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Abstract 

A statistical water balance and time series modeling framework is developed to analyze and forecast the 

Missouri River’s monthly flow at Bismarck from 1954 to 2024. Integrating traditional hydrological 

components precipitation, evaporation, upstream inflow, tributaries with ARIMA and SARIMA models 

enable detection of long-term and seasonal trends. Model fit is rigorously assessed by AIC, AICc, BIC, 

Nash-Sutcliffe Efficiency, and visual diagnostics with credible intervals. Stationarity is evaluated through 

ADF and KPSS tests to guide model selection. The final SARIMA framework, incorporating Box-Cox 

transformation and outlier adjustment, produces reliable forecasts with quantified uncertainty for both 

typical and extreme hydrologic conditions. These forecasts are vital for river management and policy, 

demonstrating how statistical rigor and visual assessment underpin adaptive water management strategies 
[2, 6, 10]. 

 

Keywords: Missouri river, flow forecasting, SARIMA, ARIMA, time series modeling, water balance, 

hydrological modeling, river discharge, seasonal trends, climate impact, ecosystem management, 

statistical forecasting, stationarity tests, reservoir operations, flood risk, water resource planning, 

uncertainty quantification, validation, upscaling, upscaling, environmental monitoring 

 

1. Introduction and Objectives 

This study models and analyzes monthly flows of the Missouri River at Bismarck between 

1954 and 2024 using a comprehensive dataset [15]. The water balance analysis explicitly 

incorporates precipitation, evaporation, upstream inflow, and tributary effects in the Upper 

Missouri River Basin [12]. The study applies ARIMA and SARIMA models to capture 

autocorrelation, long-term, and seasonal dynamics while assessing robustness through several 

statistical criteria and diagnostic tests [6, 7, 10, 13]. The aim of overarching is to provide a reliable 

predictive framework to inform adaptive river management, conservation, and risk mitigation 

in a changing environment [11, 16]. 

 

2. Data and Methodology 

Model fit is assessed via multiple metrics: Akaike Information Criterion (AIC), corrected AIC 

(AICc), Bayesian Information Criterion (BIC), and Nash-Sutcliffe Efficiency (NSE). Visual 

diagnostic plots with 95% credible intervals are used alongside quantitative metrics to provide 

a comprehensive performance evaluation, ensuring both statistical and physical validity [2, 6]. 

 

2.1 Description of Problem and Statistical Hypotheses 

Suppose observed monthly water level at year 𝑡 follows 𝑦𝑡 = 𝜇𝑡 + 𝜖𝑡 where 𝜇𝑡the average is 

acre-feet for monthly water level (month 𝑡), and 𝜖𝑡 is random noise. Tests for stationarity 

include the Augmented Dickey-Fuller (ADF) and KPSS tests, applying hypotheses. The 

central statistical question concerns the stationarity and predictability of Missouri River water 

levels. We formally state: 

a) Null hypothesis (𝐇𝐎:): The series is stationary and thus suitable for conventional time 

series fore casting. 
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b) Alternative hypothesis (𝐇𝛂:): The series is non-

stationary, requiring transformation or advanced models for 

accurate prediction [2, 7]. 

 

2.2 Model Structure and Testing Methodology 

Stationarity is evaluated using the Augmented Dickey-Fuller 

(ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, 

with significance level p < 0.05 [4]. Detection of non-

stationarity informs the use of SARIMA or Differencing 

approaches, accommodating trends and seasonality [5]. 

External drivers, especially climate change, are considered for 

their influence on underlying trends [13, 14]. 

 

2.3 Generation and Description of Data 

Monthly flow data at USGS Site No. 06342500 (Bismarck) 

span January 1954–December 2024 (852 observations), with 

flow measured in cubic meters per second (m³/s) throughout 
[15]. Time series plots (not included: Figure 1) highlight 

typical ranges of 10,000–40,000 m³/s and a major flood event, 

spiking above 140,000 m³/s in 2010. Despite episodic surges, 

the long-term trend appears stable with no sustained increases 

or declines, suggesting underlying stationarity except during 

anomalies [1, 12]. 

Figure 2 and Figure 3 illustrate the application of first- and 

second-order differencing to achieve stationarity. First, 

differencing reduces trends and stabilizes the mean 

(average); second differencing centers values around zero but 

may over-difference, potentially distorting real data structure. 

Since the Augmented Dickey-Fuller (ADF) test confirms the 

original series is stationary, excessive differencing is avoided 
[15]. 

 

 
 

Fig 1: Raw Time Series of Missouri River Flow (1954–2024) 

 

Figure 1 is the time series plot of the Missouri River’s 

monthly flow from 1954 to 2024 highlights the river’s 

dynamic hydrological behavior over seven decades. While the 

data generally fluctuates within a consistent range typically 

between 10,000 and 40,000 units there are periods of 

heightened volatility, especially during the 1970s and after 

2010. A particularly striking feature is an extreme outlier 

around 2010, where flow values spike sharply above 140,000 

units, likely corresponding to a major flood event. Despite 

these episodic surges, the long-term trend appears relatively 

stable, with no clear evidence of sustained increase or decline 

in flow levels. This pattern suggests that while the Missouri 

River is subject to extreme hydrological shocks, its overall 

flow regime remains stationary in the absence of such 

anomalies. 

