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Abstract 

The three-parameter Gumbel distribution has become very useful in recent years because it can be 

applied in many areas such as hydrology, climate studies, weather analysis, environmental research, and 

finance. The distribution is characterized by three parameters shape (α), scale (β), and location (γ) which 

together control the skewness, spread, and central tendency of the data. Accurate estimation of these 

parameters plays a key role in improving statistical modelling and inference. In this study, we use a 

Bayesian estimation method for finding the parameters of the three-parameter Gumbel distribution. The 

Bayesian approach is useful because it combines prior information about the parameters with the data, 

which helps in getting better estimates, especially when the sample size is small. The main difficulty in 

Bayesian methods is that the required calculations are often very complex. To deal with this problem, we 

apply Lindley’s approximation, which is a simple and efficient way to get approximate solutions. Using 

this method, we obtain the Approximate Bayes Estimators (ABEs) of the parameters α, β, and γ under the 

Squared Error Loss Function (SELF). The results show that ABS performs better in terms of mean 

squared error, especially for smaller sample sizes. 

 

Keywords: MLE, ABS, Gumbel distribution, Bayesian estimation, Lindley's approximation, scale 

parameter, squared error loss function 

 

Introduction 

Bayes estimators are used to estimate the parameter of a Gumbel distribution under a Bayesian 

framework. For the three parameter Gumbel distribution (α, ꞵ, γ). The Bayesian estimation 

provides a way to incorporate prior knowledge or beliefs about the parameters in form of 

distribution in the estimation process. Bayesian estimation allows the use of prior knowledge 

or expert opinion about the parameter (α, ꞵ, γ) through prior distributions. In cases where 

sample size is small or data is spares, frequentist methods (e.g. maximum likelihood 

estimation) may yield unstable estimates.  

Bayesian methods improve the estimation process by taking advantage of prior information. 

Bayesian estimators provide posterior distribution for the parameters, provide not just point 

estimates but also posterior intervals, which quantify uncertainty about the estimates. 

For distributions like the three parameter Gumbel, where maximum likelihood estimation 

might be challenging or computationally intense. Bayes estimator minimizes the expected 

posterior loss, making them adaptable to different loss function (e.g. squared error loss). This 

makes the estimation more optimized for particular situation.  

Extreme value distributions have been an important topic of research in applied probability 

and statistics. Kotz and Nadarajah (2000) [1] presented a detailed theoretical framework for 

extreme value distributions and their applications, whereas Lawless (2003) [2] emphasized 

statistical models for lifetime data, which are closely related to reliability and survival 

analysis. From a Bayesian perspective, Bernardo and Smith (2000) [3] and Robert (2007) [4] 

offered fundamental contributions by developing the theoretical and computational 

foundations of Bayesian inference. In the same direction, Lindley (1980) [5] introduced an 

approximation method for Bayesian analysis, which provides an effective solution for cases 

where posterior integrals are intractable. 
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Later, Tierney and Kadane (1986) [6] extended this work by proposing accurate approximations for posterior moments and 

marginal densities. These works provided the basis for developing Approximate Bayes Estimation methods. 

In the field of reliability analysis, Sinha (1986) [7] discussed life testing approaches that further motivate the use of flexible 

lifetime distributions. Within this framework, several authors have studied Gumbel and generalized Gumbel distributions. Raqab 

and Kundu (2005) [10] discussed Bayesian estimation for the generalized Gumbel distribution, while Sharma and Kumar (2013) 

specifically applied Lindley’s approximation for Bayesian inference in generalized Gumbel models. Kumar and Lalhita (2012) 

also explored Bayesian estimation in the Gumbel distribution under various loss functions. 

More recently, Okumu et al. (2024) [9] extended the study of the three-parameter Gumbel distribution by proposing formulations 

and estimation procedures. Similarly, Oluwafunmilola et al. (2023) [8] introduced the Lindley Exponentiated Gumbel distribution 

and demonstrated its applicability to environmental data, highlighting the continuing relevance of Lindley’s approximation in 

modern distribution theory. 

In parallel, Srivastava and Yadav (2018) [13] made contributions to the Bayesian estimation of the generalized compound Rayleigh 

distribution, applying approximate Bayes techniques under different loss functions. Their later works (Yadav & Srivastava, 2018) 
[13] considered estimation under entropy and precautionary loss functions, further showing the versatility of Lindley’s 

approximation in lifetime distributions. 

Overall, earlier studies show that Bayesian estimation and Lindley’s approximation have been applied to generalized Gumbel, 

compound Rayleigh, and related distributions. However, there is still room to study the three-parameter Gumbel distribution more 

closely. In particular, most past research has focused on generalized versions or on different loss functions, while only a few 

works have directly looked at the three-parameter case under squared error loss using Lindley’s method. This study addresses that 

gap by proposing Approximate Bayes Estimators (ABEs) for the parameters (α, β, γ) of the three-parameter Gumbel distribution 

and comparing them with the traditional Maximum Likelihood Estimation (MLE) through simulation. 

