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regression spline 

 
KS Tailor 

 
Abstract 

Agriculture is the primary source of livelihood which forms the backbone of our country. Current 

challenges of water shortages, uncontrolled cost due to demand-supply, and weather uncertainty 

necessitate farmers to be equipped with smart farming. In particular, low yield of crops due to uncertain 

climatic changes, poor irrigation facilities, reduction in soil fertility and traditional farming techniques 

need to be addressed. Machine learning is one such technique employed to predict crop yield in 

agriculture. Various machine learning techniques such as prediction, classification, regression and 

clustering are utilized to forecast crop yield. In this paper, a non-parametric model called multivariate 

adaptive regression spline (MARS) is used to predict the sugarcane production in India. MARS 

(Friedman, 1991) is a non-parametric model that divides data into various partitions and formulates the 

relationship between independent and dependent spatial drivers. 

 

Keywords: MARS, sugarcane, productivity, area 

 

1. Introduction 

Sugarcane is one of the major non-food grain crops in India. Sugar production has emerged as 

the biggest agro industries in the rural area of India during the last few decades. It has made a 

considerable impact on the economy of farmers particularly in irrigated areas. India is the 

second-highest producer of sugarcane in the world after Brazil. The largest producer of 

sugarcane in India is Maharashtra, which produced over 138 lakh tonnes of sugarcane in 2022-

23. Uttar Pradesh, Karnataka, and Maharashtra together contribute to 80% of the total 

sugarcane production in India. Maharashtra produces 61.32 million tonnes of sugarcane on 

average per year. Sugarcane is a multipurpose crop, used in making sugar, jaggery, khansari, 

molasses, and even paper. In India, approximately 60% of the population is involved in 

agriculture and among the many crops cultivated in the nation, sugarcane is one of the most 

important Kharif crops. The climate of the country supports the plantation of sugarcane 

throughout the year.  

Sugarcane is a tropical and subtropical crop that requires a hot and humid climate to grow. A 

tall, perennial grass species known as sugarcane or sugar cane is utilized in the production of 

sugar. The 2-6 m tall plants have thick, jointed, fibrous stalks that are rich in sucrose and 

accumulate in the internodes of the stalks. Several other states grow sugarcane in addition to 

Uttar Pradesh, which is the largest producer of sugarcane in India. 

In this paper, an attempt is made to analyze the pattern of sugar cane crop production in India 

using a non-parametric model called multivariate adaptive regression spline (MARS). 

Secondary data is collected from the database of Directorate of Economics and Statistics, 

Ministry of Agriculture & Farmers’ Welfare, New Delhi. 

 

Materials and Methods 

Materials: This paper is based on sugarcane production in India. The data related to area, 

production and productivity of sugarcane in India is collected from the database of Directorate 

of Economics and Statistics, Ministry of Agriculture & Farmers’ Welfare, New Delhi. The 

data for the years 2000-2001 through 2022-2023 has been collected from the website of 
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ministry of agriculture and farmers. The data is classified into 

seven different variables, namely V1= area in ‘000 hectares, 

V2 = production in ‘000 tones, V3 = productivity in tones per 

hectares, V4 = cane crushed in ‘000 tones, V5 = sugar 

recovery in %, V6 = sugar in ‘000 tones, V7 = number of 

sugar factories. Descriptive statistics for these variables are 

given in table 1. 
 

Table 1: Descriptive Statistics 
 

 n Minimum Maximum Mean 
Std. 

Deviation 

V1 23 3662 5883 4719.70 488.914 

V2 23 233862 494228 339698.8 61620.428 

V3 23 59.40 84.91 71.5217 6.87230 

V4 23 0 356400 220193.0 76315.792 

V5 23 .00 11.01 9.9035 2.17449 

V6 23 0 35760 22809.96 8016.117 

V7 23 400 538 489.48 40.669 

 

V1= area, V2 = production, V3 = productivity, V4 = cane 

crushed,  

V5 = sugar recovery, V6 = sugar, V7 = number of sugar 

factories 

 

Five different MARS models have been evaluated. These 

models are as follows. 

