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Mathematical modeling of malaria transmission and 

treatment: A case of conflict zones 

 
Nguu Alex Ng'atia, Charles Wanjohi Ngari and Jason Jomba 

 
Abstract 

Malaria, which is spread by infected female Anopheles mosquitoes and disproportionately affects 

vulnerable communities in tropical and subtropical countries, has been one of the world's most urgent 

public health issues for decades. People with weakened immune systems and visitors to endemic regions 

are among the high-risk populations that are more vulnerable. Despite ongoing efforts to control the 

disease, including the development of mathematical models that incorporate key biological and 

pharmacological factors, significant gap remained in understanding mathematical modeling of malaria 

transmission and treatment a case in conflict zones. Developing a mathematical model approach to 

malaria transmission and treatment in conflict areas is the aim of this study. In addition to conducting 

numerical simulations of the model to confirm the analytical results and ascertain the effects of malaria 

transmission in war zones, the model addressed stability and sensitivity analysis to ascertain the 

condition of malaria transmission. This study will mitigate spread and death rates of malaria in conflict 

zones. Mathematica and MATLAB software was used to perform numerical simulation of model. The 

study employed ordinary differential equations (ODEs) to solve the progression of malaria treatment over 

time. The equations will help to track individuals through various compartments, highlighting the 

dynamics of malaria. The study will utilize numerical techniques recognized for its accuracy and 

efficiency with non-linear systems that pose challenge to analytical solutions. The study will offer 

recommendations for malaria treatment strategies a case in conflict zones, providing insights applicable 

to similar challenging health environments. 

 

Keywords: Malaria, mathematical model, conflict zones, non-conflict zones, fully treatment, partially 

treatment, stability analysis 

 

Introduction 
[10] Research has shown that malaria is a potentially fatal illness brought on by parasites of the 

genus Plasmodium, which people contract through the bites of female Anopheles mosquitoes 

carrying the infection [10]. Research revealed that malaria can also be spread by blood 

transfusion or congenitally from an infected mother to her fetus [10]. Research has shown that 

although malaria is preventable and curable, it is nevertheless a significant public health 

concern, particularly in tropical and subtropical areas. Human malaria is caused by five 

different species of Plasmodium: Plasmodium falciparum, which is the most dangerous; 

Plasmodium vivax; Plasmodium ovale; Plasmodium malariae; and Plasmodium knowlesi, 

which is less prevalent but is known to cause malaria in humans. 
[11] developed a system of ordinary differential equations to examine the interactions between 

humans and mosquitoes, and he was the first to utilize mathematical models to investigate the 

spread and transmission of diseases. By adding important extensions to Ross's work, such as 

the notion of the basic reproduction number (𝑅𝑂), the significance of the mosquito's biting 

rate, and the length of the infectious period, MacDonald (1957) created a more thorough 

framework for comprehending the dynamics of malaria transmission. The results of the study 

showed that (𝑅𝑜 =
𝑚 𝑎2 𝜌𝑛 𝛽

ℎ 
 𝛽𝑚

𝜇𝑚 𝜇ℎ
), where 𝑅𝑂>1 signals malaria spread directing control 

measures. 
[9] Created and examined the Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) 

model to investigate the dynamics of malaria transmission between human and mosquito  
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populations. While the Disease-Free Equilibrium (DFE) is locally stable when 𝑅𝑂<1 and globally stable when 𝑅𝑂≤1, the disease 

persists if 𝑅𝑂>1, according to the study, which established the Basic Reproduction Number (𝑅𝑂) as a threshold parameter. A 

foundation for researching malaria containment tactics is provided by their findings, which have been validated using numerical 

simulations. 
[6] Highlighted the significance of randomness in disease spread and treatment outcomes, especially in low-transmission areas, by 

presenting a stochastic model to investigate the dynamics of malaria transmission. Eradication efforts are nevertheless hampered 

by issues including drug resistance and uneven treatment adherence, even with advancements in control techniques. This model 

offers important insights into the efficacy of therapies and the possibility of eradicating malaria. This paper's goal is to create a 

mathematical model of malaria treatment and transmission, specifically in conflict areas. 

 

Model Formulation 

The model is adopted from SEIR and SIR model. Where the total population is N and the model is formulated for the human 

population and mosquito population at time t. The human population is divided into: Susceptible human (𝑆𝐻), exposed humans 

(E), infectious humans a case in conflict zones (𝐼𝐶), infected individuals in other zones (𝐼𝐹), full treatment of humans in conflict 

zones (𝑇𝑃), under dose treatment of humans in conflict zones (𝑇𝑛) and recovered humans (R), and that of mosquitoes into two 

divisions: Susceptible mosquitoes (𝑆𝑉) and infectious mosquitoes (𝐼𝑉), (𝑆𝐸𝐼𝐶𝐼𝐹𝑇𝑃𝑇𝑛𝑅 − 𝑆𝐼). These are main features of the model; 

π is recruitment of susceptible humans, µ is death rates of susceptible humans, α is rate of infection of humans, λ is infectious rate 

to full treatment humans, θ is natural deaths rates of full treatment humans, ε is death rates infected humans in other zones, ω is 

treatment rate of infected of full treatment individuals, x is recovery rate of full treated individuals, e is death rate of full treatment 

humans, γ is recovery rate of other zones individuals, τ is death rates of infectious mosquito, Ψ is rate of infection of mosquito, ν 

is rate of infection of mosquito from other zones patients, φ is rate of infection of mosquitoes from infected humans in conflict 

zones, Λ is recruitment of susceptible mosquitoes, Z is rates of infected mosquito bites to susceptible humans and ρ is rate of 

recovered exposed humans. 

 

Model Assumptions 

1. The model makes the assumption that the population's overall size stays constant throughout time. 

2. It is assumed that humans progress through stages of disease in a linear manner. 

3. It is assumed that the primary source of infection for humans is through mosquito bites, and that human-to-human 

transmission is considered a secondary route. 

4. For both treated and exposed individuals, recovery rates are presumed to be constant and unaffected by treatment efficacy or 

individual health. 

5. The population is homogeneous 

6. All people have equal chances of getting malaria 

 
Table 1: Model Variables 

 

Variables Description 

E Exposed humans 

𝐼𝐶(t) Infectious individuals in conflict zones 

𝐼𝑓(t) Infectious individuals in non-conflict zones 

𝐼𝑉(t) Infectious mosquitoes 

R(t) Humans who have recovered from malaria 

𝑆𝐻(t) Humans that are susceptible to malaria disease 

𝑆𝑉(t) Mosquitoes that consume contaminated blood are susceptible to infection. 

𝑇𝑛(t) Treatment of humans being compromised 

𝑇𝑃(t) Full treatment of humans 

 
Table 2: Model parameters 

 

∧ Recruitment of susceptible mosquitoes 

E Death rate of full treatment humans 

N Total number of population 

𝜏 Rate of infectious mosquito deaths 

∨ Mosquito infection rate in non-conflict areas 

X Recovery rate of full treatment humans 

Z Infected mosquito biting rates to susceptible humans 

𝛼 Rate of infection of humans 

𝛾 Recovery rate of humans in non-conflict zones 

𝜖 Deaths rates of compromised humans 

𝜃 Death rate of infected human in conflict zones 

𝜆 Human infectious rate in areas of conflict 

𝜇𝑚 Rates of mosquito deaths that occur naturally 

𝜇ℎ Human natural death rates 

Π Recruitment of susceptible humans through birth rate 

𝜌 Recovery rate of humans to become exposed to the disease 

𝜓 Infection rate of mosquito 

𝜔 Treatment rate for infected humans undergoing full treatment 

Փ Infection rate of mosquitoes from non-conflict zones 
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Model Equations 

 
𝑑𝑆𝐻

𝑑𝑡
= 𝜋 + ᴢ𝐼𝑉 − 𝛼𝑆𝐻 − 𝜇𝑆𝐻.  (1) 

 
dE

dt
= 𝛼𝑆𝐻 + 𝜌𝑅 − 𝜆𝐸 − (1 − 𝜆)𝐸 − 𝜇𝐸  (2) 

 
d𝐼𝐶

dt
= 𝜆𝐸 − ɸ𝐼𝐶 −  Ө𝐼𝐶 − ɯ𝐼𝐶 − (1 − ɯ)𝐼𝐶 − 𝜇𝐼𝐶   (3) 

 
d𝐼𝐹

dt
= (1 − 𝜆)𝐸 − 𝑣𝐼𝐹 − 𝜖𝐼𝐹 − 𝜇𝐼𝐹 − 𝛾𝐼𝐹  (4) 

 
d𝑇𝑃

dt
= ɯ𝐼𝐶 − 𝜖𝑇𝑃 − 𝜇𝑇𝑃 − 𝑋𝑇𝑃  (5) 

 
d𝑇𝑛

dt
= (1 − ɯ)𝐼𝐶 − 𝑒𝑇𝑛 − 𝜇𝑇𝑛 − (1 − 𝑥)𝑇𝑛  (6) 

 
dR

dt
= 𝑥𝑇𝑃 + 𝛾𝐼𝐹 − 𝜌𝑅 − 𝜇𝑅 + (1 − 𝑥)𝑇𝑛  (7) 

 
dS𝑉

dt
=∧ +ɸ𝐼𝐶 + 𝑣𝐼𝐹 − 𝜓𝑆𝑉 − 𝜇𝑆𝑉  (8)  

  
d𝐼𝑉

dt
= 𝜓𝑆𝑉 − 𝑧𝐼𝑉 − 𝜏𝐼𝑉  (9) 

 

Positivity of solutions 

By demonstrating the following theorem, we establish positivity. 