 

The Gumbel Distribution 

The “Gumbel Distribution” is named after Emil Julius Gumbel (1891-1966), a German Mathematician and Statistician. He is 

considered the founder of the Gumbel distribution, which he introduced as part of his work on the extreme value theory. He 

developed the distribution to model the distribution of the maximum (or minimum) values of large datasets. 

“The transition from a two parameter Gumbel distribution to three parameter Gumbel distribution involves adding a shape or shift 

(location). It is useful when the data shows skewness, asymmetry, or systematic shift that cannot be explained by just two 

parameters”. 

 

1. Let x be a random variable representing the data points or observations. In practical applications, it could represent extreme 

values such as maximum temperatures, flood levels, or financial losses. f(x) be the probability density function value at x. 

 

F(x;  α, ꞵ, γ) = {
1

ꞵ
 e

−( 
x−γ−α

ꞵ
)
 e−e

−(
x−γ−α

ꞵ
)

, x > γ

0, x ≤ γ
                   (1.1)  

 

Where, 

γ is the location parameter determines the location of the distribution. 

ꞵ > 0 is the scale parameter controls the spread of the distribution. 

α is the shape parameter. 

For x ≤ γ the pdf is 0 because the Gumbel distribution is not defined below this threshold when using a shift form.  

For x > γ the pdf follows the exponential term. 

 

 
 

Fig 1: Probability density function of the three-parameter Gumbel distribution 

https://www.mathsjournal.com/


 

~215~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

2. The Cumulative distribution function for the three parameter Gumbel distribution can be computed by integrating the 

probability density  function. 
 

F(x) = e−e
−(

x−γ−α
ꞵ

)

                         (2.1) 

 

 
 

Fig 2: Cumulative distribution function of the three-parameter Gumbel distribution 

 

3. The Maximum Likelihood Estimation for three parameter Gumbel distribution 

The maximum likelihood method is the one of the best methods to estimate parameters. (α,ꞵ,γ) of the distribution, not the sample 

size. The sample size is (x1,x2…..xn) is fixed and used to calculate the likelihood of the observed data. 

L (α,ꞵ,γ; x) = ∏ f(xI;  α, ꞵ, γ)n
i=1   

 

= ∏ ꞵe(−ꞵ(x−γ−α))e−e−(ꞵ(x−γ−α))
n
i=1                      (3.1)  

 

 
1

ꞵ
 is reparametrized as ꞵ in equation. 

 

Simplify the likelihood function 

 

L(x) = ꞵe(−ꞵ(x−γ−α))e−e−(ꞵ(x−γ−α))

                     (3.2) 

 

Take the logarithm 

 

Log L(x) = n log ꞵ-ꞵ∑(xi − γ − α) − ∑e−(ꞵ(x−γ−α))                 (3.3) 

 

Differentiating equation number (6.3) with respect to (α,ꞵ,γ) yield respectively we get 

 
∂ logL

∂α
= 

∂

∂α
(n log ꞵ-ꞵ∑(xi − γ − α) − ∑e−(ꞵ(x−γ−α))) 

 

= ꞵ
n

− ꞵe−(ꞵ(x−γ−α))                        (3.4) 

 
∂ log L 

∂ꞵ
=

∂

∂ꞵ
 (n log ꞵ  −  ꞵ ∑(xi − γ − α) − ∑e−(ꞵ(x−γ−α))) 

 

=
n

ꞵ
− (xi − γ − α) + (xi − γ − α)e−(ꞵ(x−γ−α))                  (3.5) 

 
∂ logL 

∂γ
=

∂

∂γ
(n log ꞵ −  ꞵ ∑(xi − γ − α) − ∑e−(ꞵ(x−γ−α)) ꞵ

n
− ꞵe−(ꞵ(x−γ−α))           (3.6) 

 

Setting the derivatives ion equation (3.4), (3.5) and (3.6) to zero and solving for (α,ꞵ,γ) gives the maximum likelihood estimators 

(MLEs) of the parameters: α̂MLE, β̂MLE and  γ̂MLE. These estimates can be obtained using the Newton-Raphson method. 
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 Bayes estimators of ꞵ with known parameter α and γ under Linex loss function (LLF) 

 

If 𝛂̂ and 𝛄̂ is known we assume (a, b) as conjugate prior for ꞵ as:- 

 

G(ꞵ|x) = 
ba

Γ a
 βa−1 e−βb                        (4.1)  

 

(a,b) >0; β >0 

 

Combining likelihood function (3.2) and prior density (4.1) we obtain the posterior density of ꞵ in the form of  

 

h(β| x) = 
∏ [β e(−β(x−γ−α))e−e(−β(x−γ−α))n

i=1 ] 
ba

Γ a
 βa−1 e−βb 

∫ ∏ [β e(−β(x−γ−α))e−e(−β(x−γ−α))n
i=1 ] 

ba

Γ a
 βa−1 e−βb 

∞
0 dβ

                (4.2) 

 

Then we combine the likelihood and the prior we obtain the posterior after solving the previous equation, we get the 

posterior  

 

h(β| x) = 
βa+n e−β(u+b) (u + b)

n+a+1

Γ(n+a+1 )
 (4.3) 

 

Where, u = (x-γ-α). 