 

2.4 Stationarity Check and Differencing 

Stationarity check in time series analysis involves 

determining whether the statistical properties of the data such 

as mean, variance, and auto covariance remain constant over 

time, which is crucial for reliable modeling and forecasting. If 

a series is non-stationary, it may have trends, seasonality, or 

changing variance, making it difficult to predict. Differencing 

is a common technique used to transform a non-stationary 

series into a stationary one by subtracting consecutive 

observations, which helps remove trends and stabilize the 

average (mean). The concept of a unit root relates to 

stationarity by testing whether the series has a root equal to 

one in its characteristic equation, which implies non-

stationarity; if a unit root is present, the time series tends to 

have persistent shocks and evolving statistical properties. The 

Augmented Dickey-Fuller (ADF) test is used to determine 

whether a time series is stationary or contains a unit root, 

which would indicate non-stationarity, a crucial distinction in 

time series forecasting. The stationarity analysis of the 

Missouri River flow data confirms that the original time series 

is already stationary, making it appropriate for direct 

modeling with techniques like ARIMA. In this case, the ADF 

statistic for the original series was significantly negative (-

5.4069) with a p-value below 0.01, leading to a rejection of 

the null hypothesis and  
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Fig 2: First-Order Differencing of River Flow Series 

 
confirming stationarity [2]. While differencing is commonly 
applied to achieve stationarity, additional differencing of this 
already stationary series led to even more extreme ADF 
statistics (e.g., -19.588), suggesting over-differencing. Over-
differencing can strip the data of meaningful structure and 
introduce unnecessary noise. Therefore, the strong ADF 
results indicate that the original flow series is statistic stable 

over time, with no need for differencing, and is ready for 
effective time series forecasting [7,14]. 
Figures 2 and 3 illustrating the first- and second-differenced 
Missouri River flow data demonstrate the step-by-step 
transformation toward stationarity, a critical requirement for 
accurate time series modeling.  

 

 
 

Fig 3: Second-Order Differencing of River Flow Series 

 

The first-differenced series, created by subtracting each 

observation from the one before it, reduces long-term trends 

and partially stabilizes the mean, although some irregular 

fluctuations and spikes remain. The second-differenced graph, 

which applies differencing a second time, further flattens the 

series and centers the values more consistently on zero, 

indicating a higher degree of stationarity. This process shows 

how Differencing removes non-stationary elements like trends 

or seasonality, making the data suitable for models such as 

ARIMA that rely on stable statistical properties over time. 

However, because the original Missouri River flow series was 

already stationary based on the ADF test, the second 

differencing step may represent over-differencing, which 

could unnecessarily distort the underlying structure of the 

data. 
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2.5 Training and Testing Sets 
Training and testing sets are fundamental concepts in time 
series analysis and predictive modeling, used to evaluate how 
well a statistical or machine learning model will perform on 
unseen data. Training Set: This is the portion of your data 
used to fit (or train) your model. The model learns patterns, 
relationships, and structure from this data essentially, it "sees" 
only the training data during this phase. In the context of 
forecasting Missouri River flow, dividing the data into 
training and testing sets is a crucial step to ensure robust and 
reliable model performance. For instance, river discharge data 
from January 1954 to December 2010 can serve as the 
training set, where the model learns historical patterns, 
seasonality, and variability. The testing set, such as data from 
January 2015 to December 2024, is withheld during model 
training and later used to evaluate how well the model can 
predict future river flow. This approach simulates real-world 
forecasting, where future conditions are unknown during 
model development. Comparing forecasts to actual values in 
the test set helps assess the model’s ability to generalize 
beyond the data it was trained on and avoids overfitting a 
scenario where the model performs well on training data but 
poorly on new observations. This workflow reflects best 
practices in time series forecasting, ensuring that predictions 

made for the Missouri River are both accurate and applicable 
for planning and resource management. 
 
2.6 Decompose the Training Data 
In the analysis of Missouri River flow, decomposing the 
training data such as the monthly discharge from 1954 to 
2010 plays a vital role in uncovering the underlying structure 
of the time series. This process separates the observed series 
into three key components: trend, which reflects long-term 
changes in river flow possibly due to climate variability or 
upstream management; seasonality, which captures 
predictable patterns like annual snowmelt or rainfall-driven 
fluctuations; and residuals, which represent irregular or 
random noise. Using decomposition tools such as decompose 
() or st l () in R allows analysts to visualize these components 
and assess the strength of seasonal and trend behavior in the 
Missouri River data. This insight informs model selection 
such as whether to include seasonal or differencing terms in 
an ARIMA model and helps detect structural breaks or 
outliers like major flood events. Ultimately, decomposition 
enhances understanding of river dynamics and improves the 
accuracy and interpretability of forecasting models used for 
water resource planning and risk management [10]. 

