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Abstract
In this paper, we establish some fixed point results by employing an altering distance function for
mapping that fulfill certain novel contractive conditions in a complete multiplicative S-metric space.
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Introduction

Banach ™ contraction principle has been a very advantageous and efficacious means in
nonlinear analysis. Various authors have generalized Banach contraction principle in different
spaces. Singxi et al. 8 and Sastry et al. % studied some common fixed point theorems for
different mappings on a 2-metric space. Dhage ™ proved fixed point results in D-metric space.
A. E. Bashirov et al. P introduce a new kind of space called multiplicative metric space in the
year 2008 and studied some properties of multiplicative derivatives and multiplicative
intergrals.

Definition 1.1 I: “Let X be a non-empty set. A multiplicative metric is a mapping on d: X X
X — R* satisfying the following axioms:

1. duwv)=1forallu,ve X andd(u,v) =1ifandonlyifu = v,

2. du,v) =d(,u)forallu,velX,

3. du,v) <d(u,w).dlw,v), forallu,v € X.

Then the mapping d together with X that is, (X, d) is a multiplicative metric space.” In 2012,
Ozavsar and Cevikel [8] introduced the concept of multiplicative contraction mappings and
proved some fixed point theorems of such mappings on a complete multiplicative metric

space.

Definition 1.2 8: “Let (X, d) be a multiplicative metric space. A mapping f: X — X is called
a multiplicative contraction if there exist a real constant 1 €[0,1) such that

d(fu, fv) < d(u,v)*, forallu,v € X."

Theorem 1.3 Bl “Let (X,d)be a multiplicative metric space and let f:X - X be a
multiplicative contraction. If (X, d) is complete then, f has a unique fixed point.”

In 2012, Sedghi et. al. [11] establish the concept of S-metric space as a generalization of G-
metric space and metric space.

Definition 1.4 [1: “LetX be a non-empty set. An S-metricon X is a functions :
X XX XX - [0, ) satisfying the following axioms:
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1. S(u,v,w)=0ifandonlyifu=v=w,

2. S(u,v,w) <Swu,a)+Sw,v,a)+Sw,w,a),forallu,v,w € X

An §-metric space is a pair (X,S) where § is a metric on X.”

In the setting of S-metric space they proved several fixed and common fixed point theorems (see [5], [12]-[16]).

In 2021, Naga Raju [9] introduce the concept of multiplicative S-metric space and studied its topological properties.

Definition 1.5 [¥I: “Let X be a non-empty set. We say that the function § : X’ X X x X — [0, %) is a multiplicative S-metric on
X iff it satisfies the following axioms:

1. Su,v,w) =1,

2. S(wv)=1lifandonlyifu=v =w,

3. Swv,w) <Swua).SW,va).Sw,w,a),forall u,v,w,a € X.
Then the mapping (X, §) is called a multiplicative S-metric space.”

Definition 1.6 Fl: “We say that a sequence {u,} in a multiplicative S-metric space (X, S) multiplicative S-convergent to some
a € X iff for each €, > 1, there exist H € N such that § (u,,, u,,, u) <€, foralln = H.”

Definition 1.7 [¥I: “We say that a sequence {u,,} in a multiplicative S-metric space (X, S) multiplicative S-Cauchy sequence in X
iff for each €, > 1, there exist H € N such that § (u,,, u,, u,,) <€, foralln,m > H.”

Definition 1.8 PI: “We say that a multiplicative S-metric space (X, S) is multiplicative S-complete iff every multiplicative S-
Cauchy sequence in X is multiplicative S-convergent in X.”

Definition 1.9 [¥I: “Let (X, 8) and (U, S") be two multiplicative S-metric spaces. Then we say that f: X — U is multiplicative S-

continuous at some point 8 € X iff for every r > 1, there exists n > 1such that f(B(6,7n)) < B(f(6),r). Thus, we say that f is

multiplicative S-continuous at every point of X.”