 

5. Bayes estimate under squared error loss function (Self)  

 

Β̂BS is the posterior mean given by- 

 

Β̂BS = ∫
ꞵ
 
ꞵ
a+n e−ꞵ(u+b)(u+b)n+a+1

Γ(n+a+1 )

∞

0
dꞵ                     (5.1) 

 

=
(u + b)n+a+1

Γ(n + a + 1 )
 ∫ ꞵ

 
ꞵ

a+n e−ꞵ(u+b) dꞵ
∞

0

 

 

Β̂BS = 
a+n+1

u+b
                          (5.2) 

 

6. Bayes estimators with unknown α,ꞵ and γ 

 

Joint prior density α,ꞵ and γ is given by:- 

 

G(α,ꞵ,γ) = g1(α)g2(γ)g3(γ) 

 

Taking  

 

G1(α) = c                           (6.1) 

 

G2(γ) =  
1

δ
e−

γ

δ                          (6.2) 

 

 g3(γ) =  
1

Γξ
 γ−ξꞵ

ξ+1 e
[−

ꞵ

γ
]
                       (6.3) 

 

 G(α, ꞵ, γ) = g1(α)g2(γ)g3(γ) 

 

=
c

δΓξ
γ−ξꞵ

ξ+1 e
[−(

γ

δ
+

ꞵ

γ
)]

                        (6.4)  

 

Joint posterior with likelihood equation number (3.2) and (6.4) we get; 

 

h*(α,ꞵ,γ)=
γ−ξꞵ

ξ+1 e
[−(

γ
δ
+

ꞵ
γ)]

 L(x|α,ꞵ,γ)

∭γ−ξꞵ
ξ+1 e

[−(
γ
δ
+

ꞵ
γ)]

 L(x|α,ꞵ,γ) dαdꞵdγ

                   (6.5) 

 

The approximate Bayes estimators  

 

V(ϴ) = v(α, ꞵ, γ) 

https://www.mathsjournal.com/


 

~217~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

v̂AB = E(v|x) =
∭v(α,ꞵ,γ)G∗(α,ꞵ,γ )dαdꞵdγ 

∭G∗(α,ꞵ,γ )dαdꞵdγ
                    (6.6) 

 Lindley Approximation  

 

E (v (α, , γx)) 

 

= V(ϴ)+
1

2
[S(v111(v212+(v313)]+ T (v121+v222 +v2323) 

 

+R(v131+v232+v233) +v1a1+v2a2+v3a3+a4+a5+O(
1

n2)                (7.1) 

 

Evaluated at MLE = (𝛂̂, 𝛃̂, 𝛄̂) where; 

 

a1 = ρ111+ρ212 + ρ313                          (7.2) 

  

a2 = ρ221+ρ222 + ρ323                         (7.3)  

 

a3 = ρ131+ρ232 + ρ333                        (7.4) 

 

a4 = v1212+v1313 + v2323                         (7.5) 

 

a5 = 
1

2
 (v1111+v2222 + v3333)                       (7.6) 

 

S = [σ11ℓ111 + 2σ12ℓ121 + 2σ13ℓ131 + 2σ23ℓ231 + σ22ℓ221 + σ33ℓ331]              (7.7) 

 

 T = [σ11ℓ112 + 2σ12ℓ122 + 2σ13ℓ132 + 2σ23ℓ232 + σ22ℓ222 + σ33ℓ332]              (7.8) 

 R = [σ11ℓ113 + 2σ12ℓ123 + 2σ13ℓ133 + 2σ23ℓ233 + σ22ℓ223 + σ33ℓ333] 
            (7.9) 

 

To apply Lindley approximation in the equation number (7.1) 

 

Σijk; I, j, k = 1,2,3 

 

Likelihood function from equation number (3.2) 

 

L(x) = βne(−β(x−γ−α))e−∑e(−β(x−γ−α))
 (x;α,ꞵ,γ >0) 

 

Log likelihood of above equation  

 

Log L(x) = n log β − β∑(x − γ − α)-∑e(−β(x−γ−α)) 

 

Now, 

 

ℓ1 =
∂logl

∂α
 = ꞵ

n
− ꞵe−β(x−γ−α)                     (7.10) 

 

ℓ2 =
∂logl

∂ꞵ
 =

n

β
 – (x − γ − α)+(x − γ − α). e(−β(x−γ−α))                (7.11) 

 

ℓ3 =
∂logl

∂γ
= ꞵ

n
− ꞵe−β(x−γ−α)                      (7.12) 

 

Again, 

 

ℓ11 =
∂2logl

∂α2  = −ꞵ
2e−β(x−γ−α)                      (7.13) 

 

ℓ22 =
∂2logl

∂ꞵ
2  = −

n

ꞵ
2 − (x − γ − α) 2e(−β(x−γ−α))                 (7.14) 

 

ℓ33 =
∂2logl

∂γ2  = −ꞵ
2e−β(x−γ−α)                     (7.15) 

 