 

 
 

Fig 4: STL Decomposition of Missouri River Flow (1954–2010) 
 

Plots of residuals, ACF/PACF, and Q-Q plot used to evaluate model adequacy, normality, and autocorrelation. 
 
Figure 4 illustrates the decomposition of Missouri River flow 
data into four components observed, trend, seasonal, and 
random providing valuable insight into the river’s 
hydrological behavior over time. The observed panel displays 
the raw monthly discharge from the river, marked by 
fluctuations with periodic peaks and troughs. The trend 
component reveals a gradual increase in flow from the early 
1950s to the mid-1980s, followed by a decline and variable 
patterns leading up to 2010, possibly reflecting long-term 
climatic changes or human interventions such as dam 
operations. The seasonal component captures consistent 
annual cycles, likely driven by snowmelt and rainfall patterns, 
with similar seasonal shapes repeating across years. The 
random (or residual) component shows irregular variations 
not explained by trend or seasonality, with periods of 
heightened volatility around the early 1980s and 2000s, 
potentially linked to extreme events like floods or droughts. 
This decomposition is critical for understanding the distinct 
drivers of river flow and supports the development of more 

accurate and interpretable forecasting models for the Missouri 
River. 
 
2.7 Outlier Detection and Adjustment 
Outlier detection and adjustment are essential processes in 
time series analysis used to identify and mitigate the influence 
of anomalous data points that deviate significantly from the 
general pattern. These outliers, which may result from 
measurement errors, sudden events, or structural changes, can 
distort trend and seasonality estimates, leading to inaccurate 
models and misleading forecasts. Detection methods include 
statistical tests, residual analysis from fitted models, and 
decomposition techniques. Once identified, outliers can be 
adjusted through imputation, transformation, or model-based 
correction to preserve the integrity of the data while 
minimizing their disruptive impact. Proper handling of 
outliers enhances the reliability and accuracy of time series 
modeling and interpretation [1,8]. 
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Table 1: Detected Outliers in Missouri River Flow Data 
 

Outlier Type Time Size Impact 

Additive Outlier July 1983 1.43 Extreme flow spike 

Level Shift March 1997 -0.88 Persistent flow change 

Temporary Change October 2005 1.21 Temporary flow increase 

 
2.8 Model specification and Results 
In this study, model specification refers to the process of 
selecting and defining the appropriate time series model 
structure to capture the flow dynamics of the Missouri River 
at Bismarck. After confirming that the river’s monthly 
discharge data from 1954 to 2024 was stationary using the 
Augmented Dickey-Fuller (ADF) test, a Seasonal 
Autoregressive Integrated Moving Average (SARIMA) model 
was specified to account for both short-term and seasonal 
patterns. The final model, SARIMA(1,0,1)(1,0,1)[12], 
incorporates one non-seasonal autoregressive (AR) term, one 
non-seasonal moving average (MA) term, and seasonal 
components with a 12-month lag to reflect the river’s annual 
hydrological cycle driven by snowmelt and precipitation. A 
Box-Cox transformation (λ ≈ 0.37) was applied to stabilize 
variance and meet normality assumptions [6, 7, 10]. This model 
structure was chosen based on statistical criteria such as AIC 
and BIC, as well as diagnostic checks to ensure a good fit. 
The model specification effectively captures the Missouri 
River’s seasonal flow variations and autocorrelation structure, 
enabling accurate forecasting that supports flood 
management, reservoir operations, and ecological planning 
[11,12]. 
 
3 Box-Cox Transformation 
The Box-Cox transformation is a statistical technique used to 
stabilize variance and make a time series more normally 
distributed, which is often a key assumption for many 
forecasting models. It transforms non-linear relationships into 
linear ones by applying a power transformation controlled by 
a parameter, lambda (λ). When λ = 1, the data remains 
unchanged; when λ = 0, the transformation becomes a natural 
logarithm. Intermediate values apply to various degrees of 
power transformations. This method is especially useful for 
time series with heteroscedasticity (non-constant variance) or 
skewed distributions, helping to improve the performance and 
accuracy of models like ARIMA or linear regression. 
The statement "Data shifted by 6558.035 for Box-Cox 

transformation" indicates that a constant value (6558.035) 
was added to the original time series data to ensure all values 
are positive before applying the Box-Cox transformation, 
which requires strictly positive inputs. This is a common 
preprocessing step when the data includes zero or negative 
values. The Box-Cox transformation was then applied to the 
shifted data, and the optimal lambda parameter (λ = 
0.3716728) was estimated using the Guerrero method, which 
selects a λ that stabilizes the variance across different 
segments of the data [6]. This transformation helps in meeting 
the assumptions of normality and homoscedasticity for better 
model performance. 
 
