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Abstract

The structural properties and construction methodologies of quantum codes (QCs) defined over the finite
field Z5, the finite field with three elements, are examined in this work. The primary focus is on utilizing
constacyclic codes within a specific algebraic structure the finite commutative non-chain ring R = Z; +
uZs + vZs + uvZs, where the indeterminates u and v satisfy the relations u? = 1, v?> = 1, and uv = vu.
We provide a set of idempotent generators of the ring and define linear codes and calculated some self-
inverse units. The relationship between R and Z% is established using a gray map. Constacyclic (CC)
codes are broken down into cyclic (€) codes and negacyclic (V') codes in order to determine the
parameters of QCs over Zs. Several QCs of arbitrary lengths are developed as an application. In this
paper, we calculated those various parameters of QCs which are better than existing parameters of QCs.
This paper contains only those units which have self-inverse.

Keywords: Rate of metabolism, blood mass stream rate, warm conductivity, warm era, limited
component method, Pennes Bio - Heat Model

1. Introduction
Quantum error correction (QEC), is essential to quantum computing because it reduces the
flaws in quantum information caused by decoherence and different kinds of quantum
disruption. The presence of quantum error correction codes (QECC) was initially established
independently by Shor 9. Calderbank et al. [ released a seminal work outlining the theory
for constructing QCs from classical error-correcting codes. In recent years, QECC have
garnered significant attention in the literature. Some researchers have utilized the Gray images
of C codes over finite rings.
Alahmadi et al. ™ and Singh et. al 8 discussed QCs from CC codes over a non-chain ring and
Zs + VZ i+ wZ3+v wZ 5. Bag et al. B! employed QCs from skew constacyclic codes over
F,[u,v]/< u* = 1,v* —v,uv — vu >. Dinh et al. [". & derived QCs from a class of CC codes
over finite commutative rings and F, [y, uy, ..., us].
Some researchers [20. 11. 17. 16, 2.3, 91 proposed a method for constructing QCs from C codes over
Fy + uF, + u?F, Ey[u,v,w]/< u® = 1,v* = 1,w? — L,uv — vu,vw — wu,wu —uw >, F, +
VF,, F3 + uFs + vF; + uvFs, F3 + vF;, and F,[u, v]/< u? — 1,v® —v,uv —vu >. Ma et al.
and Islam et al. 4 %2 presented constacyclic codes over F, + vE, + v?F, and F,m[v, w]/<
vZ—1,w?—-1,vo — wv >.
This work references classical QCs from CC codes recently established by various researchers
over F, [4 13.15. 211 Additionally, Gowdhaman et al. [l explored QCs from CC codes over the
ring F,[u, v]/< u® —u,v® — v,uv = vu >.In this paper, we focus on the various parameters
of QCs over the field Z;[u, v]/< u? = 1,v? = 1,uv = vu >. In section 2.1, we present the
arbitrary elements of the ring and provide several auxiliary definitions. Section 2.2 introduces
the gray map defined on R. section 2.3, gives the linear codes and QCs from CC codes
associated with R. Section 3 offers a collection of results that are useful in estimating the
parameters of QCs accompanied by illustrative examples. Lastly, section 4 concludes our
study and section 5 outlines potential avenues for future research.
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2. Materials and Methods

2.1 Preliminaries

Thering R = Z3 + uZ; + vZ; + uvZs, with u?> = 1, v? = 1, and uv = vu, is a principal ideal ring containing 3* elements, with
characteristic 3. The maximal ideals of R appeared in '8l which are

(2+u+2v),(2+u+uv),(u+v+2uv), (2u + 2v + 2uv).

Notable units of R include

l1—-u+v—-2uv,1+u—v—-2uv,1 —u—v+2uv,

14+2u—2v—2uv,1—-2u+ 2v —2uv,and 1 — 2u — 2v + 2uw.

We take g as a unit of R for simplicity’s sake, and observe that =1 = g in every instance. Let’s define

b=1+u+v+uv,

b,=1—u+v—uv,

b;=14+u—v—uv,

by,=1—-u—v+uw.

It follows that b? = b;, b;b; = 0,and iy b; = 1;i,j = 1,2,3,4 with i # j.

Utilizing the Chinese Remainder Theorem, a simple method to express the ring is as:

R =®i, biZs

Consequently, an arbitrary element e = e; + ue, + ve; + uve, of R, where e; € Z5, has a unique representation e = Y, b;k;,
withk; € Z;for1 <i < 4.

