

𝑒−3𝜆𝑡

3𝜆
)}     (10) 

 

Thus, the 𝑴𝑹𝑳 function reduces to:- 

 

𝑀𝑅𝐿(𝑡) =

𝑒−3𝜆𝑡

3𝜆
+

3𝜆

3𝜆−2𝜆1
(

𝑒−2𝜆1𝑡

2𝜆1
−

𝑒−3𝜆𝑡

3𝜆
)+

3𝜆𝜆1
𝜆2−2𝜆1

{
1

3𝜆−2𝜆1
(

𝑒−2𝜆1𝑡

2𝜆1
−

𝑒−3𝜆𝑡

3𝜆
)−

1

3𝜆−𝜆2
(

𝑒−𝜆2𝑡

𝜆2
−

𝑒−3𝜆𝑡

3𝜆
)} 

𝑒−3𝜆𝑡+
3𝜆(𝑒−2𝜆1𝑡−𝑒−3𝜆𝑡)

3𝜆−2𝜆1
+

3𝜆𝜆1
𝜆2−2𝜆1

{
(𝑒−2𝜆1𝑡−𝑒−3𝜆𝑡)

(3𝜆−2𝜆1)
−

(𝑒−𝜆2𝑡−𝑒−3𝜆𝑡)

(3𝜆−𝜆2)
} 

         (11) 

 

The variation in 𝑀𝑅𝐿 is analyzed for two distinct parameter sets and presented graphically in Figure 1. 

 
Table 1: Theoretical 𝑅(𝑡), ℎ(𝑡) and 𝑀𝑅𝐿(𝑡) values for increasing and decreasing failure rates 

 

𝑺𝒍. 𝒏𝒐 𝒕 
𝝀 = 𝟎. 𝟑, 𝝀𝟏 = 𝟎. 𝟒, 𝝀𝟐 = 𝟎. 𝟓 𝝀 = 𝟎. 𝟔, 𝝀𝟏 = 𝟎. 𝟓, 𝝀𝟐 = 𝟎. 𝟒 

𝑹(𝒕) 𝒉(𝒕) 𝑴𝑹𝑳(𝒕) 𝑹(𝒕) 𝒉(𝒕) 𝑴𝑹𝑳(𝒕) 
1 1 0.878175 0.224692 2.739710 0.782361 0.373747 2.418908 

2 2 0.663248 0.325725 2.463379 0.519977 0.425719 2.399212 

3 3 0.464442 0.382087 2.310861 0.339362 0.424691 2.429030 

4 4 0.311043 0.417193 2.216778 0.222853 0.416398 2.456678 

5 5 0.202417 0.440516 2.154807 0.147474 0.409757 2.475026 

6 6 0.129189 0.456651 2.112256 0.098118 0.405554 2.485970 

7 7 0.081335 0.468113 2.082227 0.065494 0.403101 2.492213 

8 8 0.050709 0.476399 2.060638 0.043799 0.401715 2.495703 

9 9 0.031391 0.482463 2.044918 0.029322 0.400945 2.497635 

10 10 0.019331 0.486935 2.033371 0.019641 0.400520 2.498700 

 

Table 1 depicts the behavior of 𝑅(𝑡), ℎ(𝑡) and 𝑀𝑅𝐿(𝑡) 

functions at various time points for ascending and descending 

failure rates. In both the cases reliability values decrease as 

time progresses which is true in practical situations also, on 

the other hand the characteristics of hazard rate and mean 

residual life are different for two sets of failure rates. For 

ascending case of failure rates ℎ(𝑡) increases in contrast 

𝑀𝑅𝐿(𝑡) decreases over 𝑡 values whereas, in the case of 

descending failure rates, the nature of ℎ(𝑡) and 𝑀𝑅𝐿(𝑡) is bit 

different. In time interval (1, 2) hazard rate is increasing later, 

decreasing trend is observed and exactly contrasting behavior 

has been shown by 𝑀𝑅𝐿(𝑡).  
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Fig 1: 𝑅(𝑡), ℎ(𝑡) and 𝑀𝑅𝐿(𝑡) for increasing and decreasing failure rates 

 

Figure 1, displays the trend of 𝑅(𝑡), ℎ(𝑡) and 𝑀𝑅𝐿(𝑡) for two 

sets of failure rate parameters, representing increasing and 

decreasing failure rates. Reliability decreases monotonically 

over time in both the cases of failure rates, which is expected. 

