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Abstract 
In this paper, software for two phase blood flow using power model have been tried to develop for 
plotting the graph between hematocrit and blood pressure drop in medical point of view. This coding 
default values of different parameters have been put in the python program. Blood has been taken in two 
phase’s first plasma and another Cell phase. since blood shows the non-Newtonian behaviour in small 
arteries, power law model is used for the modelling. Power index has been calculated by newton Raphson 
method python program. finally we found the table and graph for Blood Pressure Drop and HCT. 
 
Keywords: Power law model, plasma, cells, hematocrit, non- Newtonian 

 
Introduction 
In large channels, such as the enormous arteries and veins and the heart's ventricles and atria, 
the blood often behaves like a Newtonian fluid. One explanation is that because blood in such 
large lumens and cavities is usually subjected to extremely high shear rates, non-Newtonian 
effects, which are primarily formed at low shear rates, gradually fade away [1]. At this 
enormous size, blood also appears as a uniform continuum media, with the influence of blood 
cell aggregation diminishing [2]. 
Non-Newtonian effects are generally more pronounced in small flow channels, such as renal 
artery, than in large ducts, such as arteries. The breakdown of the continuity assumption at 
small scales, which is especially true for intricate distributed systems like blood, is one of the 
reasons behind this. In these kinds of tubes, the continuum approximation reaches a limit when 
blood cells aggregate and interact with the vessel wall. This starts the non-Newtonian 
rheological flow modes, which include the induction of elastic effects connected to the 
structural and elastic properties of red blood cells. Moreover, low shear rates, which are the 
prevalent flow regimes in the small vessels, make the non-Newtonian effects of blood more 
apparent [3]. Hence, while modelling, simulating, and analysing the flow of blood in small 
vessels, non-Newtonian rheological effects should be taken into account. The Power Law 
Model is one of several rheological models used to describe non-Newtonian fluid behavior. 
 
Dengue and renal artery 
Tropical and subtropical regions of the world are home to dengue fever, also known as DENG-
gey fever, which is spread by mosquitoes. Flu-like symptoms and a high temperature are signs 
of mild dengue fever. Serious bleeding, a sharp drop in blood pressure (shock), and even death 
are possible outcomes of the severe type of dengue fever, commonly known as dengue 
hemorrhagic fever. Every year, millions of people throughout the world contract dengue. 
Southeast Asia, the western Pacific islands, Latin America, and Africa are the regions with the 
highest rates of dengue fever. However, the illness has been moving to other regions, with 
isolated outbreaks occurring in southern U.S. states and Europe. Vaccines against dengue 
disease are being developed. 
For now, in areas where dengue fever is common, the best ways to prevent infection are to 
avoid being bitten by mosquitoes and to take steps to reduce the mosquito population. 
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Symptoms 

Many people experience no signs or symptoms of a dengue infection. When symptoms do occur, they may be mistaken for other 

illnesses — such as the flu — and usually begin four to 10 days after you are bitten by an infected mosquito. 

Dengue fever causes a high fever — 104 F (40 C) — and any of the following signs and symptoms: 

 Headache 

 Muscle, bone or joint pain 

 Nausea 

 Vomiting 

 Pain behind the eyes 

 Swollen glands 

 Rash 

 

Most folks get better in about a week. Sometimes the symptoms get worse and can prove fatal. This is known as dengue shock 

syndrome, dengue hemorrhagic fever, or severe dengue.  

When your blood vessels are damaged and start to leak, you get severe dengue. Additionally, your blood's concentration of 

platelets, which are cells that form clots, decreases. Shock, internal hemorrhage, organ failure, and even death may result from 

this.  

Severe dengue fever is a potentially fatal condition that can manifest warning symptoms rapidly. Usually during the first day or 

two after your fever subsides, the warning symptoms might include: 

 Severe stomach pain 

 Persistent vomiting 

 Bleeding from your gums or nose 

 Blood in your urine, stools or vomit 

 Bleeding under the skin, which might look like bruising 

 Difficult or rapid breathing 

 Fatigue 

 Irritability or restlessness 

 

With an estimated 400 million infections each year, of which 100 million (25%) result in clinical illness [4], dengue is the most 

common arthropod-borne viral disease in the world. A dengue viral infection (DVI) can manifest with a variety of symptoms, 

such as various end-organ damage, nonspecific fever, and potentially fatal symptoms. Relatively little research has been done on 

the epidemiology of renal involvement in dengue fever and its variants. It is necessary to comprehend the processes underlying 

acute kidney damage (AKI). 