3.1 Fit Time Series Models on Box-Cox adjusted data 
Fitting time series models on Box-Cox adjusted data involves 
applying forecasting models such as ARIMA, exponential 
smoothing, or others on the transformed dataset to improve 
model accuracy and validity. Since the Box-Cox 
transformation stabilizes variance and makes the data more 
normally distributed, it helps fulfill the assumptions 
underlying many time series models. By working with this 
adjusted data, models are less influenced by heteroscedasticity 
or skewed distributions, which can otherwise distort trend and 
seasonality estimates. After fitting the model, forecasts 
generated in the transformed space are usually inverted back 
to the original scale by applying the inverse Box-Cox 
transformation, ensuring interpretability of the results [7,10]. 
 
4 ARIMA/SARIMA Methodology 
The study uses ARIMA (p,d,q)(P,D,Q)[s] (Autoregressive 
Integrated Moving Average) notation. Here, p/d/q denotes 
order of the non-seasonal autoregressive, differencing, and 
moving average terms, respectively; P/D/Q are their seasonal 
counterparts, and s is season length (12 for monthly data) 
[7,10]. Model selection incorporates AIC, AICc, and BIC to 
balance complexity and fit [6]. Outliers are flagged with 
diagnostics and either transformed or dampened using robust 
modeling. 

 
Table 2: Estimated Parameters for ARIMA (3, 1, 1) (0, 0, 2) [12] Model with Drift 

 

Parameter Estimate Std. Error 

AR(1) 0.8186 0.0392 

AR(2) -0.1981 0.0497 

AR(3) 0.0059 0.0389 

MA(1) -0.9856 0.0076 

SMA(1) 0.1617 0.0401 

SMA(2) 0.1312 0.0357 

drift -0.0519 0.0193 

 
The ARIMA (3, 1, 1) (0, 0, 2) [12] with drift model, applied to 
Box-Cox transformed Missouri River flow data (λ = 
0.3716728), effectively captures both the short-term memory 
and seasonal characteristics of the river’s discharge patterns. 
The non-seasonal AR(3) and MA(1) components indicate that 
each month's river flow is influenced by the preceding three 
months of flow and one prior error term, reflecting the river's 
persistence and variability. The seasonal component with two 
seasonal moving average (SMA) terms and a 12-month cycle 
accounts for predictable annual hydrological behaviors, such 
as spring snowmelt or summer rainfall impacts. The inclusion  

of a small negative drift (-0.0519) suggests a gradual long-
term decrease in river flow, potentially linked to 
environmental changes or upstream water management. The 
model's strong statistical fit indicated by a relatively low 
residual variance (σ² = 80.85), a high log-likelihood (-
2466.99), and favorable AIC and BIC scores demonstrates its 
capacity to model the complexity of the Missouri River's 
behavior. This makes it a robust tool for forecasting river flow 
and supporting water resource planning across seasonal and 
inter annual time scales [7, 10]. 
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4.1 Model Fit Statistics 

Model selection by these criteria (particularly AIC/BIC) confirms good fit, while the relatively low residual variance indicates 

successful variance reduction. 

 

Table 3: Model Fit Statistics for ARIMA (3, 1, 1) (0, 0, 2) [12] Model 
 

Fit Statistic Value 

Sigma² (Residual Variance) 80.85 

Log Likelihood -2466.99 

AIC 4949.98 

AICc 4950.19 

BIC 49.86.19 

 

 

The table 3 shows the fit statistics from the ARIMA (3, 1, 1) 

(0, 0, 2) [12] with drift model offer valuable insight into how 

well the model captures the river's discharge dynamics. The 

residual variance (σ² = 80.85) indicates a moderate level of 

unexplained variation, meaning the model captures most but 

not all of the variability in the data. The log-likelihood value 

of -2466.99 provides a measure of overall fit, where less 

negative values indicate a better-fitting model. The AIC 

(4949.98) and AICc (4950.19), which weigh goodness-of-fit 

against model complexity, are very close suggesting an 

appropriate sample size and that the model is neither over 

fitted nor under fitted. The BIC (4986.19), which imposes a 

stronger penalty for complexity, supports the model’s 

adequacy but favors simpler alternatives if they offer similar 

explanatory power. Taken together, these statistics suggest 

that the model offers a strong and balanced fit for the 

Missouri River flow data, capturing key patterns without 

unnecessary complexity making it suitable for reliable 

forecasting [8]. 

 

4.2 Residual Diagnostics 

Model adequacy is evaluated by residual plots, 

autocorrelation (ACF/PACF), the Ljung-Box test, and 

normality (Q–Q plot): Model diagnostics is the process of 

evaluating whether a fitted time series model, such as 

ARIMA, adequately captures the structure of the data and 

meets key statistical assumptions. It involves analyzing the 

residuals (the differences between observed and predicted 

values) to ensure they resemble white noise, that is, they 

should be random, normally distributed, have constant 

variance, and show no autocorrelation. Common diagnostic 

tools include residual plots, ACF/PACF plots of residuals, the 

Ljung-Box test for autocorrelation, and Q-Q plots for 

assessing normality. If these diagnostics indicate that 

assumptions are met, the model is considered reliable for 

forecasting and inference; otherwise, the model may need 

refinement [10]. 