 

Theorem 1: If 𝑆𝐻(0), E(0), 𝐼𝐶(0), 𝐼𝑓(0), 𝑇𝑐(0), 𝑇𝑓(0), 𝑆𝑉(0), 𝐼𝑉(0), R(0), have a positive outlook, and the solutions will be (𝑠𝐻(t), 

E(t), 𝐼𝐶(t), 𝐼𝐹(t), 𝑇𝐶(t), 𝑇𝑓(t), 𝑆𝑉(t), 𝐼𝑉(t), R(t),) are positive ∀ t>0 in equations (1- 9). 

 

Proof: Let t*= sup{t>0: 𝑆𝐻(t)>0, E(t)>0, 𝐼𝐶(t)>0, 𝐼𝑓(t)>0, 𝑇𝐶(t)>0, 𝑇𝑓(t)>0, 𝑆𝑉(t)>0, 𝐼𝑉(t)>0, R(t)>0}, such that t*>0. From 

equation (1) - (9) and considering equation (1)  
𝑑 𝑆𝐻

𝑑𝑡
 = 𝜋 + ᴢ 𝐼𝑉 −  𝜎 𝑆𝐻 − 𝜇 𝑆𝐻 ≥  𝜋 + ᴢ 𝐼𝑉 − (𝜎 +  𝜇)𝑆𝐻  . Applying integrating factor to equation (1);  

𝐼(𝑡) =  𝑒∫ 𝜇𝑑𝑠
𝑡∗
0 = 𝑒𝜇 𝑡 Multiplying through by It 

 

𝑒𝜇𝑡 𝑑𝑆𝐻

𝑑𝑡
+  𝜇 𝑒𝜇𝑡 𝑆𝐻 = 𝑒𝜇𝑡 (∧  −𝛽 𝑆𝐻 𝐼𝑉   (10) 

 

The Left-hand side derivative of a product. 
𝑑

𝑑𝑡
 (𝑒𝜇𝑡 𝑆𝐻) = 𝑒𝜇𝑡(∧ −𝛽𝑆𝐻 𝐼𝑉) From t=0 and t=t*, integrating both sides  

 

∫
𝑑

𝑑𝑠

𝑡∗

0
 (𝑒𝜇𝑡𝑆𝐻(𝑠)𝑑𝑠 =  ∫ 𝑒𝜇𝑠𝑡∗

0
 (∧ −𝛽𝑆𝐻𝐼𝑉)𝑑𝑠  (11) 

 

Evaluating the left-hand side 𝑒𝜇𝑡𝑆𝐻 (𝑡) − 𝑆𝐻(0) . 𝐹𝑜𝑟 Right-hand side ∫ 𝑒𝜇𝑠𝑡∗

0
(∧ −𝛽𝑆𝐻𝐼𝑉)𝑑𝑠 

 

Therefore, 𝑒𝜇𝑡 𝑆𝐻(𝑡) = 𝑆𝐻(0) + ∫ 𝑒𝜇𝑠𝑡∗

0
(∧ −𝛽𝑆𝐻𝐼𝑉)𝑑𝑠  (12) 

 

We solve for 𝑆𝐻(𝑡);  𝑆𝐻(𝑡) =  
𝑆𝐻(0)+∫ 𝑒𝜇𝑠(∧−𝛽𝑆𝐻𝐼𝑉 

𝑡∗
0

𝑒𝜇𝑡 𝑑𝑠 since𝑆𝐻(0) > 0; from initial condition 

 

Also ∧ −𝛽𝑆𝐻𝐼𝑉 is bounded and non-negative 𝑒𝜇𝑡 > 0, ∀ t > 0. As a result, 𝑆𝐻 (t)>0, ∀ t>0. If t>0, the solution stays positive. Thus 

𝑆𝐻(t) remains positive. Similarly, repeating above procedure for other equation (2) - (9) shows that solutions are also positive.  

We deduce that the following are positive ∀ t>0: 𝑆𝐻(𝑡), 𝐸(𝑡), 𝐼𝐶(𝑡), 𝐼𝑓 (𝑡), 𝑇𝑐(𝑡), 𝑇𝑓(𝑡), 𝑆𝑉(𝑡), 𝐼𝑉(𝑡) 𝑎𝑛𝑑 𝑅(𝑡). These findings 

prove the theorem. 

 

Boundedness of solutions 

Theorem 2 

Assume that the total populations of humans and mosquitoes are 𝑁𝐻 (𝑡) and 𝑁𝑀 (𝑡), respectively, governed by the system of 

equation (1) - (9) given above. If the recruitment rates 𝜋 and ∧ are positive and the natural death rates 𝜇𝐻 and 𝜇𝑀are strictly 

positive, then the total populations 𝑁𝐻(𝑡) and 𝑁𝑀(𝑡) remain bounded ∀ t≥ 0. 

 

Proof 

We prove the boundedness of solutions by taking into consideration of total human and mosquito population separately. 
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Step 1: The total human population (𝑁𝐻) 

We define total human population as: 

 

𝑁𝐻 = 𝑆𝐻 + 𝐸 + 𝐼𝐶 + 𝐼𝑓 + 𝑇𝑃 + 𝑇𝑛 + 𝑅  (13) 

 
𝑑 𝑁𝐻

𝑑𝑡
=  𝜋 − 𝜇𝑁𝐻 

 

∫
𝑑𝑁𝐻

𝜋 − 𝜇𝑁𝐻

= ∫ 𝑑𝑡 

 

𝑁𝐻 (𝑡) =
𝜋

𝜇
+ (𝑁𝐻(0) −

𝜋

𝜇
)𝑒−𝜇𝑡  (14) 

 

 𝑁𝐻(𝑡) ≤
𝜋

𝜇
 , ∀ t≥ 0.  (15) 

 

Step 2: Total mosquito population ( 𝑁𝑀)W, where total mosquito population defined as: 

 

𝑁𝑀 = 𝑆𝑉 + 𝐼𝑉  

 (16) 
𝑑𝑁𝑀

𝑑𝑡
= ∧ −𝜇𝑀 𝑁𝑀 ; 𝑁𝑀 (𝑡) =

∧

𝜇𝑀
+ (𝑁𝑀(0) −

∧

𝜇𝑀
) 𝑒−𝜇𝑀𝑡  

 

𝑁𝑀(𝑡) ≤
∧

𝜇𝑀
 , ∀ t≥ 0.  (17) 

 

Therefore, we conclude that 𝑁𝐻(𝑡) and 𝑁𝑀 (𝑡) remain bounded ∀ t≥ 0. Hence prove.  

 

Computation of basic reproduction number 

We calculate the basic reproduction number 𝑅𝑂 using the next-generation matrix approach [12]. If 𝑅𝑂 > 1, the disease is expected 

to spread within the population, leading to an epidemic and a stable endemic equilibrium point (EEP) exists. Conversely, if 𝑅𝑂 <
1, the infection will eventually dies out, and the system will approach a disease-free equilibrium (DFE) that is stable. In this 

method, F represent matrix of the new infections while V represent the remaining transition terms, such as recovery or progression 

between compartments, excluding new infections. Now, let 

 
𝑑𝐼𝐶

𝑑𝑡
= 𝜆𝐸 − 𝛺1𝐼𝐶 , where 𝛺1 = −(Փ + Ѳ + 1 + 𝜇) 

 
𝑑𝐼𝑓

𝑑𝑡
= (1 − 𝜆) − 𝛺2𝐼𝑓, where 𝛺2 = −(𝑣 + 𝑒 + 𝜇 + 𝛾) 

 
𝑑𝑇𝑃

𝑑𝑡
= ѡ𝐼𝐶 − 𝛺3𝑇𝑃 , where 𝛺3 = −(𝜖 + 𝜇 + 𝑥)  (18) 

 
𝑑𝑇𝑛

𝑑𝑡
= (1 − ѡ)𝐼𝐶 − 𝛺4𝑇𝑛, where 𝛺4 = −(𝑒 + 𝜇 + 1 − 𝑥) 

 
𝑑𝐼𝑉

𝑑𝑡
= 𝜓𝑆𝑣 − 𝛺5𝐼𝑉, where 𝛺5 = −(𝑧 + 𝜏) 

 

Where the vector of new infection terms going into compartment is; 

 

𝑓 =

[
 
 
 
 

𝜆𝐸
(1 − 𝜆)𝐸

0
0
0 ]

 
 
 
 

  (19) 

 

The vector of transition is, 

 

𝑉 =

[
 
 
 
 

+𝛺1𝐼𝐶
+𝛺2𝐼𝑓

−ѡ𝐼𝐶 + 𝛺3𝑇𝑃

(ѡ − 1)𝐼𝐶 + 𝛺4𝑇𝑛

−𝜓𝑆𝑉 + 𝛺5𝐼𝑉 ]
 
 
 
 

  (20) 

 

By computing the Jacobian matrices of the transition terms and the new infection terms, respectively, evaluated at the D.F.E., we 

are able to obtain the matrices F and V. 
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𝐹 =

[
 
 
 
 

𝛽𝐸 𝛽Ƞ1𝐸 𝛽Ƞ2𝐸 𝛽Ƞ3𝐸 𝛽Ƞ4𝐸
(1 − 𝛽)𝐸 (1 − 𝛽)𝐸Ƞ1 (1 − 𝛽)𝐸Ƞ2 (1 − 𝛽)Ƞ3𝐸 (1 − 𝛽)Ƞ4𝐸

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 

  (21) 

 

Where 𝐼𝐶 , 𝐼𝑉 , 𝐼𝑓 , 𝑇𝑛, 𝑎𝑛𝑑 𝑇𝑃 are infected compartment  

 

𝑉 =

[
 
 
 
 

𝛺1 0 0 0 0
0 0 𝛺2 0 0

−ѡ 0 0 0 𝛺3

(ѡ − 1) 0 0 𝛺4 0
0 𝛺5 0 0 0 ]

 
 
 
 

.  