Research indicates that the prevalence of renal symptoms in dengue varies greatly (0.9% to 69.4%), and AKI is a rare dengue 

complication with a frequency of around 014% [5, 6]. In dengue, AKI has been linked to higher rates of morbidity and death [7]. The 

main source of evidence for dengue's correlation with AKI is historical data from different geographical areas [8]. 

The mean peak systolic velocity (PSV) was highest on the left side in males measuring 65.75 ± 28.41cm/sec and 60.7 ± 

24.20cm/sec on the right [9]. 

The main renal arteries are approximately 4 to 6 cm long with a 5 to 6 mm diameter. The right renal artery, which is longer than 

the left, arises from the anterolateral aorta and runs in an inferior course posterior to the inferior vena cava (IVC) to reach the right 

kidney [10, 11]. 

 

Real Model 

When blood flows via a larger artery, Newtonian blood behaviour is reasonable to anticipate. It is not acceptable if the blood 

vessel is small (radius less than 1 mm). From the standpoint of biofluid mechanics, blood would not be expected to obey Newton's 

incredibly simple, one parameter, linearized law of viscosity. The non-Newtonian characteristics of blood can only be accurately 

represented by higher order constitutive equations, such as the power-law paradigm Enderle. 

 

Parametrization 

The blood's velocity𝑣𝑘 = 𝑣𝑘(𝑋𝑖 , 𝑡)𝑘 = 1,2,3 and any two thermodynamic quantities related to it, such as pressure, 𝑃 = 𝑃(𝑋𝑖 , 𝑡) 

and density,𝜌 = 𝜌(𝑋𝑖 , 𝑡), were distributed according to functions that affected the mathematical description of the state of a 

moving blood. All thermodynamic quantities, together with the equation of state, are determined by the values of any two of them, 

as is often known. Thus, we may fully ascertain the condition of flowing blood if we have five variables: the density𝜌, the 

pressure𝑃, and the three components of velocity 𝑣𝑘.  

The coordinates𝑋𝑖 , 𝑖 = 1,2,3, and the time t are functions of all these values. It stressed that the blood's velocity at a given 

position 𝑋𝑖 in space and at a given time t was represented by the expression 𝑣𝑘(𝑋𝑖 , 𝑡) 
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Let one unit volume of whole blood and 

𝑋 = Volume fraction of plasma 

𝑌 = 1 − 𝑋 = Volume fraction of RBC the mass ratio of RBC to plasma is 𝑚  

 

𝑚 =
𝑌𝜌𝐶

𝑋𝜌𝑃
  

 

Where 𝜌𝐶 , 𝜌𝑃 , 𝜌𝑊 are the densities of RBC,plasma, WBC. 

We define density of blood mixture 𝜌𝑚 as follows 

 
1+𝑚

𝜌𝑚
=

𝑚

𝜌𝑐
+

1

𝜌𝑃
  

 

And viscosity of blood mixture 𝜂𝑚 as follows 

 

𝜂𝑚 = 𝑌𝜂𝑐 + 𝑋𝜂𝑃 

 

Boundary conditions 

1. The velocity of blood flow on the axis of blood vessels at r = 0 will be maximum and finite, say 𝑣0 = maximum velocity. 

2. The velocity of blood flow on the wall of blood vessels at r = R, where, R is the radius of blood vessels, will be zero. This 

condition is well known as no slip condition. 

 

Equation of Continuity 

Continuity equation for three phases 

 
𝜕((1−𝑋)𝜌𝑐)

𝜕𝑡
+ ((1 − 𝑋)𝜌𝑐𝑣𝑖),𝑖 = 0  [1] 

 

 
𝜕(𝑋𝜌𝑃)

𝜕𝑡
+ (𝑋𝜌𝑃𝑣𝑖),𝑖 = 0  [2]  

 

Where, 𝑣𝑖 is the common velocity of two phase blood cells and plasma. Again (𝑋𝜌𝑐𝑣𝑖),𝑖 is co-variant derivative of (𝑋𝜌𝑐𝑣𝑖) with 

respect to𝑋𝑖. 