 Model 1: Dependent variable: V2 = production, 

Independent variable: V1= area 

 Model 2: Dependent variable: V3 = productivity, 

Independent variable: V1= area, V2 = production 

 Modal 3: Dependent variable: V5 = sugar recovery, 

Independent variable: V3 = productivity, V4 = cane 

crushed and V7 = number of sugar factories 

 Modal 4: Dependent variable: V4 = cane crushed, 

Independent variable: V1= area, V2 = production and V7 

= number of sugar factories 

 Model 5: Dependent variable: V6 = sugar, Independent 

variable: V3 = productivity, V4 = cane crushed, V5 = 

sugar recovery and V7 = number of sugar factories 

 

Methods 

Multivariate adaptive regression spline (MARS) is a data 

mining technique that can be used for solving regression type 

problems. (Hastie et al., 2001) [52]. 

MARS is an effective machine learning algorithm that define 

the relation between a dependent variable and a set of 

independent variables. (Celik et al., 2019) [25]. 

 It is a non-parametric procedure, for invention adaptive 

regressions that uses piecewise basis functions to define 

relationships between a dependent variable and a set of 

estimations. MARS allows for the capture of linear and 

additive relationships and for the separation in excess of all 

nodes at each step, rather than just the terminal ones. Hence, 

MARS compose a bended regression line to fit the data from 

subgroup to subgroup and from spline to spline. (Friedman, 

1991) [47].  

In every spline, MARS splits the data anymore inside many 

subgroups. Several knots are constituted by MARS. These 

knots can be established between distinct input variables or 

distinct intervals in the same input variable, to separate the 

subgroups. The data of each subgroup are called basis 

function (BF). The model takes the form of an expansion in 

product spline basis functions, where the number of basic 

functions as well as the parameters associated with each one 

(product degree and knot locations) are automatically 

determined by the data (Friedman, 1991; Sephton 2001) [47, 63]. 

The MARS algorithm constructs models from two sided 

functions of the predictors (x) of the form: 

 

(𝑥 − 𝑡)+ = {
𝑥 > 𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

These serve as basis functions for linear or nonlinear 

expansion that approximates some true underlying function 

f(x). 

The MARS model for a response variable y, and M terms, can 

be given in the sequent equation: 

 

𝑦 = 𝑓(𝑥) = 𝛽0 + ∑ 𝛽𝑚

𝑀

𝑚=1

𝐾𝑘𝑚(𝑋𝑣(𝑘,𝑚)) 

 

Where the aggregate is over the M terms in the model and 𝛽0 

is an intercept, 𝛽𝑚 is a coefficient of basis functions, 

𝐾𝑘𝑚(𝑋𝑣(𝑘,𝑚)) is a basis function, here 𝑣(𝑘, 𝑚) is an index of a 

predictor for an mth component of kth product (Hastie et al., 

2001) [52]. Function H is defined as, 

 

𝐻𝑘𝑚(𝑋𝑣(𝑘,𝑚)) = ∏ ℎ𝑘𝑚

𝐾

𝑘=1

 

 

Where 𝑋𝑣(𝑘,𝑚) is the predictor in the kth of the mth product. 

Here, k is a parameter interaction order. For order of 

interactions K=1, the model is additive and for K=2 the model 

pairwise interactive (Friedman, 1991) [47]. 

During forward step, a number of basis functions are added to 

the model according to a predetermined maximum which 

should be considerably larger (twice as much at least) than the 

optimal (best least-squares fit) (Hastie et al., 2001) [52]. 

A backward procedure is applied in which the model is 

pruned by removing those basis functions that are associated 

with the smallest increase in the goodness of-fit. Generalized 

Cross Validation error is a measure of the goodness of fit that 

takes into account both the residual error and the model 

complexity as well. It is formulated by (Koronacki and Ćwik 

2005) [57]. 