We commence our conversation by defining a few key terms:

1. The number of places at which two vectors differ, represented by d(x,y), is the Hamming distance between x =
(X1, Xz, ooy X)) ANA Y = (Y1, Y2, o) Yn)-

2. The number of nonzero x; in a vector x = (xy, x,, ..., X,) is its Hamming weight, represented by wt (x).

3. X'y =XYoot Xy + -+ x,)y is the Euclidean inner product of x and y for vectors x,y € .

4. A code C is categorized as dual-containing if C*+ < C, self-orthogonal if ¢ € C*, and self-dual if C = C*.

5. Alinear code C of length n over R is identified as a cyclic code if every cyclic shift of a codeword ¢ € C remains a codeword
in C. Specifically, if ¢ = (¢, ¢1, ¢4, ..., ¢i—1) € C, then its cyclic shift C(c) = (¢,—1, o, > Ca—z) € C, Where the operator C

denotes cyclic shifting.
6. The mappings from R™ to R™, denoted by C, X, and 7,, are defined as:
Cleor €1y Cue1) = (Cue1r Core-- Caez),
N(cor 1+ Cr1) = (—Cae1r Core++» Cnoz)s
To(Cos €1y e Crm1) = (QCn—1, €0y -+, Cu—z) TESPECtiVElY.
Then Ris €, V" and o-CC codes of length n if C(C) = C, 8(C) = C and 7,(C) = C respectively.

7. Let p(x) =ay+a;x+ -+ a,x™ be a polynomial with coefficients from an arbitrary field. The polynomial is termed
reciprocal or reflected (denoted p* or pR) if p*(x) = a, + ap_1x + - + apx™ = x"p(x™1).

8. A polynomial f(x) is defined as self-reciprocal if p(x) = p*(x).
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2.2 Gray maponR

The gray map W: R — Z3 is defined as
4 4 4

Y(p) = Z ) bip; = (Z pi ,Z(—l)"“pi.pl + P2 = P3 — PaP1— P2 — P3 T Pa)-
= i=1 =1

Since W is a linear map from (R™, d,) to (Z%, dy) and preserves distances as an isometric mapping.

Theorem 2.2.1 18: If 2 is a linear code with |P| = 3¥ and d.(P) = d, then W(P) is a ternary [4n, k, d] linear code, where k is
the dimension of the linear code Y () and dy, is minimum Lee distance of the linear code P.

Theorem 2.2.2 ['81: If P is a linear code, then W(P1) = (W(P))*L.

2.3 Quantum codes from @-CC Codes
Fori = 1,2,3,4, let S; be linear codes of length n over Z;. For a linear code P, we define

Py = {211 p; € Z|p; + pu + p3v + pyuv € P},
P, = {Z?:l(_l)j-'-lpj € Z3|p1 + pou + p3v + pauv € P},
P3 = {p1 + P2 — P3 — P4 € Z3|py + pou + p3v + puv € P},
Py ={p1 — P2 — p3 + P4 € ZZ|py + pou + p3v + pyuv € Pl
Clearly, P,, P,, P5, and P, are linear codes over Z, of length n.
Theorem 2.3.1 81: If P is a linear code, then W(P) =i, P; and |P| = |Py||P,||Ps||Pyl.
Corollary 2.3.2 '8 If §(P) =Q1, P, then P =D}, b;P.
We explore the connections among CC codes, V' codes, and C codes by analyzing various units.

Theorem 2.3.3 For ¢ = 1 4+ u — v — 2uv, the code P is a o-CC code if and only if P;, P;, and P, are V' codes and P, isa C
code.

Proof. Forany & = (&, &4, ..., &—1) € R™,

Where §; = @7 + @, + @3y + @8, With T = (T, Ty, ., Tne1) € P11 = (Mos M1y s Mn=1) € Par ¥ = Voo Y1y s ¥n—1) € Ps,
and § = (8¢, 61, ..., 6n—1) € Py, forall 7, n;, v, 6; € Z3 forj = 0,1, ..., n — 1.

For the o-CC code R,

7,(§) = (A +u—v—2ur)&_1,&0, &1, s En2)

=(1l+u—v-2w)(Q+u+v+u)r,;+Q—-—ut+v—-—u)n,_, +

A+u—v—uw)yp,1 + A —u—-v+uv)d,_1), % & ) Enz)-

This expression simplifies to demonstrate that ;, P, and P, are V' code while P, is a C code of length n.
Conversely, if P, P5, and P, are V' codes and P, is a C code of length n,

Then X(t) € P, C(n) € P,, X(y) € P, and R(5) € P,. Thus,
A4+u+v+ur)X@O+ A —-—u+v—uww)Cm+ A +u—v—-—uv)X@y)+ 1A —u—v+uv)X() € P,
= 0(¢) € P. So, P is a p-CC code.

Theorem 2.3.4 For ¢ = 1 —u + v — 2uv, the code P is a o-CC code if and only if P;, P,, and P; are V' codes and P, is a C
code.