 

Equation of motion for blood flow with the three phases.  

Using the principle of force conservation (or momentum conservation) in hepatic arteries and assuming that the consistency 

coefficient (or viscosity coefficient) of RBC cells is 𝜂𝑐. 

 

(1 − 𝑋)𝜌𝑐
𝜕𝑣𝑖

𝜕𝑡
+ ((1 − 𝑋)𝜌𝑐𝑣𝑖) 𝑣,𝑗

𝑖 − (1 − 𝑋)𝑃,𝑗𝑔𝑖𝑗 + (1 − 𝑋)𝜂𝑐(𝑔𝑗𝑘𝑣𝑖
,𝑘)

,𝑗
  

 

Similarly, taking the viscosity coefficient of plasma to be the equation of motion for plasma will be as follows- 

 

 𝑋𝜌𝑃
𝜕𝑣𝑖

𝜕𝑡
+ (𝑋𝜌𝑃𝑣𝑖)𝑣,𝑗

𝑖 − 𝑋𝑃,𝑗𝑔𝑖𝑗 + 𝑋𝜂𝑃(𝑔𝑗𝑘𝑣𝑖
,𝑘)

,𝑗
  

 

then equation of motion for blood flow with the all Two phases will be as follows- 

 

 𝜌𝑚
𝜕𝑣𝑖

𝜕𝑡
+ (𝜌𝑚𝑣𝑗 )𝑣𝑖

,𝑗 = −𝑃,𝑗𝑔𝑖𝑗 + 𝜂𝑚(𝑔𝑗𝑘𝑣𝑖
,𝑘)

,𝑗
  [3]  
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Whenever percentage of blood is reduces the blood has been supposed Newtonian but in case of increasing the hematocrit, the 

effective viscosity of blood flowing through arteries remote from the heart depends on the strain rate. 

 

For this reason, the blood will flow as non Newtonian fluid. When strain rate is in between 5 to 200 per second, the power law 

 

𝜏′ = 𝜂𝑚𝑒𝑛  
 

Where 0.68≤𝑛 ≤0.80 describes the flow of blood very well. The constitutive equation of blood is as follow 

 

Blood's constitutive equation is as follows. 

 

𝜏𝑖𝑗 = −𝑝𝑔𝑖𝑗 + 𝜂𝑚(𝑒𝑖𝑗)𝑛 = −𝑝𝑔𝑖𝑗 + 𝜏 ,𝑖𝑗 [4] 

 

Where 𝜏𝑖𝑗 is stress tensor and 𝜏 ,𝑖𝑗  is shearing stress tensor. 

 

Mathematical formulation 

The equation of continuity for power law flow will be as follows: 

 
1

√𝑔
(√𝑔𝑣𝑖),𝑖 = 0  [5] 

 

Again the equation in tensorial form is as follows: 

 

𝜌𝑚
𝜕𝑣𝑖

𝜕𝑡
+ 𝜌𝑚𝑣𝑗𝑣𝑖

,𝑗 = 𝜏𝑖𝑗
,𝑗  [6] 

 

Since the blood vessels are cylindrical, the above governing equation have to transformed into cylindrical co-ordinates. 

 

Let 𝑥1 = 𝑟, 𝑥2 = 𝜃, 𝑥3 = 𝑧 

 

Matrix of corresponding metric tensor in cylindrical form is as follow: 

 

[𝑔𝑖𝑗] = [
1 0 0
0 𝑟2 0
0 0 1

] 

 

So Matrix of conjugate metric tensor is 

 

[𝑔𝑖𝑗] = [

1 0 0

0
1

𝑟2
0

0 0 1

] 

 

Whereas Christoffel’s symbols of 2nd kind are as follows: 

 

{
1

2 2
} = −𝑟, {

2
2 1

} =  {
2

1 2
} =  

1

𝑟
 Except of these all are zero. 