ℓ12 =
∂2logl

∂α∂ꞵ
 = n−e−β(x−γ−α) +ꞵ(x − γ − α). e(−β(x−γ−α))               (7.16)  
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ℓ21 =
∂2logl

∂ꞵ ∂α
= n−e−β(x−γ−α) +ꞵ(x − γ − α). e(−β(x−γ−α))               (7.17)  

 

From (7.16) & (7.17) 

 

 ℓ12 = ℓ21                          (7.18) 

 

ℓ13 =
∂2logl

∂α∂γ
= −ꞵ

2e−β(x−γ−α)                      (7.19)  

ℓ31 =
∂2logl

∂γ∂α
 = −ꞵ

2e−β(x−γ−α)                      (7.20) 

 

From (7.19) & (7.20) 

 

ℓ13 = ℓ31                          (7.21) 

 

ℓ23 =
∂2logl

∂ꞵ ∂γ
= 1−e−β(x−γ−α) +ꞵ(x − γ − α). e(−β(x−γ−α))               (7.22)  

 

ℓ32 =
∂2logl

∂γ∂ꞵ
 = 1−e−β(x−γ−α) +ꞵ(x − γ − α). e(−β(x−γ−α))               (7.23) 

 

From (7.22) & (7.23) 

 

ℓ23 = ℓ32                          (7.24) 

 

Again, 

 

ℓ111 =
∂3logl

∂α3 = −ꞵ
3e−β(x−γ−α)                     (7.25) 

 

ℓ222 =
∂3logl

∂ꞵ
3  =

2n

β3 + (x − γ − α) 3e(−β(x−γ−α))                  (7.26)  

 

ℓ333 =
∂3logl

∂γ3  = −ꞵ
3e−β(x−γ−α)                     (7.27)  

 

 ℓ112 =
∂

∂α
[
∂2logl

∂α∂ꞵ
] = −ꞵ

2(x − γ − α)e−β(x−γ−α)                  (7.28) 

 

 ℓ113 =
∂

∂α
[
∂2logl

∂α∂γ
] = ꞵ

3e−β(x−γ−α)                     (7.29)  

 

 ℓ121 =
∂

∂α
[
∂2logl

∂ꞵ ∂α
] = ꞵ

2(x − γ − α)e−β(x−γ−α)                  (7.30) 

 

 ℓ131 =
∂

∂α
[
∂2logl

∂γ∂α
]  = −ꞵ

3e−β(x−γ−α)                    (7.31)  

 

 ℓ221 =
∂

∂ꞵ
[
∂2logl

∂γ∂α
] = 2(x − γ − α)e−β(x−γ−α) − β(x − γ − α)2e(−β(x−γ−α))            (7.32) 

 

 ℓ223 =
∂

∂ꞵ
[
∂2logl

∂ꞵ ∂γ
] = 2(x − γ − α)e−β(x−γ−α) − β(x − γ − α)2e(−β(x−γ−α))            (7.33) 

 

 ℓ232 =
∂

∂ꞵ
[
∂2logl

∂γ∂ꞵ
] = 2(x − γ − α) − β(x − γ − α)2e(−β(x−γ−α))              (7.34) 

 

 ℓ331 =
∂

∂γ
[
∂2logl

∂γ∂α
] = ꞵ

3e−β(x−γ−α)                     (7.35) 

 

 ℓ332 =
∂

∂γ
[
∂2logl

∂γ∂ꞵ
] = β(x − γ − α)2e(−β(x−γ−α))                  (7.36) 

 

 ℓ231 =
∂

∂ꞵ
[
∂2logl

∂γ∂α
] = e−β(x−γ−α)(−2β + β2(x − γ − α))                (7.37) 

 

 ℓ122 =
∂

∂α
[
∂2logl

∂ꞵ
2 ] = −2(x − γ − α)e(−β(x−γ−α)) + β(x − γ − α)2e(−β(x−γ−α))           (7.38)  
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ℓ132 =
∂

∂α
[
∂2logl

∂γ∂ꞵ
] = ꞵ

2(x − γ − α)e−β(x−γ−α)                  (7.39) 

 

 ℓ133 =
∂

∂α
[
∂2logl

∂γ2 ] = −ꞵ
3e−β(x−γ−α)                    (7.40)  

 

 ℓ233 =
∂

∂ꞵ
[
∂2logl

∂γ2 ] = −e−β(x−γ−α)(−2β + β2(x − γ − α))               (7.41)  

 

Now,  

 

 −[ℓijk] = [

ℓ111ℓ112ℓ113

ℓ221ℓ222ℓ223

ℓ331ℓ332ℓ333

]  

 

From equation number (7.25) to (7.41) 

 

−[ℓijk] = 

 [

ꞵ
3e−β(x−γ−α) −ꞵ

2(x − γ − α)e−β(x−γ−α) ꞵ
3e−β(x−γ−α)

2(x − γ − α)e−β(x−γ−α) − β(x − γ − α)2e(−β(x−γ−α)) 2n

β3 + (x − γ − α) 3e(−β(x−γ−α)) 2(x − γ − α)e−β(x−γ−α) − β(x − γ − α)2e(−β(x−γ−α))

