International Journal of Statistics and Applied Mathematics

ISSN: 2456-1452 NAAS Rating (2025): 4.49 Maths 2025; 10(8): 250-257 © 2025 Stats & Maths https://www.mathsjournal.com Received: 02-07-2025 Accepted: 05-08-2025

Dr. Yashpal

Department of Mathematics, Government P. G. College for Women, Rohtak, Haryana, India

Dr. Parul Singh

Department of Mathematics, Government P. G. College for Women, Rohtak, Haryana, India

On fixed point theorems within multiplicative \mathcal{S} -metric space

Yashpal and Parul Singh

DOI: https://www.doi.org/10.22271/maths.2025.v10.i8c.2151

Abstract

In this paper, we establish some fixed point results by employing an altering distance function for mapping that fulfill certain novel contractive conditions in a complete multiplicative \mathcal{S} -metric space.

Keywords: Fixed point, altering distance function, contractive conditions, multiplicative \mathcal{S} -metric space

Introduction

Banach [1] contraction principle has been a very advantageous and efficacious means in nonlinear analysis. Various authors have generalized Banach contraction principle in different spaces. Singxi *et al.* [18] and Sastry *et al.* [10] studied some common fixed point theorems for different mappings on a 2-metric space. Dhage [4] proved fixed point results in D-metric space. A. E. Bashirov *et al.* [2] introduce a new kind of space called multiplicative metric space in the year 2008 and studied some properties of multiplicative derivatives and multiplicative intergrals.

Definition 1.1 ^[2]: "Let \mathcal{X} be a non-empty set. A multiplicative metric is a mapping on $d: X \times X \to \mathbb{R}^+$ satisfying the following axioms:

- 1. $d(u, v) \ge 1$ for all $u, v \in X$ and d(u, v) = 1 if and only if u = v,
- 2. d(u, v) = d(v, u) for all $u, v \in \mathcal{X}$,
- 3. $d(u, v) \le d(u, w) \cdot d(w, v)$, for all $u, v \in \mathcal{X}$.

Then the mapping d together with \mathcal{X} that is, (\mathcal{X}, d) is a multiplicative metric space." In 2012, Ozavsar and Cevikel [8] introduced the concept of multiplicative contraction mappings and proved some fixed point theorems of such mappings on a complete multiplicative metric space.

Definition 1.2 ^[8]: "Let (X, d) be a multiplicative metric space. A mapping $f: X \to X$ is called a multiplicative contraction if there exist a real constant $\lambda \in [0,1)$ such that

 $d(fu, fv) \le d(u, v)^{\lambda}$, for all $u, v \in \mathcal{X}$."

Theorem 1.3 ^[8]: "Let (\mathcal{X},d) be a multiplicative metric space and let $f:X \to X$ be a multiplicative contraction. If (\mathcal{X},d) is complete then, f has a unique fixed point." In 2012, Sedghi *et. al.* [11] establish the concept of \mathcal{S} -metric space as a generalization of G-metric space and metric space.

Definition 1.4 ^[11]: "Let \mathcal{X} be a non-empty set. An \mathcal{S} -metric on X is a function \mathcal{S} : $\mathcal{X} \times \mathcal{X} \times \mathcal{X} \to [0, \infty)$ satisfying the following axioms:

Corresponding Author:
Dr. Parul Singh
Department of Mathematics,
Government P. G. College for
Women, Rohtak, Haryana, India

- 1. S(u, v, w) = 0 if and only if u = v = w,
- 2. $S(u, v, w) \le S(u, u, a) + S(v, v, a) + S(w, w, a)$, for all $u, v, w \in \mathcal{X}$

An S-metric space is a pair (X, S) where S is a metric on X."

In the setting of S-metric space they proved several fixed and common fixed point theorems (see [5], [12]-[16]). In 2021, Naga Raju [9] introduce the concept of multiplicative S-metric space and studied its topological properties.

Definition 1.5 [9]: "Let \mathcal{X} be a non-empty set. We say that the function $\mathcal{S}: \mathcal{X} \times \mathcal{X} \times \mathcal{X} \to [0, \infty)$ is a multiplicative \mathcal{S} -metric on \mathcal{X} iff it satisfies the following axioms:

- 1. $S(u, v, w) \ge 1$,
- 2. S(u, v) = 1 if and only if u = v = w
- 3. $S(u, v, w) \le S(u, u, a) \cdot S(v, v, a) \cdot S(w, w, a)$, for all $u, v, w, a \in \mathcal{X}$.