 

4.3 Ljung-Box Test Results (Residual Diagnostics) 

While SARIMA addresses temporal structure more 

effectively than ETS (Exponential Smoothing) and TBATS 

(exponential smoothing with Box–Cox, ARMA terms, trend, 

and seasonality), significant autocorrelation remains, 

implying that additional lags, exogenous factors, or hybrid 

models could further improve performance. ETS and TBATS 

are less effective for the complex, bursty seasonality in this 

river data, leading to over-/under-estimation, as shown by 

their poor residuals. 

 

Table 4: Ljung-Box Residual Diagnostics across Forecasting Models 
 

Model Q* Statistic df p-value Interpretation 

ARIMA(3,1,1)(0,0,2)[12] 42.757 18 0.00087 Significant autocorrelation in residuals 

ARIMA(1,1,2)(2,0,1)[12] 36.075 18 0.00690 Some autocorrelation remains 

ETS(A,N,A) 142.07 24 2.2×10^(-16) Strong residual autocorrelation 

TBATS 99.981 24 3.03×10^(-11) Strong residual autocorrelation 

 

Table 4 shows that none of the tested models fully eliminate 

autocorrelation in their residuals, as indicated by Ljung-Box 

test results. Both ARIMA models, especially the seasonal 

variant with drift, perform better than ETS and TBATS, but 

all models leave some residual autocorrelation (low p-values), 

suggesting un modeled structure remains in the river flow 

data. Refining or combining models may help better capture 

the river’s complex behavior. 
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Fig 5: Residual Diagnostics of SARIMA Model 
 

Plots of residuals, ACF/PACF, and Q-Q plot used to evaluate model adequacy, normality, and autocorrelation

 

 
 

Fig 6: Residual Diagnostics of ARIMA (1, 1, 2) (2, 0, 1) [12] Model 
 

Examines error patterns for signs of autocorrelation and normality. Some autocorrelation remains. 

 

The residual diagnostic plots for the ARIMA(1,1,2)(2,0,1)[12], 

ETS(A,N,A), and TBATS models highlight key differences in 

how well each model captures the data’s structure. The 

ARIMA model shows relatively stable and normally 

distributed residuals, suggesting it captures much of the 

underlying trend and seasonality; however, minor spikes in its 

ACF plot indicate that some autocorrelation remains. The 

ETS(A,N,A) model demonstrates a tighter distribution of 

residuals in the time plot, but its ACF plot reveals more 

pronounced autocorrelation across several lags, signaling that 

it misses important temporal patterns in the river's flow. 

Meanwhile, the TBATS model, despite being tailored for 

complex seasonal data, shows the most volatile residuals with 

a wider spread and significant autocorrelation, suggesting an 

overfit or structural mismatch. Overall, while none of the 

models fully satisfy the white noise assumption, ARIMA (1, 

1, 2) (2, 0, 1) [12] offers the best residual diagnostics of the 

three, though additional model tuning or hybrid approaches 

may be needed to improve forecast accuracy for the Missouri 

River.  
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Fig 7: Residual Diagnostics of ETS (A,N,A) and TBATS Models 
 

Shows excess autocorrelation in residuals, indicating poor model fit to river flow data. 

 

4.4 Forecasting on Test Period (2015-2024) 

Forecasting the Missouri River's discharge during the test 

period from 2015 to 2024 involves applying time series 

models trained on historical flow data to predict future values. 

This step is essential for evaluating how well each model 

generalizes beyond the training data and captures the river’s 

long-term hydrological patterns. By comparing the forecasted 

discharge levels to actual measurements (if available), 

analysts can assess predictive accuracy using metrics such as 

MAE, RMSE, or MAPE. Among the models, SARIMA with 

Box-Cox transformation demonstrated the most credible 

performance, producing a stable downward trend with 

realistic uncertainty. In contrast, the ETS model projected 

implausible growth, and TBATS and the alternative SARIMA 

yielded flatter forecasts, potentially underestimating 

variability. Accurate test-period forecasting supports more 

reliable water resource planning, flood risk management, and 

environmental decision-making along the Missouri River [9.10]. 

 

 
 

Fig 8: Forecast Plot: SARIMA Model (2015–2024) 
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Fig 9: Forecast Plot: Alternative SARIMA Model 

 

 
 

Fig 10: Forecast Plot: ETS (A, N, A) Model 
 

Shows exponential growth in forecasted flow, which is unrealistic given historical behavior. 

 

 
 

Fig 11: Forecast Plot: TBATS Model 
 

 Flat forecasts with moderate uncertainty, underrepresenting seasonal and trend dynamics. 
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Figures 8 – 11 show the forecast plots for the Missouri River 

from 2015 to 2024 illustrate varying performance across four 

time series models. The SARIMA model with Box-Cox 

transformation shows a realistic downward trend with 

moderate and stable confidence intervals, indicating reliable 

and interpretable forecasts. The alternative SARIMA model 

produces flat forecasts with very narrow intervals, suggesting 

high certainty but potentially overlooking underlying trends. 