ꞵ
3e−β(x−γ−α) ꞵ

2(x − γ − α)e−β(x−γ−α) ꞵ
3e−β(x−γ−α)

] 

 

(7.42) = [

N11N12N13

N21N22N23

N31N32N33

] 

 

Determinant of −[ℓijk] 

 D = −{
N11(N22N33 − N23N32) + N12(N21N33 − N23N31) + 

 (N21N32 − N31N22)
} 

 

Adjoint of matrix =-
 ijk

 

 

Cofactor of matrix =-
 ijk

 

 

a11 = [N22N33 − N23N32] = J11  

 

 a12 = −[N21N33 − N23N31] 
 

 = N23N31 − N21N33 = J12 

 

 a13 = [N21N32 − N22N31] = J13  

 

 a21 = [N12N33 − N32N13] 
 

 = N32N13 − N12N33 = J21 

 

 a22 = [N12N33 − N31N13] = J22 

 

 a23 = [N11N32 − N12N31] 
 

 = N12N31 − N11N32 = J23 

 

 a31 = [N12N23 − N13N22] = J31 

 

 a32 = −[N11N23 − N13N21] 
 

 = [N13N21 − N11N23] = J32 

 

 a33 = [N12N22 − N12N21] = J33 
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[−ℓijk]
−1

=
Adjoint of[ℓijk]

|−ℓijk|
  =

[
 
 
 
 
J11

D

J21

D

J13

D
J12

D

J22

D

J23

D
J13

D

J23

D

J33

D ]
 
 
 
 

  

 

= [

σ11σ21σ13

σ12σ22σ23

σ13σ23σ33

] 

 

 Approximate Bayes Estimator  

 

V(α, β, γ) = v 

 

V̂AB = E(v|x) 

 

Evaluated from equation number (6.4) and (7.1) joint prior density 

 

 G(α, β, γ) = g1(α)g2(γ)g3 (
β

γ
) 

 

=
c

∂Γξ
γ−ξβξ+1 exp [−(

γ

∂
+

β

γ
)]  

 

ρ = logG = log c − log ∂ − log Γξ (ξ + 1) log β − ξ log γ − (
γ

δ
+

β

γ
) (8.1) 

 

 ρ1 =
∂ρ

∂α
= 0                            (8.2) 

 

 ρ2 =
∂ρ

∂β
=

ξ+1

β

−1

γ
                          (8.3) 

 

 ρ3 =
∂ρ

∂γ
=

−ξ

γ

−1

δ
+

1

γ2                         (8.4) 

 

Values of S, T and R from equation number (7.42) and from (7.28) to (7.41) we get, 

 

 S = [σ11ℓ111 + 2σ12ℓ121 + 2σ13ℓ131 + 2σ23ℓ231 + σ22ℓ221 + σ33ℓ331]  
 

 = σ11ꞵ
3e−β(x−γ−α) + 2σ12ꞵ

2(x − γ − α)e−β(x−γ−α) +  2σ13(−ꞵ
3e−β(x−γ−α)) +  2σ23e

−β(x−γ−α)(−2β + β2(x − γ − α)) 

 

 +σ222(x − γ − α)e−β(x−γ−α) − β(x − γ − α)2e(−β(x−γ−α))   +σ33ꞵ
3e−β(x−γ−α)           (8.5) 

 

 T = [σ11ℓ112 + 2σ12ℓ122 + 2σ13ℓ132 + 2σ23ℓ232 + σ22ℓ222 + σ33ℓ332] 
 

 = σ11(−ꞵ
2(x − γ − α)e−β(x−γ−α)) + 2σ12(−2(x − γ − α)e−β(x−γ−α) + 

 

 β(x − γ − α)2e(−β(x−γ−α))) + 2σ13ꞵ
2(x − γ − α)e−β(x−γ−α)   

 

+2σ232(x − γ − α) − β(x − γ − α)2e(−β(x−γ−α)) + 

 

σ22
2n

β3 + (x − γ − α) 3e(−β(x−γ−α))  + σ33ꞵ
2(x − γ − α)e−β(x−γ−α)                (8.6) 

 

R = [σ11ℓ113 + 2σ12ℓ123 + 2σ13ℓ133 + 2σ23ℓ233 + σ22ℓ223 + σ33ℓ333] 
 

= σ11ꞵ
3e−β(x−γ−α) + 2σ12ꞵ

2(x − γ − α)e−β(x−γ−α) + 

 

2σ13(−ꞵ
3e−β(x−γ−α)) + 2σ23e

−β(x−γ−α)(−2β + β2(x − γ − α)) 

 

+σ222(x − γ − α)e−β(x−γ−α) − β(x − γ − α)2e(−β(x−γ−α)) +σ33ꞵ
3e−β(x−γ−α)           (8.7) 

      

 V̂AB = E(v|x) = v + (v1α1 + v2α2 + v3α3 + α4 + α5) + 
1

2
[(Sσ11 + Tσ21 + Rσ31)v1 + (Sσ12 + Tσ22 + Rσ32)v2  

+(Sσ13 + Tσ23 + Rσ33)v3] 
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 = v + ϕ1 + ϕ2                            (8.8) 