Then the mapping (X, S) is called a multiplicative S-metric space."

Definition 1.6 [9]: "We say that a sequence $\{u_n\}$ in a multiplicative S-metric space (\mathcal{X}, S) multiplicative S-convergent to some $\alpha \in \mathcal{X}$ iff for each $\epsilon_0 > 1$, there exist $H \in \mathbb{N}$ such that $S(u_n, u_n, u) < \epsilon_0$, for all $n \geq H$."

Definition 1.7 [9]: "We say that a sequence $\{u_n\}$ in a multiplicative S-metric space (\mathcal{X}, S) multiplicative S-Cauchy sequence in \mathcal{X} iff for each $\in_0 > 1$, there exist $H \in \mathbb{N}$ such that $S(u_n, u_n, u_m) < \in_0$, for all $n, m \ge H$."

Definition 1.8 [9]: "We say that a multiplicative S-metric space $(\mathcal{X}, \mathcal{S})$ is multiplicative S-complete iff every multiplicative S-cauchy sequence in \mathcal{X} is multiplicative S-convergent in \mathcal{X} ."

Definition 1.9 [9]: "Let $(\mathcal{X}, \mathcal{S})$ and $(\mathcal{V}, \mathcal{S}')$ be two multiplicative \mathcal{S} -metric spaces. Then we say that $f: \mathcal{X} \to \mathcal{V}$ is multiplicative \mathcal{S} -continuous at some point $\theta \in \mathcal{X}$ iff for every r > 1, there exists $\eta > 1$ such that $f(B(\theta, \eta)) \subset B(f(\theta), r)$. Thus, we say that f is multiplicative \mathcal{S} -continuous at every point of \mathcal{X} ."

Lemma 1.10 [9]: "In multiplicative S-metric space $(\mathcal{X}, \mathcal{S})$ we have $\mathcal{S}(u, u, v) = \mathcal{S}(v, v, u)$ for all $u, v \in \mathcal{X}$."

Lemma 1.11 [9] "In multiplicative S-metric space $(\mathcal{X}, \mathcal{S})$, $u_n \to u$ iff $\mathcal{S}(u_n, u_n, u) \to 1$, as $n \to \infty$."

Theorem 1.12 [9] "In multiplicative S-metric space $(\mathcal{X}, \mathcal{S})$, if there exist two sequences $\{u_n\}$ and $\{v_n\}$ in \mathcal{X} such that $\lim_{n\to\infty}u_n=u$ and $\lim_{n\to\infty}v_n=v$ then $\lim_{n\to\infty}\mathcal{S}(u_n,u_n,v_n)=\mathcal{S}(u,u,v)$."

Theorem 1.13 [9]: "In multiplicative S-metric space $(\mathcal{X}, \mathcal{S})$, $\{u_n\}$ is a multiplicative S-Cauchy sequence in \mathcal{X} iff $\mathcal{S}(u_n, u_n, u_m) \to 1$ as $m \to \infty$."

Definition 1.14 [6]: "Let f and g be two mappings of a metric space (\mathcal{X}, d) into itself. Then f and g are said to be weakly compatible if they commutes at coincident points, that is, if ft = gt for some $t \in \mathcal{X}$ implies that fgt = gft."

Definition 1.15 [7]: "A function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is called an altering distance function if the following property is satisfied:

- $(\Theta_1) \phi(t) = 1$ if and only if t = 1,
- (Θ_2) ϕ is monotonically non-decreasing function,
- (Θ_3) ϕ is a continuous function."

In our result we use the following class of function.

 $\Phi = \{ \phi : [1, \infty) \to [1, \infty) : \phi \text{ is an altering distance function} \}$

 $\Psi = \{ \psi : [1, \infty) \to [1, \infty) : \text{ for any sequence } \{u_n\} \text{ in } [1, \infty) \text{ with } u_n \to t > 1, \}$

 $\lim_{n\to\infty} \psi(u_n) > 1\}.$

Note that Ψ is non empty, since $\psi(t) = e^t$ for $t \in [1, \infty)$. Thus $\psi \in \Psi$."

Remark: Clearly for $\psi \in \Psi$, $\psi(t) > 1$ for t > 1 and $\psi(1)$ need not be equal to 1.