Proof. Forany & = (&, &4, ..., &—1) € R™,
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Where §; = @, T + @, + @3y + @8, With T = (T, Ty, o, Tn1) € P11 = (Mos M1y s Mn=1) € Por ¥ = (Voo V15 s ¥n—1) € Ps,
And 8 = (8,01, ..., 8p—1) € Py, forall 7;, n;, y;, 6; € Z3 forj = 0,1,...,n — 1.

For the o-CC code R,

7,(§) = (A —u+v—2ur)&_1,&0, &1, s En2)

=(1-u+v-2w)(Q+ut+v+u)r, + A —-u+v—uv)n,,

+1l+u—v—uw)y, 1+ A —u—v+uv)d,_1), &, &, -, ).

This expression simplifies to demonstrate that 2, , P,, and P; are V" codes while P, is a C code of length n.
Conversely, if P;, P,, and P; are V' codes and P, is a C code of length n,

Then X(7) € P, R(n) € P,, X(y) € P, and C(6) € P,.

Thus,

A +u+v+u)R@ + A —u+v —u)X) + A +u—v - w)R) + (1 —u—v +ur)((5) € P,
= (&) € P. Thus, P is a o-CC code.

Theorem 2.3.5 For ¢ = 1 — u — v + 2uv, the code P is a -CC code if and only if P,, P;, and P, are V' codes and P, isa C
code.

Proof. Forany & = (&y, &4, ..., &-1) € R,

Where §; = @7 + @y + @3y + @8, With T = (T, Ty, ., Tne1) € P11 = (Mos M1y s Mn=1) € Pay ¥ = Voo Y1y s ¥n—1) € Ps,
ANnd 6§ = (8,61, -, 6n—1) € Py, forall 7;, n;, v, 6; € Z3 for j = 0,1, ...,n — 1.

For the o-CC code R,

7,(§) = (A —u—v+2ur)&y_y, &0, &1, s Enz)

=(1l-u—v+2w)(Q+ut+v+u)r, 1+ A —-—u+v—uv)n,,

+A+u—v—-—u)yp, 1+ A —u—v+uv)d,_1),& &, s &nz)-

This expression simplifies to demonstrate that P,, P;, and P, are V' codes while P, is a C code of length n.
Conversely, if P,, P;, and P, are V" codes and P; is a C code of length n,

Then C(7) € Py, R(n) € P,, X(y) € P3, and R() € P,.

Thus,

A+u+v+u) (@O +A-—u+v—ur)¥ M+ A +u—v—-—uv)X@y)+ (1 —u—v+uv)X() € P,
= p(§¢) € P. Hence, P isa o-CC code.

Table 1

Units
l+u—v—2uv
l—u+v-—2uv
l—u—v+2uv

14+2u—2v—-2uv
1—-2u+2v—-2uv
1—-2u—-2v+2uv

Q22 (0(2|2|®
201 Z2(20R

2202223
222202
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Theorem 2.3.6 For a o-CC code, P = (b;7;(t), byh, (1), b3hs(t), byhis(t)) = X, biki(t), where A;(t) are the generator
polynomials(GP) of P,, P,, Ps, P, for i € [1,4], respectively. Furthermore, |P| = 34n~Zi=1 deg(i(®)

Theorem 2.3.7 The dual of a p-CC code has a length similar to that of the o-CC code.

Theorem 2.3.8 For a ¢-CC code P, the dual code P+ is defined as follows:

1. .(PJ' = ?=1 bi:PiJ'.

2. PL=Dbihi(1), bR5 (1), byhs (1), by hs(t) = Xin, biki(t), where & (t) are the reciprocal polynomials of t" + 1/A;(t) and
t" — 1/hy(t), fori=1,2,3.

3. |PL| = 3Timadesi®),

Lemma 2.3.9 If P isa C and V' code over Z, with GP A(t), then P contains its dual code iff t" —r = 0 mod(A(t)A"(t)), where
r=+1.

Theorem 2.3.10 Let P = ¥, b;A;(t) be a o-CC code. Then

1. Ifo=1+u—v—2uv thenPt c Pifft" + 1= 0 mod(A()A" (1)) for Py, Ps, Py, and t* — 1 = 0 mod(R(H)A* (1)) for P,...(%)

2. fo=1—-u+v—2uv, thenPLcPifft"+1=0 mod(h(t)h*(t))for P, Py, Ps,and t™ —1 =0 mod(h(t)fl*(t)) for P;.

3. Ifo=1-—u—v+2uv thenPt c Piff "+ 1 = 0 mod(h(t)h*(t)) for P, Ps, Py, and t* — 1 = 0 mod(R ()" (1)) for Py.
4. Ifo=1+2u—2v—2uv, then Pt € Pifft" + 1 = 0 mod(A(t)R* (D)) for Py, Py, Py, and " — 1 = 0 mod(A(H)R* (1)) for Ps.