 

 We calculate 𝐹𝑉−1, which is the next generation matrix; 𝐹𝑉−1 = 

 

[
 
 
 
 
 

 

𝛽(−((−1+ѡ)Ƞ3𝛺3+(ѡȠ4+𝛺3)𝛺4)

𝛺1𝛺3𝛺4

𝛽Ƞ2

𝛺2

𝛽Ƞ4

𝛺3

𝛽Ƞ3

𝛺4

𝛽Ƞ1

𝛺5

(−1+𝛽)((−1+ѡ)Ƞ3𝛺3−(ѡȠ4+𝛺3)𝛺4

𝛺1𝛺3𝛺4
−

(−1+𝛽)Ƞ2

𝛺2
−

(−1+ѡ)Ƞ4

𝛺3
−

(−1+𝛽)Ƞ3

𝛺4
−

(−1+𝛽)Ƞ1

𝛺5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 
 

  (23) 

 

Then, finding the Eigen value;  𝑋1 = 0, 𝑋2 = 0, 𝑋3 = 0, and 

 

 𝑋4 = −
−𝛽Ƞ3𝛺2𝛺3+𝛽ѡȠ3𝛺2𝛺3−𝛽ѡȠ4𝛺2𝛺4−Ƞ2𝛺1𝛺3𝛺4+𝛽Ƞ2𝛺1𝛺3𝛺4−𝛽𝛺2𝛺3𝛺4

𝛺1𝛺2𝛺3𝛺4
  (24) 

 

Therefore,  

 

𝛽 =
𝛺1(Ƞ2−𝛺2)𝛺3𝛺4

−Ƞ3𝛺2𝛺3+ѡȠ3𝛺2𝛺3−ѡȠ4𝛺2𝛺4+Ƞ4𝛺1𝛺3𝛺3−𝛺2𝛺3𝛺4
  (25) 

 

Where is 𝑅𝑂, the dominant Eigen value and spectral radius. A value of 𝑅𝑂<1 often indicates that each individual can infect an 

average of fewer than one person, which will cause the disease to die out and result in a locally and globally asymptotically stable 

disease free equilibrium. The disease is predicted to persist in the population if 𝑅𝑂>1, which indicates that each individual may 

typically infect more than one person. 

 

Disease-free equilibrium point 

We assume there are no infected humans or mosquitoes. Therefore 𝐼𝐶 = 𝐼𝐹 = 𝑇𝑃 = 𝑇𝑛 = 𝐼𝑉 = 0, hence (E)=0 

 

Solving for 𝑆𝐻 ,R and 𝑆𝑉 .The equation (1) ; 
𝑑𝑆𝐻

𝑑𝑡
= 𝜋 − 𝛼𝑆𝐻 − 𝜇𝑆𝐻 = 0  (26) 

 

Solving for 𝑆𝐻
∗  (DFE value of 𝑆𝐻 ); 𝑆𝐻

∗ =
𝜋

𝛼+𝜇
  (27)  

 

From equation (7), where 𝑇𝑃 = 𝑇𝑛 = 0; 
𝑑𝑅

𝑑𝑡
= −𝜌𝑅 − 𝜇𝑅 = 0 

 

Thus, 𝑅∗ = 0 . From equation (8) which simplifies to 
𝑑𝑆𝑉

𝑑𝑡
=∧ −𝜓𝑆𝑉 − 𝜇𝑆𝑉 = 0  (28) 

 

Solving for 𝑆𝑉
∗ ;  𝑆𝑉

∗ =
∧

𝜓+𝜇
 .Since 𝐼𝑉 = 0, the infectious force 𝜆=0.  

 

DFE is therefore 

 

(𝐸0 = 𝑆𝐻
0 , 𝐸0, 𝐼𝐶

0, 𝐼𝐹
0, 𝑇𝑃

0, 𝑇𝑛
0, 𝑅0, 𝑆𝑉

0, 𝐼𝑉
0) = (

𝜋

𝛼+𝜇
, 0, 0, 0, 0, 0, 0,

∧

𝜓+𝜇
, 0)  (29) 

 

In figure 1 below, the infection-free equilibrium point of system 1-9, or D.F.E point (𝐸0), is then quantitatively displayed. 
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Fig 1: Malaria infection burden over tune t (DFE) 

 

Local Stability Analysis of DFE. 

Local stability is found by constructing the Jacobian Matrix J based on nine malaria compartmental model. We will simply extract 

and examine the portion of the Jacobian that controls the diseased compartments for the sake of conciseness, which are: 

 

𝑋 = 𝐸, 𝐼𝐶 , 𝐼𝐹 , 𝑇𝑃 , 𝑇𝑛 , 𝑅, 𝐼𝑉  
 

At 𝐸0 the Jacobian J is evaluated. We then determine the eigenvalues of this reduced Jacobian and then, the system is linearized 

around DFE. [12] We use the Next-generation matrix approach.  

 

Theorem 3 

The malaria disease-free equilibrium 𝐸0 is locally asymptotically stable if𝑅𝑂 < 1 and unstable if 𝑅𝑂 > 1. Then, we calculate 

Jacobian matrix J for equation (1)-(9), such that  

 

𝑔1 = 𝜋 + ᴢ𝐼𝑉 − 𝛼𝑆𝐻 − 𝜇𝑆𝐻  
 

𝑔2 = 𝛼𝑆𝐻 + 𝜌𝑅 − 𝜆𝐸 − (1 − 𝜆)𝐸 − 𝜇𝐸  

 

𝑔3 = 𝜆𝐸 − ɸ𝐼𝐶 −  Ө𝐼𝐶 − ɯ𝐼𝐶 − (1 − ɯ)𝐼𝐶 − 𝜇𝐼𝐶   

 

𝑔4 = (1 − 𝜆)𝐸 − 𝑣𝐼𝐹 − 𝜖𝐼𝐹 − 𝜇𝐼𝐹 − 𝛾𝐼𝐹 

 

𝑔5 = ɯ𝐼𝐶 − 𝜖𝑇𝑃 − 𝜇𝑇𝑃 − 𝑋𝑇𝑃 

 

𝑔6 = (1 − ɯ𝐼𝐶 − 𝑒𝑇𝑛 − 𝜇𝑇𝑛 − (1 − 𝑥)𝑇𝑛  (30) 

 

𝑔7 = 𝑥𝑇𝑃 + 𝛾𝐼𝐹 − 𝜌𝑅 − 𝜇𝑅 + (1 − 𝑥)𝑇𝑛  

 

𝑔8 =∧ +ɸ𝐼𝐶 + 𝑣𝐼𝐹 − 𝜓𝑆𝑉 − 𝜇𝑆𝑉  

 

𝑔9 = 𝜓𝑆𝑉 − 𝑧𝐼𝑉 − 𝜏𝐼𝑉  

 

And the force of infection given by; 𝜆 =
𝛽(𝐼𝐶+Ƞ1𝐼𝑉+Ƞ2𝐼𝐹+Ƞ3𝑇𝑛+Ƞ4𝑇𝑝

𝑁
 

 

The Jacobian matrix J of malaria model is obtained and evaluated at DFE. The eigenvalues are analyzed to determine the 

condition for local stability of DFE. 

 

Proof  

From Jacobian matrix of model 
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 (31) 

 

Calculating the determinant of /J−λ𝑖I/=0 yields the characteristic polynomial of a Jacobian matrix, where J is a Jacobian matrix 

with i=1,2,3,4,5,6,7,8,9. and A Jacobian matrix's characteristic polynomial and λ is a scalar variable. According to [5], the 

eigenvalues that establish system stability close to an equilibrium point are the roots of this polynomial. 

Then, we apply the Routh-Hurwitz criterion to determine whether those coefficients lead to all negative real parts of eigenvalues. 