2. Main Results

Theorem 2.1: Let \mathcal{T} be a multiplicative \mathcal{S} -continuous mapping of a complete multiplicative \mathcal{S} -metric space $(\mathcal{X}, \mathcal{S})$ into itself such that for all $u, v \in \mathcal{X}$

$$\phi(\mathcal{S}(\mathcal{T}u,\mathcal{T}u,\mathcal{T}v)) \le \frac{\phi(M(u,u,v))}{\psi(N(u,u,v))},\tag{2.1}$$

where $\phi \in \Phi$ and $\psi \in \Psi$,

$$M(u,u,v) = \max\left\{\frac{S(u,u,Tu)S(v,v,Tv)}{S(u,u,v)}, \frac{S(v,v,Tu)S(u,u,Tv)}{S(u,u,v)S(v,v,Tv)}, S(u,u,v)\right\} \text{ and }$$

$$N(u,u,v) = \max \left\{ \frac{S(u,u,Tu)S(v,v,Tv)}{S(u,u,v)}, S(u,u,v) \right\}.$$

Then T has a unique fixed point.

Proof: Let u_0 be an arbitrary point. Then there exists $u_1 \in \mathcal{X}$ such that $u_1 = \mathcal{T}u_0$. So we can define a sequence $\{u_n\}$ in \mathcal{X} such that $u_{n+1} = \mathcal{T}u_n$ for $n \ge 0$.

If there exists some $n \in \mathbb{N}$ such that, $u_{n+1} = u_n$. Then we have $u_{n+1} = \mathcal{T}u_n = u_n$, which implies that u_n is a fixed point of \mathcal{T} . Suppose that $u_{n+1} \neq u_n$, that is $\mathcal{S}(u_{n+1}, u_{n+1}, u_n) \neq 1$ for all n. Then from (2.1), we have

$$\phi \big(\mathcal{S}(u_n,u_n,u_{n+1}) \big) = \phi \big(\mathcal{S}(\mathcal{T}u_{n-1},\mathcal{T}u_{n-1},\mathcal{T}u_n) \big)$$

$$\leq \frac{\phi(M(u_{n-1},u_{n-1},u_n))}{\psi(N(u_{n-1},u_{n-1},u_n))}$$

Where

$$M(u_{n-1}, u_{n-1}, u_n)$$

$$= \max\left\{ \frac{\mathcal{S}(u_{n-1},u_{n-1},\mathcal{T}u_{n-1})\mathcal{S}(u_n,u_n,\mathcal{T}u_n)}{\mathcal{S}(u_{n-1},u_{n-1},u_n)}, \frac{\mathcal{S}(u_n,u_n,\mathcal{T}u_{n-1})\mathcal{S}(u_{n-1},u_{n-1},\mathcal{T}u_n)}{\mathcal{S}(u_{n-1},u_{n-1},u_n)\mathcal{S}(u_n,u_n,\mathcal{T}u_n)}, \mathcal{S}(u_{n-1},u_{n-1},u_n) \right\}$$

$$= \max\left\{\frac{s(u_{n-1},u_{n-1},u_n)s(u_n,u_n,u_{n+1})}{s(u_{n-1},u_{n-1},u_n)},\frac{s(u_n,u_n,u_n)s(u_{n-1},u_{n-1},u_{n+1})}{s(u_{n-1},u_{n-1},u_n)s(u_n,u_n,u_{n+1})},s(u_{n-1},u_{n-1},u_n)\right\}$$

and

$$N(u_{n-1},u_{n-1},u_n) = \max\left\{\frac{S(u_{n-1},u_{n-1},Tu_{n-1})S(u_n,u_n,Tu_n)}{S(u_{n-1},u_{n-1},u_n)},S(u_{n-1},u_{n-1},u_n)\right\}$$

$$= \max\left\{\frac{\mathcal{S}(u_{n-1},u_{n-1},u_n)\mathcal{S}(u_n,u_n,u_{n+1})}{\mathcal{S}(u_{n-1},u_{n-1},u_n)},\mathcal{S}(u_{n-1},u_{n-1},u_n)\right\}$$

=
$$max{S(u_n, u_n, u_{n+1}), S(u_{n-1}, u_{n-1}, u_n)}$$

Therefore, we have

$$\phi(\mathcal{S}(u_n, u_n, u_{n+1})) \le \frac{\phi(\max\{\mathcal{S}(u_n, u_n, u_{n+1}), \mathcal{S}(u_{n-1}, u_{n-1}, u_n)\})}{\psi(\max\{\mathcal{S}(u_n, u_n, u_{n+1}), \mathcal{S}(u_{n-1}, u_{n-1}, u_n)\})}. \tag{2.2}$$