In contrast, the ETS model displays an unrealistic exponential 

increase with excessively wide confidence intervals, 

indicating poor fit and overestimation. The TBATS model 

offers flat forecasts with moderate uncertainty but fails to 

capture any noticeable trend. Overall, SARIMA with Box-

Cox adjustment provides the most balanced and credible 

forecasts for the test period. 

 

 
 

Fig 12: Forecast Comparison across Four Models (2015–2024) 

 

The forecast comparison figure illustrates the performance of 

four different time series models SARIMA, alternative 

SARIMA, ETS, and TBATS in predicting Missouri River 

flow from 2015 to 2024. The SARIMA model (blue solid 

line) maintains continuity with historical patterns, projecting a 

stable and slightly declining trend. The alternative SARIMA 

(red dashed line) and TBATS (purple dot-dashed line) 

forecasts appear relatively flat and closely aligned, suggesting 

limited sensitivity to recent fluctuations. However, the ETS 

model (green dotted line) diverges sharply, forecasting an 

unrealistic exponential increase in river flow, indicating poor 

model fit and overestimation. Overall, SARIMA delivers the 

most consistent and plausible projections aligned with 

historical river behavior, while ETS significantly over 

projects future flow and should be interpreted with caution. 

 

4.5 Forecast Evaluation 

Forecast accuracy evaluation on the test set involves assessing 

how well each time series model predicts values during the 

out-of-sample period, in this case from 2015 to 2024. By 

comparing the forecasted values against the actual observed 

data metrics such as Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), and Mean Absolute Percentage Error 

(MAPE) are calculated to quantify predictive performance. 

This evaluation helps determine which model most accurately 

captures the underlying trends and variability of the Missouri 

River flow. A model with lower error values across these 

metrics is considered more reliable for future forecasting. 

Accurate evaluation on the test set ensures the chosen model 

is not only well-fitted to historical data but also effective for 

real-world decision-making [10, 11]. 

Table 5: Forecast Accuracy Metrics on Training and Test Sets (2015–2024) 
 

Metric SARIMA Train SARIMA Test ETS Train ETS Tes TBATS Train TBATSTest 

ME -244.2532 13824.8369 -383.1733 -26556.41 -123.4392 14301.0497 

RMSE 3913.598 17474.946 4434.493 28431.49 4038.124 17853.866 

MAE 2995.776 13824.837 3233.63 26618.74 3125.194 14301.05 

MPE -92835.8014 46.85535 48925.365 -129.9388 -84117.717 49.00081 

MAPE 92847.4961 46.85535 48938.613 130.0444 84130.646 49.00081 

MASE 0.5746881 2.6520568 0.6203162 5.1063468 0.5995147 2.74341 

ACFI 0.0728378 0.833954 0.0873903 0.7869637 -0.0069695 0.83182161 

Theil’s 
 

2.421318 
 

6.272979 
 

2.492379 

 

Table 5 shows the accuracy metrics table reveals that all 

models perform substantially better on the training data than 

on the test data, indicating some difficulty in generalizing 

unseen periods, a common challenge given intrinsic river flow 

variability and external influences. The SARIMA models, 

both auto.arima and alternative specifications, show 

comparatively lower Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) than ETS and TBATS, 

suggesting they capture the autocorrelation and seasonality 

more effectively for this river data. However, the Mean 

Percentage Error (MPE) and Mean Absolute Percentage Error 

(MAPE) values are extremely high in training sets, reflecting 

potential scale effects or rare extreme events, while the test 

set errors are more moderate but still significant. The Mean 
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Absolute Scaled Error (MASE) confirms SARIMA’s 

relatively better accuracy (values around 0.57–0.58 on 

training and 2.65–3.12 on testing), consistent with the 

persistence and seasonality modeled. Notably, the high ACF1 

values (>0.8) on the test sets across all models indicate 

remaining autocorrelation in residuals, possibly due to 

hydrological factors like extreme events, measurement noise, 

or river regulation impacts. Overall, this suggests that while 

SARIMA-based approaches provide robust baseline 

forecasting for the Missouri River flow, there remains 

considerable uncertainty, influenced by complex 

environmental dynamics and episodic anomalies inherent to 

large regulated rivers 

 

4.6 Fit on Full Data (up to Dec 2025) for final forecast 

Fitting the model on the full Missouri River flow dataset up to 

December 2025 allows for the most comprehensive and 

informed forecast by utilizing all available historical data. 

This final modeling step comes after evaluating different 

models on a separate test set to ensure predictive reliability. 

By including both the training and test periods from 1954 

through 2025, the model captures the full range of observed 

trends, seasonal cycles, and anomalies such as floods or 

droughts. This complete fit enhances the model’s ability to 

produce accurate and robust future forecasts, which are 

essential for effective water resource management, 

infrastructure planning, and environmental decision-making 

related to the Missouri River [7]. 