 

𝑋(𝜆) =  𝜆9 + 𝜆8𝑎1 + 𝜆7𝑎2 + 𝜆6𝑎3 + 𝜆5𝑎4 + 𝜆4𝑎5 + 𝜆3𝑎6 + 𝜆2𝑎7 + 𝜆1𝑎8 + 𝑎9  (32) 

 

The conditions for all coefficients are 𝑎1 > 0, 𝑎2 > 0, 𝑎3 > 0… . . , 𝑎9 > 0 The values of coefficients 𝑎1 > 0, 𝑎2 > 0, 𝑎3 >
0… . . , 𝑎9 > 0 expressed in term of 𝑅0

∗  are;  

 

𝑎1 = 0 , 𝑎2 = -γ-ϵ-μ-ν-β η2 

 

𝑎3 = −𝛽2𝜂2 − 𝛽𝜔𝜂2 − (−1 − 𝜇)(−𝛾 − 𝜖 − 𝜇 − 𝜈 − 𝛽𝜂2) + (𝛼 + 𝛧 + 𝜇 + 𝜏)(−𝛾 − 𝜖 − 𝜇 − 𝜈 − 𝛽𝜂2) − (−1 + 𝛽 − 𝜃 − 𝜇 −
𝜙)(−𝛾 − 𝜖 − 𝜇 − 𝜈 − 𝛽𝜂2) − (−1 − 𝜇 − 𝜚 + 𝛸)(−𝛾 − 𝜖 − 𝜇 − 𝜈 − 𝛽𝜂2) + (−𝜇 − 𝜌)(𝛾 + 𝜖 + 𝜇 + 𝜈 + 𝛽𝜂2) + (−𝜇 − 𝜑)(𝛾 +
𝜖 + 𝜇 + 𝜈 + 𝛽𝜂2) + (−𝜖 − 𝜇 − 𝜒)(𝛾 + 𝜖 + 𝜇 + 𝜈 + 𝛽𝜂2)                (33) 

 

The appendix will include detailed coefficients𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8, and 𝑎9 that left out of the local stability analysis for simplicity. 

 

Global stability of disease-free equilibrium (D.F.E)  

It is also possible to demonstrate that the system of equations (1-9) lies in the positive region. The Marzler matrix stability 

approach, which was proposed by [1], is used to examine the global stability of disease-free equilibrium.  

 
𝑑 𝑋

𝑑𝑡
= 𝐹(𝑋, 𝑍)  

 
𝑑𝑍

𝑑𝑡
= 𝐺(𝑋, 𝑍), 𝐺(𝑋, 0)  

 

𝑍 = (𝐼𝐶 , 𝑇𝑃 , 𝑇𝑛, 𝐼𝐹 , 𝐼𝑉) ∈ 𝑅+
5  Indicates the infectious malaria compartment, while 𝑋 = (𝑆𝐻 , 𝑆𝑉 , 𝐸, 𝑅) ∈ 𝑅+

4 indicates the non-

infected malaria compartments. If this point meets the following criteria, 𝐸0 = (𝑋∗, 0) denotes the system's disease-free 

equilibrium:  

 

i) 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 0), in which 𝑋∗ is asymptotically stable globally. 

ii) 
𝑑𝑍

𝑑𝑡
= 𝐷𝑧𝐺(𝑋, 0)𝑍 − 𝐺(𝑋, 𝑍) ≥ 0 If the following theorem is true, we can argue that 𝐸0  is locally asymptotically stable for 

any (X,Z)∈Ω: 

 

Theorem 4 

The equilibrium point 𝐸0(𝑋
∗, 0) of the system is globally asymptotically stable if 𝑅0

∗ ≤ 1 and the conditions (i) and (ii) are 

satisfied, otherwise unstable.  

 

Proof:  

In the system model, let 𝑋 = (𝑆𝐻 , 𝑆𝑉 , 𝐸, 𝑅) and 𝑍 = (𝐼𝐶 , 𝑇𝑃 , 𝑇𝑛 , 𝐼𝐹 , 𝐼𝑉) be the new variables and sub-systems. After obtaining the 

vector function G(X,Z), we examine reduced systems to 

 

𝐹(𝑋, 0) = (

𝜋 − 𝜇𝑆𝐻

∧ −𝜇𝑆𝑉

0
0

)  (34) 

 

The convergence of the solutions of the reduced system (34) is global in 𝛺 since it is observed that this is an asymptotic dynamics 

system independent of the initial conditions in 𝛺. This may be calculated by computing:  
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𝐺∧(𝑋, 𝑍) = 𝐷𝑧𝐺(𝑋∗, 0)𝑧 − 𝐺(𝑋, 𝑍)  

 

𝐺∧(𝑋, 𝑍) ≥ 0. Now let 𝐴 = 𝐷𝑧𝐺(𝑋∗, 0), which is the Jacobian of 𝐺∧(𝑋, 𝑍) taken in (𝐼𝐶 , 𝑇𝑃 , 𝑇𝑛 , 𝐼𝐹 , 𝐼𝑉) and evaluated at (𝑥∗, 0), such 

that the matrix A is given by;  

 

𝐴 =

[
 
 
 
 

𝛺1 𝛽Ƞ2 𝛽Ƞ4 𝛽Ƞ3 𝛽Ƞ1

−𝛽 −𝛽Ƞ2 − 𝛺2 −𝛽Ƞ4 −𝛽Ƞ3 −𝛽Ƞ1

ѡ 0 𝛺3 0 0
1 − ѡ 0 0 𝛺4 0

Փ 0 ∨ 0 0 ]
 
 
 
 

  (34) 

 

Where 𝛽 − Փ − Ѳ − 1 − 𝜇 = 𝛺1, − ∨ −𝜖 − 𝜇 − 𝛾 = 𝛺2 , −𝜖 − 𝜇 − 𝑥 = 𝛺3 and −𝑒 − 𝜇 − 1 + 𝑥 = 𝛺4  

The matrix provides the values for G^∧ (X, Z). 

 

𝐴𝑍 =

[
 
 
 
 (1 −

𝑆

𝑁
)𝛽(𝐼𝐶 + Ƞ1𝐼𝑉 + Ƞ2𝐼𝐹 + Ƞ3𝑇𝑛 + Ƞ4𝑇𝑝)

0
0
0
0 ]

 
 
 
 

  (35) 

 

Therefore, if 𝐺(𝑋, 𝑍) ≥ 0, then the disease-free equilibrium (𝐸0)is globally asymptotically stable; otherwise, it is unstable. Since 

𝐺(𝑋, 𝑍) 

𝑆𝐻 ≤ 𝑁,
𝑆𝐻

𝑁
≤ 1, Then 𝐺(𝑋, 𝑍) ≥ 0 ∀ 𝑋, 𝑍 ∈ 𝑅+

5 , therefore, the disease-free equilibrium will be asymptotically stable globally. The 

non-negative off-diagonal elements of matrix A make it an M-Matrix. The global disease-free equilibrium (G.D.F.E.) is therefore 

shown to be globally asymptotically stable. This is the proof. Thus, regardless of the original conditions, malaria dies off 

whenever𝑅𝑂
∗ < 1.  

 

2.9 Existence of Endemic Equilibrium Point (E.E.P) 

Theorem 5: Endemic Equilibrium Point exists whenever 𝑅𝑂 > 1 

Proof: All infectious classes must be bigger than zero in order for E.E.P. to exist. 

 

, 𝐼𝐶 > 0, 𝐼𝐹 > 0, 𝑇𝑃 > 0, 𝑇𝑛 > 0 and 𝐼𝑉 > 0. 

 

Where,  

 

𝐼𝐶 = 𝜆𝐸 − (Փ + Ѳ + ѡ − (1 − ѡ) + 𝜇)𝐼𝐶 . This implies that 

 

𝐴 = Փ + Ѳ + 1 + 𝜇 , Therefore 

 

𝐼𝐶 =
𝜆𝐸

𝐴
  (36) 

 

Also 𝐼𝐹 = (1 − 𝜆)𝐸 − (𝑣 + 𝑒 + 𝜇 + 𝛾)𝐼𝐹 , Let 𝐵 = 𝑣 + 𝑒 + 𝜇 + 𝛾, Therefore  

 

𝐼𝐹 =
(1−𝜆)𝐸

𝐵
  (37) 

 

Also 𝑇𝑃 = ѡ𝐼𝐶 − (𝜖 + 𝜇 + 𝑋)𝑇𝑃 , Let 𝐶 = 𝜖 + 𝜇 + 𝑋, Hence𝑇𝑃 =
ѡ𝐼𝐶

𝐶
. (38) 𝑇𝑛 = (1 − ѡ)𝐼𝐶 − (𝜖 + 𝜇 + (1 − 𝑋))𝑇𝑛. Let𝐷 = 𝜖 +

𝜇 + (1 − 𝑋). 

 

 ,𝑇𝑛 =
(1−ѡ)𝐼𝐶

𝐷
,  (39) 

 

 𝐼𝑉 = 𝜓𝑆𝑉 − (𝑧 + 𝜏)𝐼𝑉, let = 𝑧 + 𝜏 ; 𝐼𝑉 =
𝜓𝑆𝑉

𝐺
  (40) 

 

Substituting equation (36-40) into the force of infection  

 

𝜆 =
𝛽

𝑁𝛽
[
𝜆𝐸

𝐴
+ Ƞ1

𝜓𝑆𝑉

𝐺
+ Ƞ2

(1−𝜆)𝐸

𝐵
+ Ƞ3

(1−ѡ).𝜆
𝜆𝐸

𝐴

𝐷
+ Ƞ4

𝜆𝐸

𝐴

𝐶
] .  (41) 

 

Group terms 

 

𝜆 =
𝛽

𝑁
[
𝜆𝐸

𝐴
+ Ƞ1

𝜓𝑆𝑉

𝐺
+ Ƞ2

(1−𝜆)𝐸

𝐵
+

𝜆𝐸

𝐴
(

Ƞ3(1−ѡ)

𝐷
+

Ƞ4ѡ

𝐶
)],  (42) 
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Group 𝜆𝐸terms 

 

𝜆 =
𝛽

𝑁
[Ƞ1

𝜓𝑆𝑉

𝐺
+

(1−𝜆)𝐸Ƞ2

𝐵
+

𝜆𝐸

𝐴
(1 +

Ƞ3(1−ѡ)

𝐷
+

Ƞ4ѡ

𝐶
)].  