If $S(u_n, u_n, u_{n+1}) > S(u_{n-1}, u_{n-1}, u_n)$, then from (2.2), we have

$$\phi(\mathcal{S}(u_n, u_n, u_{n+1})) \le \frac{\phi(\mathcal{S}(u_n, u_n, u_{n+1}))}{\psi(\mathcal{S}(u_n, u_n, u_{n+1}))}$$

that is, $\psi(S(u_n, u_n, u_{n+1})) \le 1$, which is a contradiction. So, we have $S(u_n, u_n, u_{n+1}) \le S(u_{n-1}, u_{n-1}, u_n)$, which implies $\{S(u_n, u_n, u_{n+1})\}$ is a decreasing sequence. Then the inequality (2.2) yields that

$$\phi(\mathcal{S}(u_n, u_n, u_{n+1})) \le \frac{\phi(\mathcal{S}(u_{n-1}, u_{n-1}, u_n))}{\psi(\mathcal{S}(u_{n-1}, u_{n-1}, u_n))}. \tag{2.3}$$

Since $\{S(u_n, u_n, u_{n+1})\}$ is a decreasing sequence of real numbers and it is bounded below, there exists $r \ge 1$ such that

$$S(u_n, u_n, u_{n+1}) \to r \text{ as } n \to \infty$$
(2.4)

Now we shall show that r = 1. Assume that r > 1. Taking limit on both sides of (2.3) and using (2.4), the property of ψ and continuity of φ , we get

$$\phi(r) \le \frac{\phi(r)}{\lim_{n \to \infty} \psi(\mathcal{S}(u_{n-1}, u_{n-1}, u_n))},$$

which implies that $\lim_{n\to\infty} \psi(\mathcal{S}(u_{n-1},u_{n-1},u_n)) \leq 1$, which by the property of ψ , is a contradiction. Therefore,

$$S(u_n, u_n, u_{n+1}) \to 1 \text{ as } n \to \infty$$
 (2.5)

Next we claim that $\{u_n\}$ is a multiplicative S-Cauchy sequence. Suppose that $\{u_n\}$ is not a multiplicative S-Cauchy sequence. Then there exists an $\epsilon_0 > 1$ for which we can find two subsequences of positive integers $\{m(c)\}$ and $\{n(c)\}$ such that for all positive integers c, $n(c) > m(c) \ge c$ and

$$\mathcal{S}(u_{m(c)}, u_{m(c)}, u_{n(c)}) \ge \in_0.$$

Assume that n(c) is the smallest positive integer, we get $n(c) > m(c) \ge c$,

$$S(u_{n(c)}, u_{n(c)}, u_{m(c)}) \ge \epsilon_0 \text{ and } S(u_{n(c)-1}, u_{n(c)-1}, u_{m(c)}) < \epsilon_0.$$
 (2.6)

Now.

$$\in_0 \le S(u_{m(c)}, u_{m(c)}, u_{n(c)}) = S(u_{n(c)}, u_{n(c)}, u_{m(c)})$$

$$\leq S(u_{n(c)}, u_{n(c)}, u_{n(c)-1})S(u_{n(c)}, u_{n(c)}, u_{n(c)-1})S(u_{n(c)-1}, u_{n(c)-1}, u_{m(c)})$$

Taking limit as $c \to \infty$ and using (2.5), we get

$$\lim_{c \to \infty} S(u_{m(c)}, u_{m(c)}, u_{n(c)}) = \epsilon_0. \tag{2.7}$$

Again,

$$S(u_{m(c)-1}, u_{m(c)-1}, u_{n(c)-1})$$

$$\leq \mathcal{S}(u_{m(c)-1}, u_{m(c)-1}, u_{m(c)}). \, \mathcal{S}(u_{m(c)-1}, u_{m(c)-1}, u_{m(c)}). \, \mathcal{S}(u_{m(c)}, u_{m(c)}, u_{n(c)-1}).$$