Lemma 1.10 ®: “In multiplicative S-metric space (X, S) we have S(u,,u,v) = S(v,v,u) forallu,v € X.”

Lemma 1.11 [9] “In multiplicative S-metric space (X,S), u,, = u iff S(u,, u,, u) » 1,asn - .”

Theorem 1.12 [9] “In multiplicative S-metric space (X, S), if there exist two sequences {u,} and {v,,} in X such that lim u,, = u
n—oo

and lim v, = v then lim §(u,, u,, v,) = S(u,u,v).”
n—-oo

n—oo

Theorem 1.13 Pl: “In multiplicative S-metric space (X,S), {u,} is a multiplicative S-Cauchy sequence in X iff S (u,, u,, u,,) =
lasm — 00.”

Definition 1.14 [€: “Let f and g be two mappings of a metric space (X,d) into itself. Then f and g are said to be weakly
compatible if they commutes at coincident points, that is, if ft = gt for some t € X implies that fgt = gft.”

Definition 1.15 [ “A function ¢ : R* —» R™ is called an altering distance function if the following property is satisfied:
o (O =1ifandonlyift =1,

e (0,) ¢ is monotonically non-decreasing function,

e (03) ¢ is a continuous function.”

In our result we use the following class of function.

@ = {¢p:[1,0) - [1,): ¢ is an altering distance function}

Y = {Yi:[1, o) - [1, ): for any sequence {u,} in [1,0) withu,, -t > 1,

lim Y(u,) > 1}

n—oo

Note that ¥ is non empty, since Yi(t) = e’ for t € [1,). Thus ¢ € ¥."

Remark: Clearly for ¢ € W, ¢(t) > 1 for t > 1 and (1) need not be equal to 1.
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2. Main Results
Theorem 2.1: Let T be a multiplicative S-continuous mapping of a complete multiplicative S-metric space (X, S) into itself such
that forall u,v € X

S M (u,u,v))
S S(Tu,Tu,Tv)) < IO (2.1)

where ¢ € ® and € ¥,

Suu,Tw)S(wwy,Tv) Swv,Tu)s(uudv)
S(uu,v) " S(uuw)S (v, Tv)

Mu,u,v) = max{ ,S(u,u, v)} and

S(uwu,Tu)s(v,v,7v)
N(u,u,v) = max {W' S(u,u, v)} )

Then T has a unique fixed point.

Proof: Let u, be an arbitrary point. Then there exists u, € X such that u; = Tu,. So we can define a sequence {u,} in X such
that u,,,; = Tu, forn = 0.

If there exists some n € N such that, u,,, = u,. Then we have u, ., = Tu,, = u,, which implies that w,, is a fixed point of 7.
Suppose that U, # Uy, that is § (Uy41, Uns1, Uy) # 1 for all n. Then from (2.1), we have

d)(s(un' un'un+1)) = ¢(5(Tun—1:Tun—1rTun))

< ¢M (Un-1,Un-1,Un))
- ¢(N(un—1run—1zun)) !

Where

M(un—lﬂ Up-1, un)

S(un—1Un—1.TUn-1)S UnunTUn) S(UnunTUun-1)S(Un—1,Un-1,TUn)

= max { , , S (Un—1, Un—1, Up)
S(Un—1,Un—1,Un) S(Un-1,Un-1,Un)S (Un,UnT Un)

S(Un—1,Un—1,Un)S UnUnUn+1) S(UnUnUn)S(Un—1,Un—1,Un+1)

S(up—1,Un-1,Un) " S (Un—1,Un-1,un)S (UnUntint+1)

= max{ .S(Hn—pun—pun)}

= max{s(un' Up, un+1)' S(Un—l' Up-1, un): cs(un—lr Up-1, un)} = max{g(un: Up, un+1)' S(un—li Up-1, un)}
and

S(un—1,Un-1,TUn-1)S(Unun

S(Un-1,Un—-1,Un)