 (43) 

 

Let =
1

𝐴
(1 +

Ƞ3(1−ѡ)

𝐷
+

Ƞ4ѡ

𝐶
 ; 𝐹 = Ƞ1

𝜓𝑆𝑉

𝐺
 and 𝑄 =

Ƞ2𝐸

𝐵 
  

 

Solving for λ becomes 

 

𝜆 =
𝛽𝐹+𝑄)

𝑁+𝛽𝑄−𝛽𝐸𝑀
> 1  (44)  

 

Hence, E.E.P proved. 

The endemic equilibrium point is thus shown numerically in the figure below. 

 

 
 

Fig 2: Total Malaria-infected individuals with time (EEP) 
 

Global stability analysis of the Endemic Equilibrium point 

To determine the prerequisites for the stability of the endemic equilibrium point, a Lyapunov criterion was used. This involved 

identifying the necessary conditions for the derivative of the derivative of the Lyapunov fuction to be negative definite, which 

confirms global asymptotic stability for the reduced equations of the system (1-9);then simplifying the system by introducing 𝛺𝑖;  

 
𝑑𝑆𝐻

𝑑𝑡
= 𝜋 + ᴢ𝐼𝑉 − 𝛼𝑆𝐻 − 𝜇𝑆𝐻 =  𝜋 + ᴢ𝐼𝑉 − 𝛺1𝑆𝐻  

 
dE

dt
= 𝛼𝑆𝐻 + 𝜌𝑅 − 𝜆𝐸 − (1 − 𝜆)𝐸 − 𝜇𝐸 = 𝛼𝑆𝐻 + 𝜌𝑅 − 𝛺2𝐸  

 
d𝐼𝐶

dt
= 𝜆𝐸 − ɸ𝐼𝐶 −  Ө𝐼𝐶 − ɯ𝐼𝐶 − (1 − ɯ)𝐼𝐶 − 𝜇𝐼𝐶 = 𝜆𝐸 − 𝛺3𝐼𝐶   

 
d𝐼𝐹

dt
= (1 − 𝜆)𝐸 − 𝑣𝐼𝐹 − 𝜖𝐼𝐹 − 𝜇𝐼𝐹 − 𝛾𝐼𝐹 = (1 − 𝜆)𝐸 − 𝛺4𝐼𝐹  (45) 

 
d𝑇𝑃

dt
= ɯ𝐼𝐶 − 𝜖𝑇𝑃 − 𝜇𝑇𝑃 − 𝑋𝑇𝑃 = ɯ𝐼𝐶 − 𝛺5𝑇𝑃  

 
d𝑇𝑛

dt
= (1 − ɯ)𝐼𝐶 − 𝑒𝑇𝑛 − 𝜇𝑇𝑛 − (1 − 𝑥)𝑇𝑛 = (1 − ɯ)𝐼𝐶 − 𝛺6𝑇𝑛  

 
dR

dt
= 𝑥𝑇𝑃 + 𝛾𝐼𝐹 − 𝜌𝑅 − 𝜇𝑅 + (1 − 𝑥)𝑇𝑛 = 𝑥𝑇𝑃 + (1 − 𝑥)𝑇𝑛 + 𝛾𝐼𝐹 − 𝛺7𝑅  

 
dS𝑉

dt
=∧ +ɸ𝐼𝐶 + 𝑣𝐼𝐹 − 𝜓𝑆𝑉 − 𝜇𝑆𝑉 =∧ +ɸ𝐼𝐶 + 𝑣𝐼𝐹 − 𝛺8𝑆𝑉  

  
d𝐼𝑉

dt
= 𝜓𝑆𝑉 − 𝑧𝐼𝑉 − 𝜏𝐼𝑉 = 𝜓𝑆𝑉 − 𝛺9𝐼𝑉  

 

The control reproduction number (𝑅𝑂
∗ ), the force of infection (𝜆∗), D.F.E  

𝐸0 = (𝑆𝐻
0 , 𝐸0, 𝐼𝐶

0, 𝐼𝐹
0, 𝑇𝑃

0, 𝑇𝑛
0, 𝑅0, 𝑆𝑉

0, 𝐼𝑉
0) = (

𝜋

𝜇
, 0,0,0,0,0,0,0,0,0) and E.E.P 𝐸∗ = (𝑆∗, 𝐸∗, 𝐼𝐶

∗ , 𝐼𝐹
∗𝑇𝑃

∗, 𝑇𝑛
∗, 𝑅∗, 𝑆𝑉

∗ , 𝐼𝑉
∗of the system is 

given by; 
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𝑅𝑂
∗ =

𝛽

𝑁
(
𝑆0

𝛺1
+

𝑆0Ƞ1

𝛺1𝛺6
+

𝑆0Ƞ2

𝛺1𝛺2
+

𝑆0Ƞ3

𝛺1𝛺4
+

𝑆0Ƞ4

𝛺1𝛺3
  (46) 

 

The system of equation in (4.1.8.1) we propose Lyaponuv function  

 

𝐾(𝑆𝐻 , 𝐸, 𝐼𝐶 , 𝐼𝐹 , 𝑇𝑃 , 𝑇𝑛, 𝑅, 𝑆𝑉 , 𝐼𝑉) = 𝑆𝐻 − 𝑆𝐻
∗ − 𝑆𝐻

∗ 𝑙𝑛
𝑆𝐻

𝑆𝐻
∗ + 𝑦1 (𝐸 − 𝐸∗ − 𝐸∗𝑙𝑛

𝐸

𝐸∗) + 𝑦2 (𝐼𝐶 − 𝐼𝐶
∗ − 𝐼𝐶

∗𝑙𝑛
𝐼𝐶

𝐼𝐶
∗) + 𝑦3 (𝐼𝐹 − 𝐼𝐹

∗ −

𝐼𝐹
∗𝑙𝑛

𝐼𝐹

𝐼𝐹
∗) + 𝑦4 (𝑇𝑃 − 𝑇𝑃

∗ − 𝑇𝑃
∗𝑙𝑛

𝑇𝑃

𝑇𝑃
∗) + 𝑦5 (𝑇𝑛 − 𝑇𝑛

∗ − 𝑇𝑛
∗𝑙𝑛

𝑇𝑛

𝑇𝑛
∗) + 𝑦6 (𝑅 − 𝑅∗ − 𝑅∗𝑙𝑛

𝑅

𝑅∗) + 𝑦7 (𝑆𝑉 − 𝑆𝑉
∗ − 𝑆𝑉

∗𝑙𝑛
𝑆𝑉

𝑆𝑉
∗) + 𝑦8 (𝐼𝑉 − 𝐼𝑉

∗ −

𝐼𝑉
∗ 𝑙𝑛

𝐼𝑉

𝐼𝑉
∗)  (47) 

 

 𝑦1, 𝑦2 , … , 𝑦8are all positive to be determined. 

 

The Lyapunov function 𝐾(𝑆𝐻 , 𝐸, 𝐼𝐶 , 𝐼𝐹 , 𝑇𝑃 , 𝑇𝑛 , 𝑅, 𝑆𝑉 , 𝐼𝑉) satisfies the condition 𝐾(𝑆∗, 𝐸∗, 𝐼𝐶
∗ , 𝐼𝐹

∗𝑇𝑃
∗, 𝑇𝑛

∗, 𝑅∗, 𝑆𝑉
∗ , 𝐼𝑉

∗) = 0 and 

𝐾(𝑆𝐻 , 𝐸, 𝐼𝐶 , 𝐼𝐹 , 𝑇𝑃 , 𝑇𝑛, 𝑅, 𝑆𝑉 , 𝐼𝑉) > 0, hence it’s definite for;  

 
𝑑𝑘(𝑆𝐻,𝐸,𝐼𝐶,𝐼𝐹,𝑇𝑃,𝑇𝑛,𝑅,𝑆𝑉,𝐼𝑉)

𝑑𝑡
 (48) For it to be negative definite, it must satisfy, 

 
𝑑𝑘(𝑆∗,𝐸∗,𝐼𝐶

∗ ,𝐼𝐹
∗𝑇𝑃

∗,𝑇𝑛
∗,𝑅∗,𝑆𝑉

∗ ,𝐼𝑉
∗

𝑑𝑡
= 0 And 

𝑑𝑘(𝑆∗,𝐸∗,𝐼𝐶
∗ ,𝐼𝐹

∗𝑇𝑃
∗,𝑇𝑛

∗,𝑅∗,𝑆𝑉
∗ ,𝐼𝑉

∗

𝑑𝑡
< 0  

 

Therefore, the E.E.P 𝐸∗ = (𝑆∗, 𝐸∗, 𝐼𝐶
∗, 𝐼𝐹

∗𝑇𝑃
∗, 𝑇𝑛

∗, 𝑅∗, 𝑆𝑉
∗ , 𝐼𝑉

∗  for the system satisfies, 

 