Taking limit as $c \to \infty$ ad using (2.5) and (2.6), we get

$$\lim_{c \to \infty} S \big(u_{m(c)-1}, u_{m(c)-1}, u_{n(c)-1} \big) = \lim_{c \to \infty} S \big(u_{m(c)}, u_{m(c)}, u_{n(c)-1} \big)$$

$$=\lim_{c\to\infty}\mathcal{S}\big(u_{n(c)-1},u_{n(c)-1},u_{m(c)}\big).$$

Now,

$$S(u_{n(c)-1}, u_{n(c)-1}, u_{m(c)}) \le S(u_{n(c)-1}, u_{n(c)-1}, u_{n(c)}).S(u_{n(c)-1}, u_{n(c)-1}, u_{n(c)})$$

$$. S(u_{n(c)}, u_{n(c)}, u_{m(c)}),$$

Taking limit as $c \to \infty$ in above inequalities and using (2.5)-(2.7), we get

$$\lim_{c \to \infty} S(u_{m(c)-1}, u_{m(c)-1}, u_{n(c)-1}) = \epsilon_0. \tag{2.8}$$

Again,

$$S(u_{n(c)-1}, u_{n(c)-1}, u_{m(c)})$$

$$\leq \mathcal{S}(u_{n(c)-1}, u_{n(c)-1}, u_{n(c)}). \, \mathcal{S}(u_{n(c)-1}, u_{n(c)-1}, u_{n(c)}). \, \mathcal{S}(u_{n(c)}, u_{n(c)}, u_{m(c)}).$$

And

$$S(u_{m(c)-1}, u_{m(c)-1}, u_{n(c)-1})$$

$$\leq \mathcal{S}(u_{m(c)-1}, u_{m(c)-1}, u_{m(c)}). \, \mathcal{S}(u_{m(c)-1}, u_{m(c)-1}, u_{m(c)}). \, \mathcal{S}(u_{m(c)}, u_{m(c)}, u_{n(c)-1}).$$

Taking limit as $c \to \infty$ in above inequalities and using (2.5) and (2.8), we get

$$\lim_{c \to \infty} \mathcal{S}\left(u_{n(c)-1}, u_{n(c)-1}, u_{m(c)}\right) = \in_0.$$
(2.9)

Similarly, we have

$$\lim_{c \to \infty} S(u_{m(c)-1}, u_{m(c)-1}, u_{n(c)}) = \epsilon_0. \tag{2.10}$$

Let

$$M(u_{n(c)-1}, u_{n(c)-1}, u_{m(c)-1}) =$$

$$\max \left\{ \begin{matrix} \frac{\mathcal{S}(u_{n(c)-1},u_{n(c)-1},\mathcal{T}u_{n(c)-1})\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},u_{n(c)-1})}, \frac{\mathcal{S}(u_{n(c)-1},u_{n(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}, \frac{\mathcal{S}(u_{n(c)-1},u_{n(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}, \frac{\mathcal{S}(u_{n(c)-1},u_{n(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}, \frac{\mathcal{S}(u_{n(c)-1},u_{n(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}, \frac{\mathcal{S}(u_{n(c)-1},u_{n(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}, \frac{\mathcal{S}(u_{n(c)-1},u_{n(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}, \frac{\mathcal{S}(u_{n(c)-1},u_{n(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1},\mathcal{T}u_{m(c)-1})}, \frac{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},\mathcal{T}u_{m(c)-1})}, \frac{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},\mathcal{T}u_{m(c)-1})}, \frac{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},\mathcal{T}u_{m(c)-1})}, \frac{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},\mathcal{T}u_{m(c)-1})}, \frac{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}, \frac{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})\mathcal{S}(u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)-1})}, \frac{\mathcal{S}(u_{m(c)-1},u_{m(c)-1},\mathcal{T}u_{m(c)$$

which implies

$$\max \begin{cases} \frac{\delta(u_{n(c)-1},u_{n(c)})\delta(u_{m(c)-1},u_{m(c)})}{\delta(u_{m(c)-1},u_{m(c)-1})}, \frac{\delta(u_{n(c)-1},u_{n(c)-1},u_{m(c)})\delta(u_{m(c)-1},u_{m(c)-1},u_{n(c)})}{\delta(u_{m(c)-1},u_{m(c)-1},u_{m(c)-1},u_{m(c)-1})\delta(u_{m(c)-1},u_{m(c)-1},u_{m(c)})}, \\ \delta(u_{m(c)-1},u_{m(c)-1},u_{m(c)-1},u_{n(c)-1}) \end{cases}$$

$$(2.11)$$

And

$$N(u_{n(c)-1}, u_{n(c)-1}, u_{m(c)-1})$$

$$= \max\left\{\!\!\frac{s(u_{n(c)-1},\!u_{n(c)-1},\!Tu_{n(c)-1})s(u_{m(c)-1},\!u_{m(c)-1},\!Tu_{m(c)-1})}{s(u_{m(c)-1},\!u_{m(c)-1},\!u_{n(c)-1})}, s(u_{m(c)-1},\!u_{m(c)-1},\!u_{n(c)-1})\right\}$$

$$= max \left\{ \frac{\delta(u_{n(c)-1}, u_{n(c)-1}, u_{n(c)})\delta(u_{m(c)-1}, u_{m(c)-1}, u_{m(c)})}{\delta(u_{m(c)-1}, u_{m(c)-1})}, \delta(u_{m(c)-1}, u_{m(c)-1}, u_{n(c)-1}) \right\}.$$
(2.12)