 

Were, 

 ϕ1 = (v1a1 + v2a2 + v3a3 + a4 + a5)                       (8.9)  

 

 ϕ2 =
1

2
[(Sσ11 + Tσ21 + Rσ31)v1 + (Sσ12 + Tσ22 + Rσ32)v2 

 

 +(Sσ13 + Tσ23 + Rσ33)v3] (8.10)  
 

Evaluated at the MLE 𝐕̂  = (𝛂̂, 𝛃̂, 𝛄̂) ) where; 

 

 a1 = ρ1σ11 + ρ2σ12 + ρ3σ13  

 

= o. σ11 + [
ξ+1

β
−

1

γ
] σ12 + [

−ξ

γ
−

1

δ
+

1

γ2] σ13                    (8.11) 

 

a2 = ρ1σ21 + ρ2σ22 + ρ3σ23 

 

= [
ξ+1

β
−

1

γ
] σ22 + [

−ξ

γ
−

1

δ
+

1

γ2] σ23 (8.12)  

 

a3 = ρ1σ31 + ρ2σ32 + ρ3σ33  

 

= [
ξ+1

β
−

1

γ
] σ32 + [

−ξ

γ
−

1

δ
+

1

γ2] σ33                         (8.13) 

 

a4 = v12σ12 + v13σ13 + v23σ23                         (8.14) 

 

a5 =
1

2
(v11σ11 + v22σ22 + v33σ33)                      (8.15) 

 

 Approximate Bayes Estimate under Squared error loss function (SELF) 

 

 V̂ABS =  E(v|x) 

 

= v + (v1a1 + v2a2 + v3a3 + a4 + a5) +
1

2
[(Sσ11 + Tσ21 + Rσ31)v1 + (Sσ12 +  Tσ22 + Rσ32)v2+0(

1

n2)     (9.1)  

 

v = φ1 + φ2                                (9.2)  

 

Approximate Bayes Estimate 

 

 V̂ABS =  E(θ|x) = θ                            (9.3) 

 

 E(θ|x) =
∭θG∗(α,ꞵ,γ )dαdꞵdγ 

∭G∗(α,ꞵ,γ )dαdꞵdγ
                           (9.4)  

 

The above equation (9.4) is evaluated by method of Lindley Approximation, whose simplified form is equation number (9.1) 

replace θ by Vαβγ in equation number (9.4) and (9.1). 

 

Special cases:- 

 Approximate Bayes estimate of 𝛂 

 

Vαβγ = v = α 

 

v1 = 1; v11 = v12 = v13 = 0 

 

v2 = v21 = v22 = v23 = 0 

 

v3 = v31 = v32 = v33 = 0 

 

E(v|x) = α + φ1 + φ2                              (9.5) 

 

φ1 = v1a1 + v2a2 + v3a3 + a4 + a5                    (9.6) 
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= 1 {0σ11 + [
ξ+1

β
−

1

γ
] σ12 + [−

ξ

γ
−

1

δ
+

1

γ2] σ13} (9.6) φ2 =
1

2
 [(Sσ11 + Tσ21 + Rσ31)]          (9.7) 

 

E(α|x) = α + [
ξ+1

β
−

1

γ
] σ12 + [−

ξ

γ
−

1

δ
+

1

γ2] σ13 +
1

2
 [(Sσ11 + Tσ21 + Rσ31)]           (9.8) 

 = α + φ′  

 α̂ABS =  α + φ′                         (9.9) 

 

Were, 

 

φ′ = [
ξ+1

β
−

1

γ
] σ12 + [−

ξ

γ
−

1

δ
+

1

γ2] σ13 +
1

2
 [(Sσ11 + Tσ21 + Rσ31)]  

 

 Approximate Bayes estimate of 𝛃  

 

Vαβγ = v = β 

 

v2 = 1; v21 = v22 = v23 = 0 

 

v1 = v11 = v12 = v13 = 0 

 

v3 = v31 = v32 = v33 = 0 

 

E(v|x) = β + φ1 + φ2                       (9.10)  

 

φ1 = [
ξ+1

β
−

1

γ
] σ22 + [−

ξ

γ
−

1

δ
+

1

γ2] σ23                    (9.11) 

 

φ2 =
1

2
 [(Sσ12 + Tσ22 + Rσ32)]                      (9.12) 

 

 E(β|x) = β + [
ξ+1

β
−

1

γ
] σ22 + [−

ξ

γ
−

1

δ
+

1

γ2] σ23 

 

+
1

2
[(Sσ12 + Tσ22 + Rσ32)]                       (9.13) 

 

 β̂ABS =  β + φ′′                          (9.14)  

 

 

φ′′ = [
ξ+1

β
−

1

γ
] σ22 + [−

ξ

γ
−

1

δ
+

1

γ2] σ23 +
1

2
[(Sσ12 + Tσ22 + Rσ32)]              (9.15) 

 

 Approximate Bayes estimate of 𝛄 

 