𝜋 = 𝛼𝑆𝐻
∗∗ + 𝜇𝑆𝐻

∗∗ − ᴢ𝐼𝑉
∗∗ , 𝛺2

∗∗𝐸∗∗ = 𝛼∗∗𝑆𝐻
∗∗ + 𝜌∗∗𝑅∗∗ , 𝛺3

∗∗𝐼𝐶
∗∗ = 𝜆∗∗𝐸∗∗ , (1 − 𝜆)∗∗𝐸∗∗ = 𝛺4𝐼𝐹

∗∗ , 

ɯ𝐼𝐶
∗∗ = 𝛺5𝑇𝑃

∗∗, (1 − ɯ)𝐼𝐶
∗∗ = 𝛺6𝑇𝑛

∗∗ , 𝑥𝑇𝑃
∗∗ + (1 − 𝑥)𝑇𝑛

∗∗ + 𝛾𝐼𝐹
∗∗ = 𝛺7𝑅

∗∗ ,  

∧ +ɸ𝐼𝐶
∗∗ + 𝑣𝐼𝐹

∗∗ = 𝛺8𝑆𝑉
∗∗ and 𝜓𝑆𝑉

∗∗ = 𝛺9𝐼𝑉
∗∗  

 

𝑑𝑘((𝑆𝐻 , 𝐸, 𝐼𝐶 , 𝐼𝐹 , 𝑇𝑃 , 𝑇𝑛 , 𝑅, 𝑆𝑉 , 𝐼𝑉) = (1 −
𝑆𝐻

∗∗

𝑆𝐻
) (

𝑑𝑆𝐻

𝑑𝑡
) + 𝑦1 (1 −

𝐸∗∗

𝐸
)

𝑑𝐸

𝑑𝑡
+ 𝑦2 (1 −

𝐼𝐶
∗∗

𝐼𝐶
)

𝑑𝐼𝐶

𝑑𝑡
+ 𝑦3 (1 −

𝐼𝐹
∗∗

𝐼𝐹
)

𝑑𝐼𝐹

𝑑𝑡
+ 𝑦4 (1 −

𝑇𝑃
∗∗

𝑇𝑃
)

𝑑𝑇𝑃

𝑑𝑡
+

𝑦5 (1 −
𝑇𝑛

∗∗

𝑇𝑛
)

𝑑𝑇𝑛

𝑑𝑡
+ 𝑦6 (1 −

𝑅∗∗

𝑅
)

𝑑𝑅

𝑑𝑡
+ 𝑦7 (1 −

𝑆𝑉
∗∗

𝑆𝑉
)

𝑑𝑆𝑉

𝑑𝑡
+ 𝑦8 (1 −

𝐼𝑉
∗∗

𝐼𝑣
)

𝑑𝐼𝑉

𝑑𝑡
  (48)  

 

Substituting 
𝑑𝑆𝐻

𝑑𝑡
, 
𝑑𝐸

𝑑𝑡
, 
𝑑𝐼𝐶

𝑑𝑡
, 
𝑑𝐼𝐹

𝑑𝑡
, 
𝑑𝑇𝑃

𝑑𝑡
,
𝑑𝑇𝑛

𝑑𝑡
, 
𝑑𝑅

𝑑𝑡
, 
𝑑𝑆𝑉

𝑑𝑡
,
𝑑𝐼𝑉

𝑑𝑡
 in (48); 

 

𝑑𝑘((𝑆𝐻 , 𝐸, 𝐼𝐶 , 𝐼𝐹 , 𝑇𝑃 , 𝑇𝑛 , 𝑅, 𝑆𝑉 , 𝐼𝑉) = (1 −
𝑆𝐻

∗∗

𝑆𝐻
) (𝛼𝑆𝐻

∗∗ + 𝜇𝑆𝐻
∗∗ − ᴢ𝐼𝑉

∗∗ + ᴢ𝐼𝑉 − 𝛺1𝑆𝐻) + 𝑦1 (1 −
𝐸∗∗

𝐸
) (𝛼𝑆𝐻 + 𝜌𝑅 − 𝛺2𝐸) +

𝑦2 (1 −
𝐼𝐶
∗∗

𝐼𝐶
) (𝜆𝐸 − 𝛺3𝐼𝐶) + (𝑦3 (1 −

𝐼𝐹
∗∗

𝐼𝐹
) (1 − 𝜆)𝐸 − 𝛺4𝐼𝐹) + 𝑦4 (1 −

𝑇𝑃
∗∗

𝑇𝑃
) (ɯ𝐼𝐶 − 𝛺5𝑇𝑃) + 𝑦5 (1 −

𝑇𝑛
∗∗

𝑇𝑛
) ((1 − ɯ)𝐼𝐶 − 𝛺6𝑇𝑛) +

𝑦6 (1 −
𝑅∗∗

𝑅
) (𝑥𝑇𝑃 + (1 − 𝑥)𝑇𝑛 + 𝛾𝐼𝐹 − 𝛺7𝑅) + 𝑦7 (1 −

𝑆𝑉
∗∗

𝑆𝑉
) (∧ +ɸ𝐼𝐶 + 𝑣𝐼𝐹 − 𝛺8𝑆𝑉) + 𝑦8 (1 −

𝐼𝑉
∗∗

𝐼𝑣
) (𝜓𝑆𝑉 − 𝛺9𝐼𝑉)  (49) 

 

𝑃 = +(
𝛽(Ƞ1𝐼𝑉(𝑡)+Ƞ2𝐼𝐹(𝑡)+Ƞ3𝑇𝑛(𝑡)+Ƞ4𝑇𝑃(𝑡)+𝐼𝐶

𝐸(𝑡)+𝐼𝐶(𝑡)+𝐼𝐹(𝑡)+𝑅(𝑡)+𝑆𝐻(𝑡)+𝑇𝑃(𝑡)+𝑇𝑛(𝑡)
− 1)𝐸(𝑡)) + (

𝐼𝐶
∗∗

𝐼𝐶(𝑡)
− 1) (−

𝛽(Ƞ1𝐼𝑉(𝑡)+Ƞ2𝐼𝐹(𝑡)+Ƞ3𝑇𝑛(𝑡)+Ƞ4𝑇𝑃(𝑡)+𝐼𝐶

𝐸(𝑡)+𝐼𝐶(𝑡)+𝐼𝐹(𝑡)+𝑅(𝑡)+𝑆𝐻(𝑡)+𝑇𝑃(𝑡)+𝑇𝑛(𝑡)
+  𝜇IC(𝑡) +

𝜔IC(𝑡) + 𝜙IC(𝑡) + 𝜃IC(𝑡) − (𝜔 − 1)IC(𝑡)) + (
𝐼𝐹
∗∗

𝐼𝐹(𝑡)
− 1)(𝜖IF(𝑡) + 𝛾IF(𝑡) + 𝜇IF(𝑡) + 𝑣IF(𝑡) +

(
𝛽(Ƞ1𝐼𝑉(𝑡)+Ƞ2𝐼𝐹(𝑡)+Ƞ3𝑇𝑛(𝑡)+Ƞ4𝑇𝑃(𝑡)+𝐼𝐶

𝐸(𝑡)+𝐼𝐶(𝑡)+𝐼𝐹(𝑡)+𝑅(𝑡)+𝑆𝐻(𝑡)+𝑇𝑃(𝑡)+𝑇𝑛(𝑡)
− 1)𝐸(𝑡)) + (

𝐼𝑉
∗∗

𝐼𝑉(𝑡)
− 1)(−𝜓SV(𝑡) + 𝜏IV(𝑡) + 𝑧IV(𝑡)) + (

𝑅∗∗

𝑅(𝑡)
− 1)(−𝛾IF(𝑡) + 𝜇𝑅(𝑡) +

𝜌𝑅(𝑡) − 𝑥TP(𝑡) + (𝑥 − 1)Tn(𝑡)) + (
𝑆𝐻

∗∗

𝑆𝐻(𝑡)
− 1)(𝛼SH(𝑡) + 𝜇SH(𝑡) − 𝜋 − 𝑧IV(𝑡)) + (

𝑇𝑃
∗∗

𝑇𝑃(𝑡)
− 1)(𝑋TP(𝑡) + 𝜖TP(𝑡) + 𝜇TP(𝑡) −

𝜔IC(𝑡)) + (
𝑇𝑛

∗∗

𝑇𝑛(𝑡)
− 1)(𝑒Tn(𝑡) + 𝜇Tn(𝑡) + (𝜔 − 1)IC(𝑡) − (𝑥 − 1)Tn(𝑡))  (50) 

 

𝑄 = −(
𝐸∗∗

𝐸(𝑡)
− 1) (𝛼SH(𝑡) −

𝛽(Ƞ1𝐼𝑉(𝑡)+Ƞ2𝐼𝐹(𝑡)+Ƞ3𝑇𝑛(𝑡)+Ƞ4𝑇𝑃(𝑡)+𝐼𝐶(𝑡)𝐸(𝑡)

𝐸(𝑡)+𝐼𝐶(𝑡)+𝐼𝐹(𝑡)+𝑅(𝑡)+𝑆𝐻(𝑡)+𝑇𝑃(𝑡)+𝑇𝑛(𝑡)
− 𝜇𝐸(𝑡) + 𝜌𝑅(𝑡) − (

𝑆𝑉
∗∗

𝑆𝑉(𝑡)
− 1)(Λ − 𝜇SV(𝑡) + 𝜙IC(𝑡) −

𝜓SV(𝑡) + 𝑣IF(𝑡))  (51) 

 

Where
𝑑𝐾

𝑑𝑡
= 0, holds only when (𝑆𝐻 = 𝑆𝐻

∗∗. 𝐸 = 𝐸∗∗, 𝐼𝐶 = 𝐼𝐶
∗∗, 𝐼𝐹 = 𝐼𝐹

∗∗ , 𝑇𝑃 = 𝑇𝑃
∗∗, 𝑇𝑛 = 𝑇𝑛

∗∗, 𝑅 = 𝑅∗∗, 𝑆𝑉 = 𝑆𝑉
∗∗, and𝐼𝑉 = 𝐼𝑉

∗∗ ), then 

the maximal compact invariant set in (𝑆; 𝐸, 𝐼) ∈∩: 
𝑑𝑣

𝑑𝑡
= 0 is singleton 𝐸∗

∗∗ Lasalle’s invariance principal, 
𝑑𝐿(𝑆,𝐼,𝐴,𝑅)

𝑑𝑡
< 0 if and only 

if 𝑃 >  𝑄 [2]. This outcome indicates that malaria will continue to exist whenever𝑃 > 𝑄, regardless of the initial conditions 

 

Bifurcation analysis 

We will employ this method to determine the existence of backward and forward bifurcation. 