Letting $c \to \infty$ in (2.11) and (2.12), using equations (2.5)-(2.10), we have

$$\lim_{c \to \infty} M\left(u_{n(c)-1}, u_{n(c)-1}, u_{m(c)-1}\right) = \max\{1, \epsilon_0, \epsilon_0\} = \epsilon_0 \tag{2.13}$$

and

$$\lim_{c \to \infty} N(u_{n(c)-1}, u_{n(c)-1}, u_{m(c)-1}) = \max\{1, \epsilon_0, \epsilon_0\} = \epsilon_0$$
(2.14)

From (2.1), using (2.11) and (2.12), we have

$$\phi\left(\mathcal{S}\left(u_{m(c)},u_{m(c)},u_{n(c)}\right)\right) = \phi\left(\mathcal{S}\left(\mathcal{T}u_{m(c)-1},\mathcal{T}u_{m(c)-1},\mathcal{T}u_{n(c)-1}\right)\right)$$

$$\leq \frac{\phi(M(u_{n(c)-1},u_{n(c)-1},u_{m(c)-1}))}{\psi(N(u_{n(c)-1},u_{n(c)-1},u_{m(c)-1}))}.$$

Taking limit on both sides and using (2.6), (2.13) and (2.14), the property of ψ and continuity of ϕ , we have

$$\phi(\epsilon_0) \le \frac{\phi(\epsilon_0)}{\lim_{\epsilon \to \infty} \psi(N(u_{n(\epsilon)-1}, u_{n(\epsilon)-1}, u_{m(\epsilon)-1}))},$$

that is, $\lim_{c\to\infty} \psi\left(N\left(u_{n(c)-1},u_{n(c)-1},u_{m(c)-1}\right)\right) \le 1$, which is contradiction by the property of ψ . Thus, $\{u_n\}$ is a multiplicative \mathcal{S} -cauchy sequence in \mathcal{X} . Since \mathcal{X} is multiplicative \mathcal{S} -complete, there exists $w\in\mathcal{X}$ such that $\lim_{n\to\infty}u_n=w$. Then using multiplicative \mathcal{S} -continuity of \mathcal{T} , we get

$$\mathcal{T}w = \mathcal{T}\left(\lim_{n\to\infty} u_n\right) = \lim_{n\to\infty} u_{n+1} = w.$$

Hence w is a fixed point of \mathcal{T} .

Finally, we shall prove the uniqueness of the fixed point of \mathcal{T} . Suppose that w and r ($w \neq r$) be any fixed point of \mathcal{T} . Consider

$$\phi(\mathcal{S}(w,w,r)) = \phi(\mathcal{S}(\mathcal{T}w,\mathcal{T}w,\mathcal{T}r)) \le \frac{\phi(M(w,w,r))}{\psi(N(w,w,r))},$$

where $\phi \in \Phi$ and $\psi \in \Psi$,

$$M(w, w, r) = \max \left\{ \frac{S(w, w, Tw)S(r, r, Tr)}{S(w, w, r)}, \frac{S(r, r, Tw)S(w, w, Tr)}{S(w, w, r)S(r, r, Tr)}, S(w, w, r) \right\}$$

$$= \max\left\{\frac{\mathcal{S}(w,w,w)\mathcal{S}(r,r,r)}{\mathcal{S}(w,w,r)}, \frac{\mathcal{S}(r,r,w)\mathcal{S}(w,w,r)}{\mathcal{S}(w,w,r)\mathcal{S}(r,r,r)}, \mathcal{S}(w,w,r)\right\}$$

$$= S(w, w, r)$$

and

$$N(u, u, v) = \max \left\{ \frac{S(w, w, Tw)S(r, r, Tr)}{S(w, w, r)}, S(w, w, r) \right\} = S(w, w, r).$$

Therefore, we have

$$\phi(\mathcal{S}(w, w, r)) = \phi(\mathcal{S}(\mathcal{T}w, \mathcal{T}w, \mathcal{T}r)) \le \frac{\phi(\mathcal{S}(w, w, r))}{\psi(\mathcal{S}(w, w, r))},$$

which implies that $\psi(S(w, w, r)) \leq 1$, which is contraction by definition of ψ . Hence w = r.