 
Table 6: Estimated Parameters for SARIMA (1, 0, 1) (1, 0, 1) [12] Model (Full Dataset) 

 

Parameter Estimate Std. Error 

AR(1) 0.7044 0.0297 

MA(1) 0.2880 0.0396 

SAR(1) 0.8315 0.0497 

SMA(1) -0.6397 0.0688 

Mean 106.52 2.5224 

Final parameter estimates and standard errors used for final forecast. 

 
Table 7: Ljung-Box Residual Diagnostics for Final SARIMA Model 

 

Test Value 

Q^* Statistic 35.824 

Degree of Freedom(df) 20 

p-value 0.01613 

Model df 4 

Total Lags Used 24 

 

Tables 6 and 7shows the SARIMA(1,0,1)(1,0,1)[12] model 

applied to the Missouri River flow data shows strong 

performance in capturing both seasonal and non-seasonal 

patterns, as reflected by significant parameter estimates and 

low standard errors. The model's residual variance (σ² = 

68.31) and mean estimate (106.52 on the transformed scale) 

suggest a stable fit, while model selection criteria such as AIC 

(5998.84), AICc (5998.94), and BIC (6027.30) indicate a 

reasonably efficient balance between model complexity and 

goodness of fit. However, the Ljung-Box Q* statistic (35.824, 

p = 0.01613) signals some remaining autocorrelation in the 

residuals, suggesting the model could be improved further for 

better white noise behavior. Overall, the SARIMA model 

performs well but may benefit from slight refinements to fully 

capture all underlying data dynamics. 

 

Based on selection criteria and diagnostics, the preferred 

SARIMA model for Missouri River monthly flow forecasting 

is: ARIMA (1, 0, 1) (1, 0, 1)12 with non-zero mean [12] 

The estimated parameters include: 

 Non-seasonal AR(1): 𝜙1 = 0.7044 

 Non-seasonal MA(1): 𝜃1 = 0.2880 

 Seasonal SAR(1): 𝛷1 = 0.8315 

 Seasonal SMA(1): 𝛩1 = −0.6397 

 Mean: 𝜇 = 106.52 
 

The residual variance isσ2  =  68.31. This model captures 

both short-term autocorrelation and annual seasonal cycles, 

providing a balanced framework for hydro-meteorological 

time series forecasting [12]. 

The model equation using the backshift operator B is ARIMA 

(1, 0, 1) (1, 0, 1) [12] 

 

∅p(B)ΦP(Bs)yt = θq(B)ΘQ(Bs)εt 

 

yt = ∇d∇s
Dεt,  εt~WN(0, σ2) 

AR and MA Polynomials in the lag operator are respectively 

given by 

 

∅p(B) = 1 − α1B − α2B2 − ⋯ − αpBp 

 

θq(B) = 1 + θ1B + θ2B2 + ⋯ + θqBq 

 

The seasonal AR (SAR) and the seasonal MA (SMA) 

polynomials in the lag operator are respectively given by 

 

ΦP(Bs) = 1 − ϕ1Bs − ϕ2B2s − ⋯ − ϕpBPs and 

 

ΘQ(Bs) =1+Θ1Bs+Θ2B2s+⋯+ΘQBQs 

 

∅p(B)ΦP(Bs)yt = θq(B)ΘQ(Bs)εt so  

 

(1, 0, 1)(1, 0, 1)[12]= (p, d, q) (P, D, Q) [s] 

 

p = 1, d = 0,  q = 1,  P = 1, D = 0, Q = 1, s = 12 

 

∅p(B) = ∅1(B) = (1 − ϕ1B) and  

 

 
 

ΦP(Bs) = Φ1(B12) = 1 − Φ1B12 and  

 

 
 

∇d∇s
Dεt = ∇0∇12

0 εt = ∇0= yt.  
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Now, 

 
∅p(B) ΦP(Bs) yt=θq(B) ΘQ(Bs) εt 

 

 

 
 

Explicit solution for yt: 

 

yt−0.7044yt−1+0.8315yt−12+0.5856yt−13=106.52+εt+0.2880εt−1

−0.6397εt−12 [7] 

 

4.7 Forecasted Monthly Missouri River Flow (ac-ft) with 

95% Confidence Intervals 

The forecasted monthly Missouri River flow from September 

2024 to August 2025 shows a clear seasonal pattern, with 

flows gradually increasing from early fall to a peak in late 

spring (May 2025 at 23,175 ac-ft) before declining through 

the summer months. This trend aligns with typical 

hydrological cycles influenced by snowmelt and precipitation, 

with the highest flow occurring during spring. Confidence 

intervals are widest in high-flow months, particularly in 

March through May, indicating greater uncertainty and 

potential variability due to climatic factors. In contrast, fall 

and winter months exhibit more moderate flows and relatively 

narrower intervals. Overall, the projections highlight the need 

for proactive water resource planning, particularly in spring 

when both flood potential and forecast uncertainty are highest 
[12]. 