This aligns with the system becomes more prone to failure as 

time elapses. The hazard rate at the starting period of time 

increases and eventually attains constant value corresponding 

to the hazard rate of the last surviving component in 

increasing failure rate scenario. Whereas, it raises steeply 

during the initial period of time and then gradually declines, 

ultimately approaching a stable value associated with the final 

component in decreasing failure rate situation. The Mean 

residual life curve of the system exhibits a nature that is 

reciprocal to the hazard rate in each case: it decreases over 

time in the increasing failure rate scenario and increases over 

time in the decreasing failure rate scenario. 

 

4. Estimation of Parameters by Life Testing. 
A system with the features described in Section 2 is set into 

life testing and is observed until all components have failed. 

Let 𝑈, 𝑉 and 𝑊 respectively denote the times at which the 

first, second and third failures occur. 

 The probability that the first failure occurs at time 𝑈 = 𝑢 

and other two components remain operational is given by 

𝜆𝑒−𝜆𝑢 𝑒−𝜆𝑢 𝑒−𝜆𝑢 = 𝜆𝑒−3𝜆𝑢  

 The probability that the second failure takes place at time 

𝑉 = 𝑣, with the one component still functioning, given 

that the first failure occurred at 𝑈 = 𝑢 is given by 

𝜆1𝑒−𝜆1(𝑣−𝑢) 𝑒−𝜆1(𝑣−𝑢) = 𝜆1𝑒−2𝜆1(𝑣−𝑢)  

 The probability that the third failure is observed at time 

𝑊 = 𝑤, given that the first and second failures 

respectively occurred at times 𝑈 = 𝑢, 𝑉 = 𝑣 is given by 

𝜆2𝑒−𝜆2(𝑤−𝑣)  

 

The joint pdf of 𝑼, 𝑽 and 𝑾 is as follows 

𝑓𝑈,𝑉,𝑊(𝑢, 𝑣, 𝑤) = 3!  𝜆𝑒−3𝜆𝑢 𝜆1𝑒−2𝜆1(𝑣−𝑢) 𝜆2𝑒−𝜆2(𝑤−𝑣), 0 <
𝑢 < 𝑣 < 𝑤 < ∞.          (12) 

For all values of 𝜆, 𝜆1and 𝜆2 defined on the interval (0, ∞) 

and 0 < 𝑢 < 𝑣 < 𝑤 < ∞, the Equation (12) is non-negative 

and satisfies the condition  

 

∫ ∫ ∫ 𝑓𝑈,𝑉,𝑊(𝑢, 𝑣, 𝑤) 𝑑𝑤 𝑑𝑣 𝑑𝑢
∞

𝑣
= 1

∞

𝑢

∞

0
. 

 

When 𝑛 such systems subjected to life test and joint 

likelihood function is given by 

 

𝐿(𝜆, 𝜆1, 𝜆2) = ∏ 𝑓𝑈,𝑉,𝑊(𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖)𝑛
𝑖=1   

 

𝐿(𝜆, 𝜆1, 𝜆2) = 6𝑛 𝜆𝑛𝑒−3𝜆 ∑ 𝑢𝑖
𝑛
𝑖=1  𝜆1

𝑛𝑒−2𝜆1 ∑ (𝑣𝑖−𝑢𝑖)𝑛
𝑖=1  𝜆2

𝑛𝑒−𝜆2 ∑ (𝑤𝑖−𝑣𝑖)𝑛
𝑖=1  

(13)  

Using the natural logarithm function to both sides of the 

Equation (13), followed by computing the partial derivatives 

concerning each parameter, and equating these derivatives to 

zero, the maximum likelihood estimators (MLE) of 𝜆, 𝜆1, 𝜆2 

are: 

 

𝜆̂ =
1

3𝑢
, 𝜆̂1 =

1

2(𝑣̅−𝑢)
, 𝜆̂2 =

1

(𝑤̅−𝑣̅)
  

 