Therefore \mathcal{T} has a unique fixed point.

This completes the proof.

Next we prove the following result without the condition of multiplicative S-continuity of T.

Theorem 2.2: Let \mathcal{T} be a mapping of a complete multiplicative \mathcal{S} -metric space $(\mathcal{X}, \mathcal{S})$ into itself such that for all $u, v \in \mathcal{X}$

$$\phi(\mathcal{S}(\mathcal{T}u,\mathcal{T}u,\mathcal{T}v)) \leq \frac{\phi(M(u,u,v))}{\psi(N(u,u,v))}$$

where $\phi \in \Phi$ and $\psi \in \Psi$,

$$M(u,u,v) = \max\left\{\frac{S(u,u,Tu)S(v,v,Tv)}{S(u,u,v)}, \frac{S(v,v,Tu)S(u,u,Tv)}{S(u,u,v)S(v,v,Tv)}, S(u,u,v)\right\} \text{ and }$$

$$N(u,u,v) = \max \left\{ \frac{s(u,u,Tu)s(v,v,Tv)}{s(u,u,v)}, S(u,u,v) \right\}.$$

Then \mathcal{T} has a unique fixed point.

Proof: From the proof of Theorem 2.1 $\{u_n\}$ is a multiplicative S-Cauchy sequence in \mathcal{X} , hence there exists $w \in \mathcal{X}$ such that

$$\lim_{n\to\infty}u_n=w.$$

Suppose that Tw = w, that is, S(w, w, Tw) > 1. Consider

$$\phi(\mathcal{S}(\mathcal{T}u_n, \mathcal{T}u_n, \mathcal{T}w)) \le \frac{\phi(M(u_n, u_n, w))}{\psi(N(u_n, u_n, w))} (2.15)$$

Where

$$M(u_n, u_n, w) = \max \left\{ \frac{S(u_n, u_n, Tu_n)S(w, w, Tw)}{S(u_n, u_n, w)}, \frac{S(w, w, Tu_n)S(u_n, u_n, Tw)}{S(u_n, u_n, w)S(w, w, Tw)}, S(u_n, u_n, w) \right\} (2.16)$$

$$= \max\left\{\frac{s(u_n,u_n,u_{n+1})s(w,w,Tw)}{s(u_n,u_n,w)},\frac{s(w,w,u_{n+1})s(u_n,u_n,Tw)}{s(u_n,u_n,w)s(w,w,Tw)},s(u_n,u_n,w)\right\}$$

And

$$N(u_n,u_n,w) = \max\left\{\frac{\mathcal{S}(u_n,u_n,\mathcal{T}u_n)\mathcal{S}(w,w,\mathcal{T}w)}{\mathcal{S}(u_n,u_n,w)},\mathcal{S}(u_n,u_n,w)\right\}$$

International Journal of Statistics and Applied Mathematics

$$= \max\Big\{\frac{s(u_n,u_n,u_{n+1})s(w,w,Tw)}{s(u_n,u_n,w)}, s(u_n,u_n,w)\Big\}. \ (2.17)$$

Letting $n \to \infty$ in (2.16) and (2.17), we have

$$\lim_{n \to \infty} M(u_n, u_n, Tw) = \mathcal{S}(w, w, Tw) > 1$$

And

$$\lim_{n \to \infty} N(u_n, u_n, \mathcal{T}w) = \mathcal{S}(w, w, \mathcal{T}w) > 1.$$

Again letting $n \to \infty$ in (2.15) using (2.16), (2.17) and property of ϕ and ψ , we have

$$\phi(\mathcal{S}(w, w, \mathcal{T}w)) \leq \frac{\phi(\mathcal{S}(w, w, \mathcal{T}w))}{\lim_{n \to \infty} \psi(N(u_n, u_n, w))},$$

Which implies that $\lim_{n\to\infty} \psi(N(u_n, u_n, w)) < 1$, which is contradiction by property of ψ .

Therefore Tw = w and hence w is a fixed point of T.

Uniqueness easily follows from Theorem 2.1. This completes the proof.