 

contravarient and physical components of velocity of blood flow will be related as 

 

√𝑔11𝑣1 = 𝑣𝑟 =>  𝑣𝑟 = 𝑣1  

 

 √𝑔22𝑣2 = 𝑣𝜃 =>  𝑣𝜃 =  𝑟𝑣2, 

 

√𝑔22𝑣3 = 𝑣𝑧 =>  𝑣𝑧 =  𝑣3 

 

Further the physical component of – 𝑝,𝑗 𝑔𝑖𝑗  𝑎𝑟𝑒 − √𝑔𝑖𝑖𝑝,𝑗 𝑔𝑖𝑗 

 

The matrix of physical component of shearing stress – tensor 

 

𝜏 ,𝑖𝑗 = 𝜂𝑚(𝑒𝑖𝑗)𝑛 = 𝜂𝑚(𝑔𝑖𝑘𝑣,𝑘
𝑖 + 𝑔𝑗𝑘𝑣,𝑘

𝑗
)𝑛  [7] 

 

will be as follows: 
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[

0 0 𝜂𝑚(𝑑𝑣
𝑑𝑧⁄ )𝑛

0 0 0

𝜂𝑚(𝑑𝑣
𝑑𝑟⁄ )𝑛 0 0

] 

 

The covariant derivative of 𝜏 ,𝑖𝑗 is  

 

 𝜏,𝑗
,𝑖𝑗

=  
1

√𝑔

𝜕

𝜕𝑥𝑗 (√𝑔𝜏 ,𝑖𝑗) + {
𝑖

𝑗 𝑘} 𝜏 ,𝑘𝑗  [8] 

 

Keeping in view the above facts the governing tensorial equation can be transformed into cylindrical form which are as follows: 

 

The Equation of continuity  

 
𝜕𝑣

𝜕𝑧
= 0  

 

The Equation of motion  

 

𝑟-Component  

 

−
𝜕𝑝

𝜕𝑟
= 0  

 

𝜃-Component  
 

0 = 0  

 

Z-Component 

 

0 = −
𝜕𝑝

𝜕𝑧
+

𝜂𝑚

𝑟
 

𝜕

𝜕𝑟
(𝑟 (

𝑑𝑣

𝑑𝑟
)

𝑛

)  

 

These are the𝑟, 𝜃, 𝑧 components respectively  

Further the fact has been considered that axial flow in artery is symmetric, so that 𝑣𝜃 = 0 𝑎𝑛𝑑 𝑣𝑟 , 𝑣𝑧 𝑎𝑛𝑑 𝑝 do not depend upon 𝜃. 

Also the blood flows steadily, i.e. 

 
𝜕𝑝

𝜕𝑡
=

𝜕𝑣𝑟

𝜕𝑡
=

𝜕𝑣𝜃

𝜕𝑡
=

𝜕𝑣𝑧

𝜕𝑡
= 0  

 

On integrating equation, we get 𝑣𝑧 = 𝑣(𝑟) because v does not depend upon 𝜃  

The integration of equation of motion, we get 𝑝 = 𝑝(𝑧) since p does not depend upon 𝜃 

 

Now, with the help of equation, the equation of motion converts in the following form: 

 

0 = −
𝑑𝑝

𝑑𝑧
+

𝜂𝑚

𝑟
 

𝑑

𝑑𝑟
(𝑟 (

𝑑𝑣

𝑑𝑟
)

𝑛

)  [9]  

 

The pressure gradient −(
𝑑𝑝

𝑑𝑧
⁄ ) = 𝑃 of blood flow in the arteries remote from liver can be supposed to be constant and hence the 

equation takes the following form: 

 
𝑑

𝑑𝑟
(𝑟 (

𝑑𝑣

𝑑𝑟
)

𝑛

) = − 
𝑃𝑟

𝜂𝑚
  

 

On integrating equation (9), we get  

 

𝑟 (
𝑑𝑣

𝑑𝑟
)

𝑛

= −
𝑃𝑟2

2𝜂𝑚
+ 𝐴  [10] 

 

We know that the velocity of blood flow on the axis of the cylindrical arteries is maximum and constant. So that the apply the 

boundary condition at r=0, v = 𝑉0(contant), on equation (10) to get the arbitrary constant A = 0. Hence the equation (11) takes the 

following form: 

 

𝑟 (
𝑑𝑣

𝑑𝑟
)

𝑛

=  −
𝑃𝑟2

2𝜂𝑚
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−
𝑑𝑣

𝑑𝑟
= (

𝑃𝑟

2𝜂𝑚
)