 

Theorem 5  

The model exhibits a forward bifurcation at 𝑅𝑂 = 1. Hence, the endemic equilibrium point 𝐸∗is locally asymptotically stable for 

𝑅0 > 1 but close to 1. 
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Proof 

We perform a bifurcation analysis using the Centre Manifold Theorem (Liu and Zhang, 2011). We rewrite the human component 

of the system using notations for simplicity. Let𝑦1 = 𝑆𝐻, 𝑦2 = 𝐸, 𝑦3 = 𝐼𝐶 , 𝑦4 = 𝐼𝑓, 𝑦5 = 𝑇𝑛, 𝑦6 = 𝑇𝑃 , 𝑦7 = 𝑅, 𝑦8 = 𝑆𝑉, and 𝑦9 =

𝐼𝑉, such that 𝑁 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 + 𝑦9  (52) 

 

Introducing vector notation, (𝑦 = 𝑦1, 𝑦2, 𝑦3 , 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦9)
𝑇 , model system (3.1-3.9) can be written in the form , 

𝑑𝑦

𝑑𝑡
= 𝐹(𝑦) 

with 

 

𝐹 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8, 𝑓9)
𝑇 as follows: 

 

 
𝑑𝑆𝐻

𝑑𝑡
= 𝑓1 =  𝜋 + ᴢ𝐼𝑉 − 𝑦1𝑆𝐻 , 

dE

dt
= 𝑓2 = 𝛼𝑆𝐻 + 𝜌𝑅 − 𝑦2𝐸, 

d𝐼𝐶

dt
= 𝑓3 = 𝜆𝐸 − 𝑦3𝐼𝐶  , 

d𝐼𝐹

dt
= 𝑓4 = (1 − 𝜆)𝐸 − 𝑦4𝐼𝐹, 

d𝑇𝑃

dt
= 𝑓5 =

ɯ𝐼𝐶 − 𝑦5𝑇𝑃 , 
d𝑇𝑛

dt
= 𝑓6 = (1 − ɯ)𝐼𝐶 − 𝑦6𝑇𝑛 , 

dR

dt
= 𝑓7 = 𝑥𝑇𝑃 + (1 − 𝑥)𝑇𝑛 + 𝛾𝐼𝐹 − 𝑦7𝑅 , 

dS𝑉

dt
= 𝑓8 =∧ +ɸ𝐼𝐶 + 𝑣𝐼𝐹 − 𝑦8𝑆𝑉 and 

d𝐼𝑉

dt
= 𝑓9 = 𝜓𝑆𝑉 − 𝑦9𝐼𝑉  (53) 

 

Where 𝜆 = 𝛽∗(
𝐼𝐶+𝛽1𝐼𝑉+𝛽2𝐼𝑓+𝛽3𝑇𝑛+𝛽4𝑇𝑃

𝑁
.  

 

The Jacobian system (4.1.8.1) at disease-free equilibrium point is obtained as, where 𝛽 = 𝛽∗ 

 

𝐽(𝐸0, 𝛽∗) =

(

 
 
 
 
 
 

−𝛺1 0 0 0 0 0 0 0 𝜁
𝛼 𝛺2 0 0 0 0 𝜌 0 0
0 0 −𝛺3 0 0 0 0 0 0
0 1 0 −𝛺4 0 0 0 0 0
0 0 ѡ 0 −𝛺5 0 0 0 0
0 0 1 − ѡ 0 0 −𝛺6 0 0 0
0 0 0 𝛾 𝑥 1 − 𝑥 −𝛺7 0 0
0 0 Փ 𝑣 0 0 0 −𝛺8 0
0 0 0 0 0 0 0 𝜓 −𝛺9)

 
 
 
 
 
 

  (54) 

 

Considering a case where 𝑅𝑂 = 1and let 𝛽 = 𝛽∗ is a bifurcation parameter. Therefore, solving 𝛽 from 𝑅𝑂 = 1, We get 

 

𝛽 = 𝛽∗ =
𝜇𝑁

𝜋
. [ 

ѡ

𝛺3𝛺5
+

1−ѡ

𝛺3𝛺6
+

𝛾

𝛺4
+

Ƞ2

𝛺4
+

Ƞ3

𝛺6
+

Ƞ4

𝛺5
+

∧𝜓Ƞ1

𝜇𝛺9
]−1  (55) 

 

Where 𝐽(𝐸∗) with 𝛽 = 𝛽∗has simple zero eigenvalue. Thus, applying Center Manifold theory to analyze dynamics of model 

around 

 

𝛽 = 𝛽∗. Then 𝐽(𝐸∗) near 𝛽 = 𝛽∗have both right eigenvector and a left eigenvector that match with zero eigenvalue given by 𝑘 =
(𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑘7, 𝑘8, 𝑘9)

𝑇 and 𝑙 = (𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6, 𝑙7, 𝑙8, 𝑙9)
𝑇 ,respectively. Multiplying right eigenvector k with 

𝐽(𝐸0, 𝛽∗) and equating to zero. We solve to obtain right eigenvector k and left eigenvector l. 

 

Let 𝑘1 = 1, then 𝑘2 =
1

𝛺4
, 𝑘3 =

1

𝛺2𝛺4
, 𝑘4 =

1−ѡ

𝛺3𝛺6
, 𝑘5 =

ѡ

𝛺3𝛺5
,𝑘6 =

𝛾

𝛺1𝛺7
+

1−𝑥

𝛺6𝛺7
+

𝑥

𝛺5𝛺7
 and 𝑘7 =

Փ

𝛺3𝛺9
+

𝑣

𝛺4𝛺9
 

 

Also let 𝑙1 = 1, then 𝑙2 =
1

𝛺2
, 𝑙3 =

1

𝛺2𝛺4
, 𝑙4 =

1−𝑥

𝛺6𝛺7
, 𝑙5 =

𝑥

𝛺5𝛺7
, 𝑙6 =

𝜌

𝛺2𝛺7
, 𝑙7 =

Փ

𝛺3𝛺9
+

𝑣

𝛺4𝛺9
 respectively. 

 

Finding transpose of 𝐽(𝐸0, 𝛽∗), we obtain 

 

𝐽(𝐸0, 𝛽∗)𝑇 =

(

 
 
 
 

−𝛺2 0 1 0 0 0 0
0 −𝛺3 0 1 − ѡ ѡ 0 Փ
0 0 −𝛺4 0 0 𝛾 𝑣
0 0 0 −𝛺6 0 1 − 𝑥 0
0 0 0 0 −𝛺5 𝑥 0
𝜌 0 0 0 0 −𝛺7 0
0 0 0 0 0 0 −𝛺9)

 
 
 
 

  (56) 

 

Multiply the left eigenvector l with matrix 𝐽(𝐸0, 𝛽∗)𝑇 and equating to zero. Solving to obtain 𝑙1 = 1, then 𝑙2 =
1

𝛺2
, 𝑙3 =

1

𝛺2𝛺4
, 𝑙4 =

1−𝑥

𝛺6𝛺7
, 𝑙5 =

𝑥

𝛺5𝛺7
, 𝑙6 =

𝜌

𝛺2𝛺7
, 𝑙7 =

Փ

𝛺3𝛺9
+

𝑣

𝛺4𝛺9
, therefore l lies in the left null space of the Jacobian — satisfying the condition for 

applying Center Manifold Theory near 𝑅𝑂 = 1 with 𝛽 = 𝛽∗ 

Now compute for bifurcation coefficients a and b . Since𝑙1 = 0. We will compute partial derivatives of 𝑓1, 𝑓2, … , 𝑓9at disease free 

equilibrium point. For the model, the associated nonzero partial derivatives of 𝑓1, 𝑓2, … , 𝑓9 is given by ; nonzero second order 

partial derivatives as follows; 𝑓3 = 𝜆𝐸 − 𝛺3𝐼𝐶: 
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𝜕2𝑓3

 𝜕𝐼𝐶𝜕𝐸
=

𝛽

𝑁
, 

𝜕2𝑓3

𝜕𝐼𝑉𝜕𝐸
=

𝛽Ƞ1

𝑁
, 

𝜕2𝑓3

𝜕𝐼𝐹𝜕𝐸
=

𝛽Ƞ2

𝑁
, 

𝜕2𝑓3

𝜕𝑇𝑛𝜕𝐸
=

𝛽Ƞ3

𝑁
 and 

𝜕2𝑓3

𝜕𝑇𝑃𝜕𝐸
=

𝛽Ƞ4

𝑁
  (57) 

 

 𝑓4 = (1 − 𝜆)𝐸 − 𝛺4𝐼𝐹: 

 
𝜕2𝑓4

𝜕𝐼𝐶𝜕𝐸
= −

𝛽

𝑁
, 

𝜕2𝑓4

𝜕𝐼𝑉𝜕𝐸
= −

𝛽Ƞ1

𝑁
, 

𝜕2𝑓4

𝜕𝐼𝐹𝜕𝐸
= −

𝛽Ƞ2

𝑁
, 

𝜕2𝑓4

𝜕𝑇𝑛𝜕𝐸
= −

𝛽Ƞ3

𝑁
 and 

𝜕2𝑓4

𝜕𝑇𝑃𝜕𝐸
= −

𝛽Ƞ4

𝑁
  (58) 

 

Computing bifurcation coefficients a and b as follows: 

 

𝑎 =
𝛽𝑘2

𝑁
(𝑙3 − 𝑙4)(𝑘3 + Ƞ1𝑘9 + Ƞ2𝑘4 + Ƞ3𝑘5 + Ƞ4𝑘6) 

 

And 𝑏 =
𝑘2

𝑁
(𝑙3 − 𝑙4)(𝑘3 + Ƞ1𝑘9 + Ƞ2𝑘4 + Ƞ3𝑘5 + Ƞ4𝑘6)  (59) 

 

If a<-0 and b>0b > 0b>0, the model exhibits a forward bifurcation, where the disease-free equilibrium is locally asymptotically 

stable when 𝑅𝑂<1, and a unique endemic equilibrium exists and is stable when 𝑅𝑂>1. 