Vαβγ = v = γ 

 

 v3 = 1; v31 = v32 = v33 = 0 

 

 v1 = v11 = v12 = v13 = 0 

 

 v2 = v21 = v22 = v23 = 0 

 

 E(v|x) = γ + φ1 + φ2 (9.16) 

 

φ1 = [
ξ+1

β
−

1

γ
] σ32 + [−

ξ

γ
−

1

δ
+

1

γ2] σ33                    (9.17) 

 

φ2 =
1

2
 [(Sσ13 + Tσ23 + Rσ33)]                      (9.18)  

 

 E(γ|x) = β + [
ξ+1

β
−

1

γ
] σ32 + [−

ξ

γ
−

1

δ
+

1

γ2] σ33 +
1

2
[(Sσ13 + Tσ23 + Rσ33)]            (9.19)  

 

  γ̂ABS =  γ + φ′′′                          (9.20) 

 

 φ′′′ = [
ξ+1

β
−

1

γ
] σ32 + [−

ξ

γ
−

1

δ
+

1

γ2] σ33 +
1

2
[(Sσ13 + Tσ23 + Rσ33)]             (9.21) 
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 Simulation Design 

 
Table 1: Parameters and priors used in simulation study 

 

Parameter Symbol Description Value Used Role 

α Shape parameter 1 Determines the skewness/shape 

β Scale parameter 0.5 Controls spread (higher = more spread) 

γ Location parameter 1.5 Distribution starts after this 

ξ Hyperparameter in prior for β 5 Used in prior: g₃(β) 

δ Hyperparameter in prior for γ 1.5 Used in prior: g₂(γ) 

n Sample size Sample size Varying in simulation 

Repetitions Number of simulations runs per sample size 1000 To reduce fluctuation 

Simulation Goal Estimate α, β, γ using MLE and ABS (Lindley)  With low fluctuation 

Distribution 3-parameter Gumbel (shifted version)  PDF defined only for x > γ 

 

The focuses on estimating the parameters of the Gumbel Three-Parameter Distribution, which includes the shape parameter α, the 

scale parameter β, and the location parameter γ. Two methods of estimation were considered: Maximum Likelihood Estimation 

(MLE) and Approximate Bayes Estimation (ABS). The comparison of these methods was based on simulation studies for 

different sample sizes. 

To evaluate and compare MLE and ABS, simulation experiments were performed for various sample sizes: 

n=10, 20, 30, 40, 50, 60, 70, 80  

For each sample size, 500 datasets were generated from the Gumbel distribution with fixed parameter values α=1, β=0.5, and 

γ=1.5 (refer to Equation 6.2 to 6.6). Both MLE and ABS estimates were calculated for each simulated dataset 

 In each iteration, data were generated from the Gumbel distribution with fixed true values of parameters. 

 Both MLE and ABS estimates for α, β, γ were computed for each generated dataset. 

 

Estimation Methods 

 Maximum Likelihood  Estimation  (MLE): This classical method estimates parameters by maximizing the likelihood 

function based on the observed data. 

 Approximate Bayes  Estimation  (ABS): This method incorporates prior information and uses approximations (like 

Lindley’s method) to obtain Bayesian estimates of the parameters under the Squared Error Loss Function. 

 Source of the Table: The table is generated using the Lindley Approximation method for Approximate Bayes Estimation 

(ABS) because The ABS values are computed using prior distributions and the Lindley approximation formula. 

 

Each row of the table corresponds to a sample size n, ranging from 10 to 80. 

 

Each column gives:- 

MLE of α, β, γ, along with their Mean Squared Error (MSE) in square brackets. 

Bayesian Estimator (ABS) of α, β, γ (using Lindley approximation), again with MSEs in brackets. 

 

 Mean and MSE'S of 𝛼, 𝛽, 𝛾  
 

 α=1, β=0.5, and γ=1.5 

 
Table 2: Mean estimates and MSEs of α, β, and γ under MLE and ABS 

 

n  𝛂̂𝑴𝑳𝑬  𝛂̂𝐀𝐁𝐒  𝛃̂𝑴𝑳𝑬  𝛃̂𝐀𝐁𝐒  𝛄̂𝑴𝑳𝑬  𝛄̂𝐀𝐁𝐒 

10 
1.1719762 

[0.010896597] 

1.1775973 

[0.005448299] 

1.5953965 

[0.011724196] 

1.6346384 

[0.005862098] 

1.3950228 

[0.3206442] 

1.3597961 

[0.3405968] 

20 
1.4640277 

[0.040077145] 

1.5025884 

[0.020038573] 

1.6654546 

[0.011068272] 

1.6795053 

[0.005534136] 

0.9466313 

[0.4909020] 

0.9343685 

[0.5073344] 

30 
1.6893457 

[0.073350322] 

1.7410376 

[0.036675161] 

1.8099570 

[0.021586539] 

1.7815978 

[0.010793270] 

0.7536863 

[0.6731001] 

0.7448584 

[0.6803468] 

40 
1.7457150 

[0.015337312] 

1.7341551 

[0.007668656] 

1.8982915 

[0.113813694] 