1
𝑛⁄

 [11] 

 

Integrating equation (11) once again, we get  

 

𝑣 = − (
𝑃

2𝜂𝑚
)

1
𝑛⁄

 
𝑟

1
𝑛+1

(𝑛+1)
𝑛⁄

+ 𝐵 [12] 

 

To determine the arbitrary constant B, we apply the no –slip condition in the inner wall of the arteries: at 𝑟 = 𝑅, 𝑉 = 0, where 

𝑅 = radius of vessel, on equation (12) so as to get 

 

𝐵 = (
𝑃

2𝜂𝑚
)

1
𝑛⁄

 
𝑛𝑅

1
𝑛+1

𝑛+1
  

 

Hence the equation takes the following form: 

 

𝑣 = (
𝑃

2𝜂𝑚
)

1

𝑛
 

𝑛

𝑛+1
[𝑅

1

𝑛
+1 − 𝑟

1

𝑛
+1]  [13] 

 

Which determines the velocity of blood flow in the arteries remote from the liver where P is gradient of blood pressure and 𝜂𝑚 is 

the viscosity of blood mixture. 

 

Shear stress 

 

𝜏 = (
𝑄(1 + 3𝑛)

𝜋𝑛
)

𝑛
𝑟𝜂𝑚

𝑅3𝑛+1
 

 

Strain rate 
𝑑𝑣

𝑑𝑟
= (

∆𝑃𝑟

2∆𝑧 𝜂𝑚
)

1
𝑛⁄

 

 

The total flow- flux of blood through the transverse section of the arteries is 

 

𝑄 = ∫ 𝑣. 2𝜋𝑟 𝑑𝑟
𝑅

0
= ∫ (

𝑃

2𝜂𝑚
)

1
𝑛⁄

.
1

𝑛+1
(𝑅

1

𝑛
+1 − 𝑟

1

𝑛
+1) 2𝜋𝑟 𝑑𝑟

𝑅

0
  

 

= (
𝑃

2𝜂𝑚
)

1
𝑛⁄

.
2𝜋𝑛

𝑛+1
(

𝑅
1

𝑛+1⁄ .𝑟2

2
−

𝑛.𝑟
1
𝑛+3

3𝑛+1
)

0

𝑅

  

 

= (
𝑃

2𝜂𝑚
)

1

𝑛
.

2𝜋𝑛

𝑛+1
.

(𝑛+1)𝑅
1

𝑛+3⁄

2(3𝑛+1)
  

 

𝑄 =  (
𝑃

2𝜂𝑚
)

1

𝑛
.

𝜋𝑛𝑅
1
𝑛+3

(3𝑛+1)
, 𝑤ℎ𝑒𝑟𝑒 𝑃 =  −

𝑑𝑝

𝑑𝑧
  

 

𝑄 = [
𝑃𝑖−𝑃𝑓

2𝜂𝑚(𝑧𝑖−𝑧𝑓)
]

1

𝑛
.

𝜋𝑛𝑅
1
𝑛+3

(3𝑛+1)
  [14] 

 

Observations 

According to Glenn Elert (2010) 

𝜂𝑚 = Viscosity of mixture = 0.0045 pascal sec 

According to Gustafson, Daniel R. (1980) 

𝜂𝑝 = Viscosity of plasma =0.0015 pascal sec 

𝜂𝑐= 0.0075 pascal sec [9]  

Length of renal artery(𝑧𝑖 − 𝑧𝑓) = 0.05 meter 
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Table 1: Data of dengue patient 
 

S.N DATE B.P(mmHg) Hb Hct 

1 11/11/2024 110.02/73.08 12.9 38.7 

2 13/11/2024 109.10/72.30 11.3 33.9 

3 14/11/2024 110.90/71.80 10.7 32.1 

4 15/11/2024 112.90/74.10 11.7 35.1 

5 16/11/2024 114.90/76.00 12.1 36.3 

 

Average Systolic Pressure =111.04 mm Hg  

Average Diastolic Pressure = 74.13 mm Hg 

Pressure drop =2460.60 pascal 

 

Coding for calculation 

Import numpy as np from math import log10 as log import matplotlib. pyplot as plt 