With, 𝑢̅ = ∑
𝑢𝑖

𝑛

𝑛
𝑖=1  ; 𝑣̅ = ∑

𝑣𝑖

𝑛

𝑛
𝑖=1  ; 𝑤̅ = ∑

𝑤𝑖

𝑛

𝑛
𝑖=1  

 

As MLEs hold invariance property, the MLE 𝑹̂(𝒕) of 𝑹(𝒕) 

is obtained as 

𝑅̂(𝑡) = 𝑒−3𝜆̂𝑡 +
3𝜆̂(𝑒−2𝜆̂1𝑡−𝑒−3𝜆̂𝑡)

3𝜆̂−2𝜆̂1
+

3𝜆̂𝜆̂1

𝜆̂2−2𝜆̂1
{

(𝑒−2𝜆̂1𝑡−𝑒−3𝜆̂𝑡)

(3𝜆̂−2𝜆̂1)
−

(𝑒−𝜆̂2𝑡−𝑒−3𝜆̂𝑡)

(3𝜆̂−𝜆̂2)
}.  

 

5. Simulation Study 

The failure times of the components of the system are 

generated synthetically in order to estimate the MLEs of 

parameters. 
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 Step 1: The failure time of the first component 𝑢𝑖  is the 

minimum among the generated three exponential random 

variables with the parameter 𝜆 = 𝜆0. 

 Step 2: The failure time of the second component 𝑣𝑖 is 

obtained by adding 𝑢𝑖 to the minimum of the generated 

two exponential random variables with the parameter 

𝜆1 = 𝜆10
. 

 Step 3: Adding 𝑣𝑖 to a generated exponential r. v with the 

parameter 𝜆2 = 𝜆20
 in order to get failure time of the 

third component. 

 Step 4: Repeat steps 1 to 3 for 𝑛 = 𝑛0 number of times to 

compute 𝑢̅, 𝑣̅ and 𝑤̅ and using these values, 𝑅̂(𝑡) are 

estimated at various time points 𝑡. 

 

The Mean absolute biases (MAB) of 𝑅̂(𝑡) are obtained by 

recurring the steps 1 to 4 for 𝑚 = 10,000 simulations, using 

the following formula 

 

𝑀𝐴𝐵 (𝑅̂(𝑡)) =
∑ |𝑅(𝑡)−𝑅̂𝑘(𝑡)|𝑚

𝑘=1  

𝑚
  

 

Table 2 presents the mean absolute biases of the estimated 

reliability function 𝑅̂(𝑡) for two different sets of parameter 

configurations. 

 

Table 2: Mean Absolute Biases of 𝑅̂(𝑡) 
 

𝒕 
𝝀 = 𝟎. 𝟑,  𝝀𝟏 = 𝟎. 𝟒,  𝝀𝟐 = 𝟎. 𝟓 𝝀 = 𝟎. 𝟔,  𝝀𝟏 = 𝟎. 𝟓,  𝝀𝟐 = 𝟎. 𝟒 

𝒏 = 𝟏𝟎 𝒏 = 𝟏𝟓 𝒏 = 𝟐𝟓 𝒏 = 𝟒𝟓 𝒏 = 𝟏𝟎 𝒏 = 𝟏𝟓 𝒏 = 𝟐𝟓 𝒏 = 𝟒𝟓 

1 0.036242 0.028623 0.021656 0.015856 0.051126 0.040886 0.031176 0.023265 

2 0.069534 0.056261 0.043454 0.032168 0.067949 0.055299 0.042961 0.032299 

3 0.078791 0.064638 0.050458 0.037580 0.063348 0.051855 0.040569 0.030342 

4 0.073273 0.060606 0.047561 0.035438 0.055252 0.045428 0.035559 0.026431 

5 0.061825 0.051385 0.040306 0.029991 0.046876 0.038631 0.030333 0.022488 

6 0.049313 0.041104 0.032079 0.023811 0.038686 0.031960 0.025191 0.018666 

7 0.037940 0.031654 0.024515 0.018132 0.031192 0.025816 0.020396 0.015118 

8 0.028477 0.023729 0.018203 0.013400 0.024694 0.020436 0.016155 0.011978 

9 0.020998 0.017443 0.013231 0.009683 0.019299 0.015932 0.012582 0.009318 

10 0.015285 0.012632 0.009462 0.006880 0.014940 0.012280 0.009669 0.007140 

 

In above table, the results are reported for varying time points 

and for different values of 𝑛. The general trend observed in 

Table 2 is that for any fixed 𝑡 the mean absolute bias of 𝑅̂(𝑡) 

decreases as the 𝑛 increases. This is expected, as larger values 

of 𝑛 typically result in improved estimation precision due to 

reduced sampling variability. 