Tu
N(un—1,Un-1,U,) = max { n) »S (Un—1, Un-1, un)}

S(Un—1,Un—1,Un)S UnUnUn+1)
) ‘S(un—ll

= max{ U,_1, U }
S(Un—1,Un—1,Un) n-1n)

= max{S (Up, Un, Un41), S (Un—1, Un—1, Un)}

Therefore, we have

P(max{S(ununtn+1).S(Un—1,Un—1,Uun)})
S(u,, U, U < . 2.2
(I)( ( wen n+1)) W(max{S (ununun+1)S (Un—1,Un—-1,Un)}) ( )

If S(Up, U, Unyr) > S (Upoq, Un—1, Uy), then from (2.2), we have

& (S (UpUnUnt1))
S(u,u,u < - nmmble
LS (s U, Uns1)) Y(S (Un i tin+1))

that is, U(S(Up, Uy, Uns1)) < 1, which is a contradiction. So, we have §(up, Up, Unsq) < S (Up—1, Un—1,Uy), Which implies
{S (up, uy, un41)} is a decreasing sequence. Then the inequality (2.2) yields that

B(S (i, Uy Unyy)) < LEWn=1tn1 i) 2.3)

Y(S (Un—1Un-1.Un))
Since {S (u,, Uy, Uny1)} is a decreasing sequence of real numbers and it is bounded below, there exists = 1 such that

S(Up, Up, Upy1) 2T ASN = O (2.4)
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Now we shall show that r = 1. Assume that » > 1. Taking limit on both sides of (2.3) and using (2.4), the property of { and
continuity of ¢, we get

o(r)

Un—1,Un—1,un))’

60 < T
which implies that lim $(S (u,,—1, Un—1, U)) < 1, which by the property of s, is a contradiction. Therefore,

S(Up, Up, Upy1) > 1laSN > (2.5)

Next we claim that {u,} is a multiplicative S-Cauchy sequence. Suppose that {u,} is not a multiplicative S-Cauchy sequence.
Then there exists an €,> 1 for which we can find two subsequences of positive integers {m(c)} and {n(c)} such that for all
positive integers ¢, n(c) > m(c) = c and

S (U (c)s Um(c)r Un(c)) =Eo-

Assume that n(c) is the smallest positive integer, we get n(c) > m(c) = c,

S (Un(c)» Un(e) () Z€o AN S (Un()1, Un(c)-1) Um(e)) <Eo- (2.6)
Now,

€0= S (Um(e), Um(e) Un(e)) = S (Un(e), Un(e), Um(o))

= S(un(C)' Un(c) un(C)—l)S(un(C)' Un(c) un(C)—l)‘s(un(C)—l' Un(o)-1/ um(C))

Taking limit as ¢ — oo and using (2.5), we get

Clirg S(um(c), Un(c)s un(c)) =€,. (2.7)
Again,

S(um(c)_l, Um(c)-1s un(C)—l)

< S(um(c)—l' Um(c)-1/ um(c))- S(um(c)—lr Um(c)-1/ um(c))- S(um(c)r Um(c) un(c)—l)-

Taking limit as ¢ — oo ad using (2.5) and (2.6), we get

lim S(um(c)—l' Um(c)-1/ un(c)—l) = gi_)rgg(um(c)' Um(c), un(c)—l)

coreo
= lim S (Un(e)-1) Un(e)-1 Um(e))-

Now,

8 (Un(@) -1, Un(0)-1 (@) < S (Un(e)-1 Un(@)-1, Un(0))- S (Un(e)-1, Un(c) -1, Un(o))

. S(un(c), Un(c) um(C))’
Taking limit as ¢ — oo in above inequalities and using (2.5)-(2.7), we get

1im S ()1, Um(e)-1 Un(o)-1) =Eo. 7
Again,

S(un(c)_l. Un(c)-1 um(C))

< S (Un(e)-1 Un(e)-12 Un(@))- S (Un(e)-1: Un()=1, Un(e)) - S (Un(eys Un(eyr Um(e))-
And

S(um(c)—l' Um(c)-1 un(C)—l)
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< S(um(c)—l' um(c)—lﬂ um(c))- S(um(c)—lﬂ um(c)—lﬂ um(c))' ‘S(um(c)' um(c)' un(c)—l)-

Taking limit as ¢ — oo in above inequalities and using (2.5) and (2.8), we get

Cl_i}g ‘S(un(c)—l' Un(c)-1» um(c)) =€y.