 

def equation_etaM_vs_h(h, etaM_init, etaP_init): 

etaC_init = 100*(etaM_init-etaP_init*(1-(h/100)))/h 

 

slope_etaM = (etaC_init-etaP_init)/100 

intercept_etaM = etaP_init 

return etaC_init, slope_etaM, intercept_etaM 

 

def find_n(n, delta_p, etaM, delta_z, R, Q): 

### 

fn = (log(delta_p/(2*etaM*delta_z)))/n + log(3.14) + log(n) + 3*log(R) + (log(R))/n - log(1 + 3*n) - log(Q) 

fn_prime = -(log(delta_p/(2*etaM*delta_z)))/(n**2) + (1/n) - log(R)/(n**2) - 3/(1+3*n) 

### 

delta = fn/fn_prime 

n_new = n - delta 

return n_new, delta 

 

def get_optimized_n_value(n_init, delta_p, etaM, delta_z, R, Q, iteration_count, eps): 

# print(f"\n\n***** working on {equation} ******") 

success = True 

for i in range(iteration_count): 

try: 

n_new, delta = find_n(n=n_init, delta_p=delta_p, etaM=etaM, delta_z=delta_z, R=R, Q=Q) 

# if equation=="eq1": 

# x_new, delta = get_newton_raphson_eq1(x_init) 

# elif equation=="eq2": 

# x_new, delta = get_newton_raphson_eq2(x_init) 

# else: 

# x_new, delta = get_newton_raphson_eq3(x_init) 

# print(f"n_new: {n_new}") 

temp = n_new 

if abs(delta)<=eps: 

iteration_count = i+1 

 

break 

n_init = n_new 

except: 

success=False 

n_new = n_init 

temp = n_new 

iteration_count = i 

print(f"wrong initial guess: getting n_new = {temp} at {iteration_count} iteration") 

break 

abs_per_error = abs((n_new-n_init)/n_new)*100 

return n_new, iteration_count, abs_per_error, success 

 

def equation_deltaP_vs_h(n, Q, R, delta_z, slope_etaM, intercept_etaM): 

pi = 3.14 

factor = (((3*n + 1)*Q/(pi*n*(R**3)))**n)*(2*delta_z/R) 

# print(f"factor: {factor}") 

slope_delta_p = factor*slope_etaM 
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intercept_delta_p = factor*intercept_etaM 

return slope_delta_p, intercept_delta_p 

 

def get_final_pressure_drop(h, 

etaM_init, 

etaP_init, 

n_init, 

delta_p, 

delta_z, 

R, 

Q, 

iteration_count, 

eps): 

etaC_init, slope_etaM, intercept_etaM = equation_etaM_vs_h(h=h, etaM_init=etaM_init, etaP_init=etaP_init) 

 

n_new, iteration_count, abs_per_error, success = get_optimized_n_value(n_init=n_init, delta_p=delta_p, etaM=etaM_init, 

delta_z = delta_z, R=R, Q=Q, iteration_count=iteration_count, eps=eps) 

 

# print(f"n: {n_new}\niteration_count: {iteration_count}\nabs error: {abs_per_error}") 

if success: 

slope_delta_p, intercept_delta_p = equation_deltaP_vs_h(n=n_new, Q=Q, R=R, delta_z=delta_z, slope_etaM=slope_etaM, 

intercept_etaM=intercept_etaM) 

else: 

print("n optimization failed!!") 

slope_delta_p, intercept_delta_p = 0, 0 

 

return etaC_init, slope_etaM, intercept_etaM, n_new, slope_delta_p, intercept_delta_p 

 

def calculate_p(h_dict, slope_delta_p, intercept_delta_p): 

p_list = [] 

h_list = [] 

date_list = [] 

for date_ in h_dict: 

h = h_dict[date_] 

p = slope_delta_p*h + intercept_delta_p 

h_list.append(h) 

p_list.append(p) 

date_list.append(date_) 

return p_list, h_list, date_list 

 

def draw_graph(p_list, h_list, date_list): 

# plotting the points 

plt.plot(h_list, p_list, color='green', linestyle='dashed', linewidth = 3, 

marker='o', markerfacecolor='blue', markersize=12) 

 

# naming the x axis 

plt.xlabel('H') 