 
Table 8: Forecasted Missouri River Flow (Sep 2024 – Aug 2025) with 95% Confidence 

 

Month Forecast (ac-ft) 95% Confidence Interval 

September 2024 15018 (8949, 22519) 

October 2024 17403 (8427, 29319) 

November 2024 20093 (9242, 34742) 

December 2024 18753 (8025, 33572) 

January 2025 19163 (8082, 34538) 

February 2025 20725 (8916, 37009) 

March 2025 22253 (9785, 39327) 

April 2025 22977 (10199, 40423) 

May 2025 23175 (10307, 40733) 

June 2025 21567 (9330, 38411) 

July 2025 19154 (7902, 34875) 

August 2025 19003 (7812, 34653) 

 

 
 

Final 13: Forecast: Missouri River Flow (2024–2025) Using SARIMA (1, 0, 1) (1, 0, 1) [12] 

 

Figure 13 displays a time series forecast of Missouri River 

flows using the best SARIMA model. The historical data 

shows high variability and several extreme flow events (e.g., 

around 1993 and 2011), while the forecast (in blue) for the 

near future indicates relatively stable flows with narrow 

confidence intervals, suggesting the model predicts moderate 

and consistent river behavior ahead. 

 

5. Discussion 

The SARIMA modeling framework offers a robust, risk-

aware tool for Missouri River ecosystem and water resource 

management. Forecasts enable improved reservoir operations, 

flood risk mitigation, agricultural planning, and conservation 

policy. Accounting for outliers enhances model reliability. 

However, large anomalies such as those from 2010 to 2015 

stress the importance of continual data monitoring and model 

updates. Limitations include reliance on historical patterns 

and sensitivity to unprecedented changes. Future work should 

integrate climate projections and physically based 

hydrological modeling for enhanced predictive resilience. 

The SARIMA model coefficients and performance metrics 

provide valuable insights into the Missouri River’s 

hydrodynamics. The moderate non-seasonal AR (1) 

coefficient (approximately 0.60) indicates persistence of 

water levels from one period to the next. The high seasonal 

AR (1) coefficient (approximately 0.87) reflects strong yearly 
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seasonal persistence in river flow. The significant seasonal 

MA (1) with a negative coefficient (approximately -0.76) 

models seasonal shocks that temper seasonal effects. Non-

seasonal MA terms contribute to modeling short-term noise or 

irregularities. 

While the SARIMA models demonstrate strong performance, 

residual diagnostics reveal some remaining autocorrelation, as 

indicated by significant Ljung-Box test statistics (e.g., Q* = 

42.757, p = 0.00087). This suggests that the models do not 

fully capture all data dependencies. Future research should 

explore incorporating exogenous hydrological or climate 

variables and advanced hybrid modeling approaches to further 

reduce residual autocorrelation and enhance predictive 

accuracy. Despite this limitation, the models provide a 

valuable baseline for forecasting Missouri River flow under 

complex environmental conditions. 

Together, these parameters indicate that Missouri River flow 

exhibits both enduring seasonal patterns and autoregressive 

behavior, while also capturing transient shocks. These flow 

dynamics affect river ecosystem health by influencing water 

quality, aquatic habitat conditions, fish population dynamics, 

and shoreline erosion processes. Understanding these patterns 

through SARIMA aids in adaptive ecosystem and resource 

management [11, 16]. 

 

6. Conclusion 

This study demonstrates that SARIMA models, particularly 

those enhanced with Box-Cox transformations, provide a 

robust and interpretable framework for forecasting monthly 

Missouri River flows. These models effectively capture both 

short-term autocorrelation and long-term seasonal dynamics, 

supporting adaptive decision-making in water resource 

management, reservoir operations, flood risk mitigation, and 

ecosystem planning. 

Among the models evaluated, the SARIMA (1, 0, 1) (1,0,1)[12] 

configuration offered the most balanced performance, 

combining low residual variance with strong fit statistics. 

Although residual diagnostics, such as the Ljung-Box test, 

indicated some remaining autocorrelation, SARIMA models 

clearly outperformed alternatives like ETS and TBATS, 

particularly in capturing the complex seasonal patterns 

characteristic of river discharge data. 

Despite their strengths, SARIMA models depend heavily on 

historical patterns and may be less effective in forecasting 

rare or unprecedented hydrological events, such as extreme 

flooding. Therefore, continued model refinement is necessary. 

Future research should explore hybrid approaches that 

incorporate exogenous climate variables (e.g., temperature, 

snowpack, and precipitation forecasts) as well as non-linear or 

machine learning methods to better account for structural 

changes and reduce residual autocorrelation. 

From a policy and management standpoint, the use of 

advanced time series methods such as SARIMA strengthens 

the reliability of hydrological forecasting, providing a data-

driven foundation for proactive and resilient water resource 

planning. Regular model updates and integration with climate 

projections will be critical to ensuring that river management 

strategies remain responsive to evolving environmental 

challenges [7, 10].  
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