(2.9)
Similarly, we have
y_}rgs(um(c)—l' Um(c)-1s un(c)) =€y. (210)
Let

M(un(c)—lﬂ Un(c)-1/ um(c)—l) =

S(Hn(c)—lrun(c)—lvTun(c)—1)s(um(c)—1rum(c)—1r7um(c)—1) ES‘(un(c)—liun(c)—lvTum(c)—1)5(um(c)—1vum(c)—1vT‘un(C)—l)

ES‘(u‘m(c)—1vum(c)—1:un(c)—1) ’ S(Hm(c)—1vum(c)—1vun(c)—1)5(um(c)—1'um(c)—1rTum(c)—1) ’

max

‘S(um(c)—lt um(c)—lr un(c)—l)
which implies

c()‘(un(c)—1run(c)—1run(c))5(um(c)—1'um(c)—1'um(c)) S(un(c)—liun(c)—1vum(c))‘s(um(c)—1'um(c)—1'un(c))
max S (Um(e)-1%m(c)-14n(c)-1) " S (Uin(e)-1Um(c)-1Un(e)-1)8 (Um(c)-1Um(©)-1Um(c)) (2.11)
‘S(um(c)—lr Um(c)-1/ un(c)—l)

And

N(un(c)—l' un(c)—lﬁ um(c)—l)

S(un(c)—1run(c)—erun(c)—1)5(um(c)—1vum(c)—1vTum(c)—1)

5(um(c)—1rum(c)—1vun(c)—1)

= max { , S(um(c)—lt Um(c)-1/ un(c)—l)}

S(un(c)—1'un(c)—1'un(c))5(um(c)—l'um(c)—l‘um(c))

g(um(c)—1-um(c)—1'un(c)—1)

= max { » S (Um(c)-1 Um(c)-1» un(c)—l)} . (2.12)

Letting ¢ —» o in (2.11) and (2.12), using equations (2.5)-(2.10), we have

lim M (U (c)-1) Un(c)—1, Um(c)-1) = Max{l, €q, €} =€, (2.13)
and
21_}1‘1;) N(un(c)—l' Un(e)-1s um(c)—l) = max{l, €, €} =€ (2.14)

From (2.1), using (2.11) and (2.12), we have

¢ (S(um(c)'um(c)'un(c))) =¢ (S(Tum(c)—lﬂTum(c)—l' Tun(c)—l))

< q’(M(un(c)—irun(c)—lvum(c)—l))
- lIJ(N(un(c)—1vun(c)—1'um(c)—1)).

Taking limit on both sides and using (2.6), (2.13) and (2.14), the property of s and continuity of ¢, we have

b (€o)
(€p) = — ,
(1) 0 Chm '~|’(N(un(c)—lrun(c)—l'um(c)—l))

—00

that is, lim s (N(un(c)—1. un(c)_l,um(c)_l)) < 1, which is contradiction by the property of . Thus, {u,} is a multiplicative S-
c—00
Cauchy sequence in X. Since X is multiplicative S-complete, there exists w € X such that lim u, = w. Then using
n—-oo
multiplicative S-continuity of 77, we get

Tsz(lim un) =%H§Oun+1 =w.

n—-oo
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Hence w is a fixed point of T.
Finally, we shall prove the uniqueness of the fixed point of 7. Suppose that w and r (w # r) be any fixed point of 7. Consider

dM(w,w,r))

= < N (o o Y
G(S(w,w, 1) = (S (Tw,Tw,Tr)) < Lo,
where ¢ € dand y € ¥,

Sww,TW)S(r,r,7r) SrrIw)sS(w,w,Tr)
P Sww Sy Tr)

M(w,w,r) = max { S(w,w, r)}

S(w,w,r)

Swww)S(rrr) Sarrw)sSwwr)

Sww,r) ' Swwr)S(rrr)

= max{ ,S(w, w,r)}

=S(w,w,r)
and

Sww,Tw)S(r,r,Tr)
S(ww,r)

N(u,u,v) =max{ ,5(W,W,T)}=5(W,W,T).