# naming the y axis 

plt.ylabel('delta P') 

 

# giving a title to my graph 

plt.title('delta P vs H') 

 

# function to show the plot 

return plt.show() 

 

if __name__=="__main__": 

# Add all parameters here 

h=35.22 # initial h 

etaM_init=0.0045 

etaP_init=0.0015 

 

n_init = 1.2 # n initial guess 

delta_p = 2460.60 # 14804.96 - 12344.35 

delta_z = 0.05 
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R = 0.00275 

Q = 0.000011 

iteration_count=100 

eps = 0.00000000000001 

########################### 

# Add datewise h value in below format only 

date_h_dict = { 

"11-11-2024": 42.3, 

"13-11-2024": 38.7, 

"14-11-2024": 33.9, 

"15-11-2024": 30.6, 

"16-11-2024": 34.5, 

} 

 

########################### 

# etaC_init, slope_etaM, intercept_etaM = equation_etaM_vs_h(h=h, etaM_init=etaM_init, etaP_init=etaP_init) 

 

# n_new, iteration_count, abs_per_error, success = get_optimized_n_value(n_init=n_init, delta_p=delta_p, etaM=etaM_init, 

# delta_z = delta_z, R=R, Q=Q, iteration_count=iteration_count, eps=eps) 

 

# # n_new = 0.7189522 

# # slope_etaM = 0.00004756 

# # intercept_etaM = 0.0015 

# slope_delta_p, intercept_delta_p = equation_deltaP_vs_h(n=n_new, Q=Q, R=R, delta_z=delta_z, slope_etaM=slope_etaM, 

# intercept_etaM=intercept_etaM) 

 

# print(etaC_init, slope_etaM, intercept_etaM) 

# print(n_new, iteration_count, abs_per_error, success) 

# print(slope_delta_p, intercept_delta_p) 

########################### 

etaC_init, slope_etaM, intercept_etaM, n_new, slope_delta_p, intercept_delta_p = get_final_pressure_drop(h=h, 

etaM_init=etaM_init, 

etaP_init=etaP_init, 

n_init=n_init, 

delta_p=delta_p, 

delta_z=delta_z, 

R=R, 

Q=Q, 

iteration_count=iteration_count, 

eps=eps) 

 

# print(etaC_init, slope_etaM, intercept_etaM) 

 

print(n_new) 

# print(slope_delta_p, intercept_delta_p) 

 

print(f"etaC_init: {etaC_init}\nslope of delta p and h: {slope_delta_p}\nintercept of delta p and h: {intercept_delta_p}") 

 

p_list, h_list, date_list = calculate_p(date_h_dict, slope_delta_p, intercept_delta_p) 

print(f"p_list: {p_list}\nh_list: {h_list}") 

draw_graph(p_list=p_list, h_list=h_list, date_list=date_list) 

output of the coding 

1.496702037859311 

etaC_init: 0.010017887563884156 

slope of delta p and h: 46.57580919931843 

intercept of delta p and h: 820.1999999999975 

p_list: [2790.356729131167, 2622.683816013621, 2399.1199318568924, 2245.4197614991417, 2427.0654173764833] 

h_list: [42.3, 38.7, 33.9, 30.6, 34.5] 
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Table 2: MBPD V/S hematocrit(H) 
 

S. No. Date Hematocrit (H) MBPD (∆𝑷𝒎𝒐𝒅𝒖) in Pascal 

1 11/11/2024 38.7 2790.35 

2 13/11/2024 33.9 2622.68 

3 14/11/2024 32.1 2399.11 

4 15/11/2024 35.1 2245.41 

5 16/11/2024 36.3 2427.06 

 

 
 

 
 

Conclusion 

Blood pressure drop decrease and hematocrit were shown to be linearly related ∆𝑃 = 46.57𝐻 + 988.091.∆𝑃𝑚𝑎𝑥 = 2790.35 

pascal and ∆𝑃𝑚𝑖𝑛 = 2245.41pascal. The trend line displays a low-steep downhill trend. Thus, we can up the medication dosage in 

this case to help the dengue patient recover quickly. We shall gradually reduce the medicine dosage if the trend line shows an 

upward tendency day by day. In this article, the doctor is advised to administer the medication dosage to the dengue patient during 

the case. 
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