Corollary 2.3: Let \mathcal{T} be a mapping of a complete multiplicative \mathcal{S} -metric space $(\mathcal{X}, \mathcal{S})$ into itself such that for all $u, v \in \mathcal{X}$

$$\phi(\mathcal{S}(\mathcal{T}u,\mathcal{T}u,\mathcal{T}v)) \leq \frac{\phi(N(u,u,v))}{\psi(N(u,u,v))},$$

Where $\phi \in \Phi$ and $\psi \in \Psi$, and

$$N(u, u, v) = \max \left\{ \frac{S(u, u, Tu)S(v, v, Tv)}{S(u, u, v)}, S(u, u, v) \right\}.$$

Then T has a unique fixed point.

Corollary 2.4: Let \mathcal{T} be a mapping of a complete multiplicative \mathcal{S} -metric space $(\mathcal{X}, \mathcal{S})$ into itself such that for all $u, v \in \mathcal{X}$ and for some $k \in (0,1)$

$$\phi(\mathcal{S}(\mathcal{T}u,\mathcal{T}u,\mathcal{T}v)) \leq k \max \left\{ \frac{\mathcal{S}(u,u,\mathcal{T}u)\mathcal{S}(v,v,\mathcal{T}v)}{\mathcal{S}(u,u,v)}, \mathcal{S}(u,u,v) \right\}$$

Then \mathcal{T} has a unique fixed point.

References

- 1. Banach S. Sur les operations dans les ensembles abstraits et leur application aux equations interrales. Fundam Math. 1922;9(3):133-181.
- 2. Bashirov A, Kurpinar E, Ozyapici A. Multiplicative calculus and its applications. J Math Anal Appl. 2008;337(1):36-48.
- 3. Branciari A. A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int J Math Math Sci. 2002;29(9):531-536.
- 4. Dhage BC. A study of some fixed point theorems [PhD thesis]. Aurangabad: Marathwada University; 1984.
- 5. Dosenovic T, Radenovic S, Rezvani A, Sedghi S. Coincidence point theorems in S-metric spaces using integral type of contraction. UPB Sci Bull Ser A. 2017;79(4):145-158.
- 6. Jungck G, Murthy PP, Cho YJ. Compatible mappings of type (A) and common fixed points. Math Japon. 1993;38:381-390.
- 7. Khan MS, Swalech M, Sessa S. Fixed point theorems by altering distances between the points. Bull Austral Math Soc. 1984;30:1-9.
- 8. Ozavsar M, Cevikel AC. Fixed points of multiplicative contraction mappings on multiplicative metric spaces [Preprint]. arXiv:1205.5131v1. 2012. Available from: http://arxiv.org/abs/1205.5131v1
- 9. Prasad K, Naga R. Common fixed point theorem in multiplicative S-metric space with an application. Commun Math Appl. 2021;12(2):303-314.
- 10. Sastry KPR, Naidu GA, Sharma KKM, Laxmi Gayatri I. Common fixed point for compatible mappings on 2-metric spaces. Glob J Math Sci Theory Pract. 2010;2(3):173-179.
- 11. Sedghi S, Shobe N, Aliouche A. A generalization of fixed point theorem in S-metric spaces. Mat Vesnik. 2012;64:258-266.
- 12. Sedghi S, Dung NV. Fixed point theorems on S-metric spaces. Mat Vesnik. 2014;66(1):113-124.
- 13. Sedghi S, Shobe N, Dosenovic T. Fixed point results in S-metric spaces. Nonlinear Funct Anal Appl. 2015;20(1):55-67.
- 14. Sedghi S, Kyu Kim J, Gholidahneh A, Mahdi Rezaee M. Fixed point theorems in S-metric spaces. East Asian Math J. 2016;32(5):677-684.

- 15. Sedghi S, Gholidahneh A, Dosenovic T, Esfahani J, Radenovic S. Common fixed point of four maps in S-metric spaces. J Linear Topol Algebra. 2016;5(2):93-104.
- 16. Sedghi S, Gholidahneh A, Dosenovic T, Radenovic S. Ordered S-metric spaces and coupled common fixed point theorems of integral type contraction. Math Interdiscip Res. 2017;2:71-84.
- 17. Sedghi S, Shobkolaei N, Shahraki M, Dosenovic T. Common fixed point of four maps in S-metric spaces. Math Sci. 2018;12:137-143.
- 18. Singxi SL, Tiwari BML, Gupta VK. Common fixed points of commuting mappings in 2-metric spaces and an application. Math Nachr. 1980;96:293-297.