 

6. Conclusions  

This study presented a reliability analysis of a 1-out-of-3 

system using the Freund bivariate exponential model, which 

incorporates dependency among component lifetimes 

resulting from progressive system stress. The expressions for 

the reliability function, hazard rate and mean residual life 

(MRL) were derived and examined under two distinct sets of 

failure rates: increasing and decreasing. The analysis revealed 

that while the reliability function consistently decreases over 

time, the behavior of the hazard rate and MRL depends 

significantly on the pattern of failure rate progression. In 

particular, the hazard rate increases and MRL decreases in the 

case of increasing failure rates, whereas the reverse trend is 

observed when the failure rates decrease, demonstrating the 

sensitivity of system behavior to the underlying stress 

dynamics. 

Parameter estimation was carried out using maximum 

likelihood estimation based on data obtained from life testing 

of the system. A simulation study was conducted to evaluate 

the performance of the estimators, with results showing that 

the mean absolute bias decreases as sample size increases, 

indicating estimator consistency and precision. The findings 

validate the applicability of the Freund model in load-sharing 

environments and highlight its relevance in systems where 

operational stress dynamically alters component failure 

behavior. This framework offers practical insights for 

engineers and reliability analysts in designing and evaluating 

fault-tolerant systems across domains such as mechanical 

engineering, communication networks and cloud computing 

infrastructure. 

 

7. References 

1. Freund JE. A bivariate extension of the exponential 

distribution. J Am Stat Assoc. 1961;56(296):971-977. 

2. Boardman TJ. On the maximum likelihood estimation of 

the parameters of mixed exponential distributions with 

applications to life testing [Dissertation]. New Brunswick 

(NJ): Rutgers The State University of New Jersey; 1968. 

3. Block HW, Basu AP. A continuous, bivariate exponential 

extension. J Am Stat Assoc. 1974;69(348):1031-1037. 

4. Ross SM. A model in which component failure rates 

depend on the working set. Nav Res Logist Q. 

1984;31(2):297-300. 

5. Hanagal DD. Some inference results in modified Freund's 

bivariate exponential distribution. Biom J. 

1992;34(6):745-56. 

6. Kunchur SH, Munoli SB. Estimation of reliability in 

Freund model for two component system. Commun Stat 

Theory Methods. 1994;23(11):3273-3283. 

7. Kim H, Kvam PH. Reliability estimation based on system 

data with an unknown load share rule. Lifetime Data 

Anal. 2004;10(1):83-94. 

8. Kvam PH, Pena EA. Estimating load-sharing properties 

in a dynamic reliability system. J Am Stat Assoc. 

2005;100(469):262-272. 

9. Park C. Parameter estimation for the reliability of load-

sharing systems. IIE Trans. 2010;42(10):753-765. 

10. Gurler S, Ucer BH, Bairamov I. On the mean remaining 

strength at the system level for some bivariate survival 

models based on exponential distribution. J Comput Appl 

Math. 2015;290:535-542. 

11. Asha G, Raja AV, Ravishanker N. Reliability modelling 

incorporating load share and frailty. Appl Stoch Models 

Bus Ind. 2018;34(2):206-223. 

https://www.mathsjournal.com/


 

~128~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

12. Zhao X, Liu B, Liu Y. Reliability modeling and analysis 

of load-sharing systems with continuously degrading 

components. IEEE Trans Reliab. 2018;67(3):1096-1110. 

13. Katagi SV, Munoli SB. Reliability assessment for 2-out-

of -3 system using Freund model. Int J Sci Res Sci 

Technol. 2025;12(4):191-195. 

14. Kundu D. A bivariate load-sharing model. J Appl Stat. 

2025;52(7):1446-1469. 

https://www.mathsjournal.com/