Therefore, we have

PEwwr))

¢Sw,w, ) = o STw,Tw,T1)) < YESwwr)'

which implies that q;(s(w, w, r)) < 1, which is contraction by definition of {r. Hence w = r.

Therefore 7 has a unique fixed point.
This completes the proof.
Next we prove the following result without the condition of multiplicative S-continuity of 7.

Theorem 2.2: Let T be a mapping of a complete multiplicative S-metric space (X, §) into itself such that for all u,v € X

$M @)
¢S (Tu,Tu,Tv)) < V(N (uup)’
where ¢ € dand y € ¥,

Suu,Tuw)S(wwy,Iv) Swv,Tu)s(uuIv)
S(uu,v) " S(uuv)Swy,Tv)

Mu,u,v) = max{ ,S(u,u, v)} and

N(u,u,v) = max {W,S(u,u, v)} )

Then T has a unique fixed point.
Proof: From the proof of Theorem 2.1 {u,,} is a multiplicative §-Cauchy sequence in X, hence there exists w € X such that

lim u, = w.

n—-oo

Suppose that Tw = w, that is, S (w, w, Tw) > 1. Consider

d(M (un,un,w))
OSTup, Tu,, Tw)) < TN W) (2.15)

Where

S(Unun,Tun)S(wWw,Tw) Sww,Tuy)s (Unun,

TS (ttn i, W)} (216)

M(u,, u,,w =max{
(Un) Un, W) S(Upun,w) " S(Unupw)S (ww,Tw)

SUnunUn+1)SWW,TW) S(WW,un+1)S (Unun,Tw)

= max { , S (U, Unp, W)}

S(upunw) ’ S(un,unw)s(ww,Tw)

And

— S (up,un Tun)s (w,w,.Tw)
N (uy, u,, w) = max { S o) , S (U, Uy, W)
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S(upunun+1)S(Ww,Tw)

= max { , S (Up, Uy, w)}. (2.17)

S(un,un,w)
Letting n — oo in (2.16) and (2.17), we have

lim M(u,, u,, Tw) = S(w,w,Tw) > 1
c—00

And

lim N(u,, u,, Tw) = S(w,w,Tw) > 1.
c—00

Again letting n — oo in (2.15) using (2.16), (2.17) and property of ¢ and s, we have

m VN (up,upw)) ’

(S (ww,Tw))
dSw,w,Tw)) < T

Which implies that lim Q(N (u,, u,, w)) < 1, which is contradiction by property of .
n—oo

Therefore 7w = w and hence w is a fixed point of 7.
Uniqueness easily follows from Theorem 2.1. This completes the proof.

Corollary 2.3: Let " be a mapping of a complete multiplicative S-metric space (X, ) into itself such that for all u,v € X

SN (wup))

OSTu,Tu,Tv)) < YN )’

Where ¢ € & and y € ¥, and

_ S(uwu,Tu)s(v,v,7v) }
N(u,u,v) = max {—s ) ,Su,u,v);.

Then T has a unique fixed point.

Corollary 2.4: Let T be a mapping of a complete multiplicative S-metric space (X, §) into itself such that for all u,v € X and
for some k € (0,1)

S(u,u, Tw)S (v, v, Tv)
S(u,u,v)

&S (Tu, Tu, Tv)) Skmax{ ,S(u,u,v)}

Then T has a unique fixed point.
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