1.9281840 

[0.056906847] 

0.6598134 

[0.7967643] 

0.6557527 

[0.8020917] 

50 
2.0213232 

[0.015139596] 

2.0833361 

[0.007569798] 

1.9940986 

[0.032979120] 

2.0253375 

[0.016489560] 

0.5651210 

[0.9483692] 

0.5615013 

[0.9531808] 

60 
2.1614104 

[0.126539635] 

2.1950215 

[0.063269818] 

2.1057310 

[0.216895597] 

2.0974956 

[0.108447798] 

0.5050871 

[1.0511569] 

0.5059727 

[1.0490784] 

70 
2.3438446 

[0.002884391] 

2.4003034 

[0.001442195] 

2.1919423 

[0.043212979] 

2.1513018 

[0.021606490] 

0.4398934 

[1.1653871] 

0.4404160 

[1.1635045] 

80 
2.6614196 

[0.058461375] 

2.6216654 

[0.029230687] 

2.3055205 

[0.012385424] 

2.2615925 

[0.006192712] 

0.4300852 

[1.1868487] 

0.4323566 

[1.1814668] 

 

Analysis of Estimation 

The parameter estimation for the three-parameter distribution was carried out using both the Maximum Likelihood Estimator 

(MLE) and the Approximate Bayesian Estimator (ABS), obtained using Lindley's approximation. The estimations were performed 

for the parameters α, β, and γ across a range of sample sizes from 20 to 80. To evaluate the effectiveness of both estimators, 
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repeated simulations were performed, and smoothed graphical representations were created for each parameter to represent how 

the estimators behaved with increasing sample size. 

 

 
 

Fig 3: Behaviour of parameter estimates under MLE and ABS methods 

 

 
 

Fig 4: Estimation performance of parameter β under MLE and ABS 

 

 
 

Fig 5: Estimation performance of parameter γ under MLE and ABS 
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Analysis of Alpha Estimates 

The first chart displays the estimation behaviour of the parameter α under both the MLE and ABS methods. At smaller sample 

sizes (N=20, 30), both estimators show some variation, particularly at smaller sample sizes. However, the Approximate Bayesian 

Estimator (ABS) generally provides greater stability and produces estimates that are closer to the true parameter values than those 

from the Maximum Likelihood Estimator (MLE). As the sample size increases beyond 40, both estimators progressively become 

more reliable with their estimates approaching the actual parameter values indicating that both are consistent. 

 

Analysis of Beta Estimates 

The second chart presents the estimation results for the parameter β. Here, both the MLE and ABS estimators perform very well 

across all sample sizes. While small fluctuations are observed at lower sample sizes, these are less significant than the α estimates. 

Both estimators converge rapidly to the true parameter value as the sample size increases, indicating high efficiency and 

consistency. However, the ABS estimator continues to show a marginal improvement in stability for smaller sample sizes, 

highlighting its reliability in real world situations with limited data. 

 

Analysis of Gamma Estimates  

The third chart displays the behaviour of the gamma (γ) estimates obtained through both the Maximum Likelihood Estimator 

(MLE) and the Approximate Bayesian Estimator (ABS) across increasing sample sizes. A clear characteristic of the plot is the 

decreasing trend in the estimates with increasing sample size, which is largely due to the increased sensitivity in estimating the 

location parameter (γ) at smaller sample sizes. The γ parameter represents the minimum or threshold value in the distribution. In 

small samples, there is a higher likelihood that the true minimum value is not captured due to limited data, which causes the 

estimator to overestimate γ. As a result, for smaller sample sizes, both MLE and ABS initially produce gamma estimates that are 

higher than the true parameter value, showing a positive bias. 

As the sample size increases, the probability of observing values closer to the true minimum rises. This additional information 

allows both estimators to correct the earlier overestimation, causing the gamma estimates to gradually decrease and converge 

towards the true value. The Approximate Bayesian Estimator shows a smoother and more consistent decrease than MLE, mainly 

because prior knowledge in the Bayesian method helps stabilize estimates when data is limited. Thus, the downward trend in the 

gamma estimates reflects the correction of small-sample bias in location parameter estimation as more information becomes 

available with increasing sample sizes. This behaviour is well-known in reliability analysis and extreme value modelling, where 

location parameters are highly sensitive to sample extremes. 

 

Conclusion 

The study shows that both Maximum Likelihood Estimator (MLE) and Approximate Bayesian Estimator (ABS) perform well in 

estimating the parameters α, β, and γ of the three-parameter distribution, especially as the sample size increases. However, the 

ABS estimator generally provides more stable and accurate results for smaller sample sizes due to its ability to include prior 

information. For α, ABS reduces variability and bias better than MLE in small samples. For β, both estimators perform almost 

equally well, with ABS having a slight advantage in stability. For γ, both estimators initially overestimate due to the small sample 

size, but ABS adjusts more smoothly as more data becomes available. "Overall, the Approximate Bayesian Estimator performs 

better with smaller sample sizes, whereas both methods yield comparable outcomes for larger samples, indicating stable and 

accurate estimation performance. 
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