If a>0and b>0 the model exhibits a backward bifurcation, indicating the possibility of multiple endemic equilibria coexisting with 

the disease-free state when 𝑅𝑂<1, and thus, control strategies must lower 𝑅𝑂significantly below 1 to eliminate the disease. Hence 

prove. 

 

Simulations parameters of the model 

Utilizing the fourth-order Runge-Kutta method in Matlab, model simulation is carried out and numerical simulations are 

performed, which is used to study dynamic behavior of model state variables using model parameters. Numerical simulations is 

performed taking care of initial conditions and parameters provided above and results of are presented graphically as shown 

below.  

 

Normalizing sensitivity analysis of basic reproduction number 
A crucial method in mathematical epidemiology is sensitivity analysis, which evaluates the impact of model parameter changes on 

significant outcomes such as the fundamental reproduction number 𝑅𝑂. Relative changes in outcomes brought on by parameter 

changes are measured by the normalized forward sensitivity index. This analysis helps prioritize intervention strategies by 

highlighting the parameters that significantly impact disease transmission. A positive index suggests that increasing the parameter 

boosts disease spread, while a negative index indicates that increasing the parameter aids in controlling the disease. 

 
Table 1: For Normalized Sensitivity Indices of Parameters. 

 

Parameters Sensitivity index, R0R_0R0 

β +1.0000 

η₁ +0.1964 

η₂ +0.2455 

η₃ +0.1498 

η₄ +0.0783 

Φ -0.2541 

Θ -0.1906 

Ω 0.0000 

ν -0.2156 

Ε -0.1672 

Γ -0.1275 

Χ -0.0513 

μ_H -0.3408 

z -0.2957 

τ -0.2957 

 

The sensitivity analysis shows that the transmission rate (𝛽) has the largest positive influence on 𝑅𝑂 (𝛽= +1.0000), meaning that 

any proportional change in results in an equivalent proportional change in𝛽. This confirms that reducing transmission through 

interventions. The infectivity parameters (Ƞ1, Ƞ2, Ƞ3 𝑎𝑛𝑑 Ƞ4) also have positive indices, indicating that increased infectiousness 

from specific compartments particularly non-conflict infected humans and infectious mosquitoes will significantly increase. 

Negative sensitivity indices identify parameters that help reduce transmission when increased. The human death rate (𝜇𝐻) and 

mosquito mortality parameters (Z) and (𝜏) are among the most influential, suggesting that measures that shorten the life span of 

mosquitoes or infected individuals substantially reduce . Recovery and disease progression rates (Փ,Ѳ , v, e,𝜖 ,𝛾 , x, 𝜓) also 

contribute negatively, with (Փ) and v being particularly important as they shorten the infectious period. Interestingly, the 

treatment initiation rate (ѡ) has no direct effect on 𝑅𝑂 in this formulation, indicating that its influence may operate indirectly 

through other model processes. In summary, the most effective strategies for controlling malaria in this setting should focus on 

reducing, increasing mosquito mortality rates (z ,𝜏), and accelerating recovery or removal from infectious states (Փ, v,), 

particularly in conflict-affected areas where treatment access is constrained. 
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Malaria's effects on the entire population in the absence of treatment 

 

 
 

Fig 3: Total human population over time in absence of malaria 

 

The dynamics of the entire human population over time, without malaria infection, are depicted in the graph. When malaria 

transmission parameters are set to zero, natural birth and death rates alone control population change; neither disease-induced 

mortality nor infection-related transitions occur. The curve shows a gradual and steady increase in total population due to the 

consistent recruitment rate exceeding the natural mortality rate. Since no individuals enter exposed or infectious compartments, 

the entire population remains in the susceptible and recovered states, with minimal losses due to natural death. This trend reflects 

the ideal scenario where, in the absence of malaria, the human population would grow predictably without disruption, 

underscoring the significant demographic burden malaria imposes in endemic settings. 

 

The impact of malaria on treated population over time 

 

 
 

Fig 4: Fully vs partially treated malaria individuals over time 

 

The graph illustrates the progression of malaria-infected individuals undergoing full treatment (𝑇𝑃) and partial treatment (𝑇𝑛) over 

time. Initially, the number of partially treated individuals is higher, but both compartments exhibit a declining trend as treatment 

progresses. Fully treated individuals decline more rapidly, reflecting the higher recovery and transition rates associated with 

effective treatment. In contrast, the slower decline in the partially treated group suggests lower recovery efficacy or incomplete 

adherence, resulting in prolonged infection duration. Over time, both populations approach zero, indicating the eventual clearance 

of infections with sustained treatment efforts. This highlights the critical importance of full treatment coverage to effectively 

reduce the malaria burden. 

 

The impact of malaria in conflict zones and other zones 

Conflict and non-conflict areas' total numbers of malaria-infected people throughout time are contrasted in the figure below. It 

makes it abundantly evident that the burden of infection is far larger and more persistent in the conflict zone. This is due to the 

increased transmission rate and reduced treatment access modeled for conflict zones, resulting in a rapid rise and slower decline of 

infections. In contrast, the non-conflict zone shows a lower peak and quicker stabilization, reflecting better healthcare access and 
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treatment efficacy. This trend highlights the critical impact of conflict on malaria dynamics, emphasizing the need for targeted 

intervention and healthcare support in vulnerable regions. 

 

 
 

Fig 5: Total malaria infected individuals over time (Conflict vs Non-conflict Zone) 

 

Implication of malaria treatment on total population over time 
The graph compares the total human population over time under two scenarios: with malaria treatment and without malaria 
treatment. In the untreated case (red dashed line), the total population declines more rapidly due to increased morbidity and 
mortality caused by uncontrolled malaria infections. Conversely, the treated case (green solid line) shows a more stable population 
size, with only a mild decline followed by gradual stabilization. This demonstrates that effective treatment not only reduces the 
disease burden but also helps maintain a healthier and more stable population size. The divergence between the two curves 
becomes more pronounced over time, emphasizing the long-term benefits of implementing widespread malaria treatment 
programs. 
 

 
 

Fig 6: Infection of malaria treatment on total population 
 
Effects of Malaria Recovery rate on total population over time  
The graph below illustrates the implications of varying recovery rates (γ) on the total human population over time in a malaria-
endemic setting. In contrast to situations with lower recovery rates (γ=0.05), which result in more substantial population reduction 
or stagnation, scenarios with higher recovery rates (γ=0.2) preserve a more stable and larger overall population. This is because a 
slower recovery rate causes people to take longer to recover from an infection, which lengthens the period of illness and in turn 
increases the disease burden and death from malaria. Conversely, higher recovery rates help reduce the infectious population more 
rapidly, mitigating disease spread and associated deaths, thereby preserving the total population size. The graph underscores the 
critical role of improving recovery (e.g., through effective treatment) in sustaining population health and controlling malaria 
impact. 
 
Relationship between total treated and total infected individuals 
The graph below illustrates a positive but nonlinear relationship between total treated individuals and total infected individuals. 
Initially, an increase in infections leads to a steady rise in treated individuals, indicating a responsive healthcare system. However, 
as infections escalate, particularly in conflict zones, the growth of treated individuals levels off, suggesting a saturation or delay in 
treatment coverage. This could be attributed to healthcare infrastructure limitations and access challenges. Furthermore, the fact 
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that partial treatment exceeds full treatment points to a significant treatment gap, emphasizing the need for improved healthcare 
systems and targeted interventions in conflict-affected areas. 
 

 
 

Fig 7: Relationship between total related and total infected individuals 
 
Conclusion 
We developed a mathematical model for the transmission and treatment of malaria in conflict areas in this research. It looks at the 
stability of equilibrium points that are endemic and disease-free. The results show that the disease-free equilibrium is both locally 
and globally stable when the basic reproduction number 𝑅𝑂 is less than 1, indicating that lowering 𝑅𝑂  below one can stop the 
spread of illness. On the other hand, when 𝑅𝑂 >1, the endemic equilibrium is asymptotically stable. Malaria spreads more quickly 
in conflict areas than in other areas, according to numerical data, yet the disease can be completely eradicated with the right 
intervention.  
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