5 Ifo=1-2u+2v—2uv, then P+ € P iff t* + 1 = 0 mod(h(t)A*(})) for Py, Ps, Py, and t* — 1 = 0 mod(h(H)A* (1)) for P,.

6. Ifo=1+2u—2v+2uv, then P+ c P ifft" + 1 = 0 mod(h(t)A*(t)) for P,, Ps, Py, and t* — 1 = 0 mod(R(t)A* (1)) for P;.

Proof. First, we assume that (*), holds. By the above lemma, we conclude that P; for i = 1,2,3,4 are dual-containing codes.
Additionally, b;P; for i = 1,2,3,4 are also dual-containing codes. Thus, we have Yi_, b;P* € ¥}, b;P;. Consequently, P+ c P.
Conversely, let P+ < P. Then, Y1, b;P € X1, b;P;, which implies that b;P; for i = 1,2,3,4 are also dual-containing codes.
Therefore, P; for i = 1,2,3,4 are dual-containing codes, and by the above lemma, (*) holds.

Similarly, the remaining parts of the theorem can be proven using analogous reasoning.

Corollary 2.3.11 Let P =}, b;P, be a o-CC code over R. Then, P c P ifand only if Pt € P,,Ps- € P,,Ps € P;, Pt € P,.

Theorem 2.3.12 (CSS Construction) Let P be a linear code with parameters [n, k, d] over Z;. A QCs with parameters [n, 2k —
n,d, ] can be acquired if P+ € P.

3 Results and Discussion
Utilizing Theorems 2.3.9 and 2.3.10, the following QECC construction can be derived.

Theorem 3.1.1 If P =@, by = Y&, biA;(v) is a o-CC code over R and if P+ < P, then 3 a QCs with parameters [4n, 2k —
4n,d; ).

Remark 3.1.2 The construction of QECC from o-CC codes presents a more advantageous approach compared to the construction
of QECC from C codes. When utilizing C codes for QECC, our sole option is to set g to 1. In contrast, constructing QECC from
0-CC codes offers a broader choices of possible values for g. For instance, when considering the ring R, we can select g from set
{l-u+v-2uw,14+u—v-2uv,1—u—v+2uv,1+2u — 2v — 2uvy,

1—2u+ 2v —2uv,1 — 2u — 2v + 2uv }, rather than being restricted to the single value of 1.

We introduce a flowchart for building QECCs using o-CC codes over R.
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Take Ry(t)|Hm)

Consider
t"—1 = p(mod R(1)Ai(t)

[

0(mod Ry ()R (1))

3.2 Examples

P=Y!, bh(t) sa p—constacyclic dual —

E,,n, P — constacyclic codes over R

Consider factorization of

Hit)=t" -1 Take fy(t)|R(t)
BO="+1 :

Consider
t"+ 1 = q(med hy(t)hA{(t))

q=
O(meod h;(t)Aj(t))

containing code of lengthn over R

Gray image P (P) isa linear code
with parameters [4n, k, d] over R

Qutput: QECC with parameters
[[4m 2k — 4n,d;]];

Example 3.2.1 Given that R = Z3 + uZs + vZs + uvZ, in which u? = 1,v? = 1,uv = vu, and n=15. It follows that t!> — 1 =

t+23t*+ 2+t +t+1)3

and t*° + 1 = (t+ 1D3(* + 263 + t2 + 2t + 1)3.

Consider a (1+u-v-2uv)-CC code of length 15 over R. The GP of P is

h(t) = ?:1,1::2 b;(t + 1)2 +by(t+ 2)2-

Let () = hg(t) = Ay(t) = (t+ 1)? and A, (1) = (t+ 2)%. Moreover, W(P) has parameter [60,52,3]. Then, using theorem
2.3.13, we derive the QCs with parameters [60,44,> 3].
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Example 3.2.2 Let R = Z3 + uZ; + vZ; + uvZz; with u? = 1,v2 =1,uv=vu and n=3. Then, 3 —1=(t+2)3 and 3+ 1 =
(t+ D(? —t+ 1). Let P be a (1-2u-2v+2uv)-CC code of length 3 over R.

Take A, (t) = (t+ 2) and hy(t) = fs () = Ry (t) = (t+ 1) then

A(t) = Tiq1iz1 bi(t+ 1) + by ((t + 2) be the GP of P. Then W(%P) is a linear code with parameter [12, 8, 2]. Then by theorem
2.3.13, we get the QCs with parameters [12, 4, > 2].

4 Conclusion
In our study, we identified the units that are self-inverse and utilized them to analyze the QCs of the ring R = Z5 + uZ; + vZ; +
uvZs, withu? = 1, v? = 1, and uv = vu.

5 Open Problem

Future investigations could delve into additional QCs over Z; by employing different gray maps on Z; + uZ; + vZs + uvZ,
while adhering to the same constraints. Moreover, it would be beneficial to explore QCs in this ring under varying conditions and
to compute QCs using alternative rings.
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