 

𝐺𝐶𝑉 =
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))2𝑁

𝑖=1

[1 −
𝐶

𝑛
]

2  

 

With, 

𝐶 = 1 + 𝑐𝑑 

 

Where n is the number of cases in the data set, d is the 

effective degrees of freedom, which is equal to the number of 

independent basis functions. The quantity C is the penalty for 

adding a basis function (Hastie et al., 2001) [52]. 

To comparatively test the estimate criteria of MARS, the 

following goodness of fit criteria were used (Willmott and 

Matsuura, 2005; Liddle, 2007; Takma et al., 2012; Eyduran et 

al., 2019) [66, 64, 33]: 

1. Pearson correlation coefficient (r) between the actual and 

predicted dependent variable values, 

2. Coefficient of determination, 

 

𝑅2 = 1 −
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1

∑ (𝑌𝑖 − 𝑌𝑖)
2𝑛

𝑖=1
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3. Adjusted Coefficient of determination, 

 

𝐴𝑑𝑗. 𝑅2 = 1 −

1

𝑛−𝑘−1
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1

1

𝑛−1
∑ (𝑌𝑖 − 𝑌𝑖)

2𝑛
𝑖=1

 

 

4. Root mean square error (RMSE) given by following 

formula: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

2

𝑛

𝑖=1

 

 

5. Standard deviation ratio 𝑆𝐷𝑟𝑎𝑡𝑖𝑜  

 

𝑆𝐷𝑟𝑎𝑡𝑖𝑜 = √

1

𝑛−1
∑ (𝜀𝑖 − 𝜖)2𝑛

𝑖=1

1

𝑛−1
∑ (𝑌𝑖 − 𝑌)2𝑛

𝑖=1

 

 

6. Akaike Information Criterion (AIC) 

 

𝐴𝐼𝐶 = 𝑛𝑙𝑜𝑔 ∑ (
(𝑌𝑖 − 𝑌̂𝑖)

2

𝑛
) + 2𝑘

𝑛

𝑖=1

 

 

7. Corrected Akaike Information Criterion (AICc) 

 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 

 

Where k is the number of selected terms and n is the sample 

size. (Hu, 2007) [53]. 

Here, 𝑌𝑖 is the observed dependent variable value of ith 

variable, 𝑌̂𝑖 is the predicted dependent values of ith variable, 𝑌 

is the average of the dependent variable of the variable, 𝜀𝑖 is 

the residual value of ith variable, 𝜖 is the average of the 

residual values, k: number of the selected terms in the model, 

and n: total number of variable. The residual value of each 

observation is expressed as 𝜀𝑖 = 𝑌𝑖 − 𝑌̂𝑖. 

The MARS analysis was performed using the earth package 

of R software (Milborrow, 2011; Milborrow, 2018; R Core 

Team, 2014; Eyduran et al., 2019) [58, 59, 33]. 

 

Results: In this study, five different MARS models were 

developed to predictive five different dependent variables 

such as production, productivity, sugar recovery, crane 

crushed and sugar. The goodness-of-fit statistics (r, R2, Adj. 

R2, SDratio, AIC, AICc and GCV) were calculated to measure 

predictive performances of the developed MARS models. 

Results of predictive performances of the MARS models are 

reported in Table 2. It was understood that the fitted MARS 

models had high predictive accuracy (Table 2). Grzesiak and 

Zaborski (2012) [50] reported that the model having SD ratio 

less than 0.40 had a good fit, as also reported by Eyduran et 

al. (2019) [33]. For instance, it was determined that 99.9% of 

total variability in production was explained. 

 
Table 2: Goodness of fit criteria for MARS algorithm. 

 

Variables r R2 Adj R2 RMSE SDratio AIC AICc GCV 

V2 0.999 0.999 0.999 1555.779 0.026 348 -46 2420450 

V3 0.9023 0.9983 0.997 0.277 0.041 -49 -46 0.07658 

V4 0.9994 0.999 0.999 2386.728 0.032 368 371 5696469 

V5 0.9980 1 1 0.133 0.063 -83 -79 0.0177 

V6 0.9995 0.999 0.999 242.468 0.031 263 266 58791 

 

Modal 1 

In model 1, variable V2 is considered as dependent variable. 

All the models in this paper are created by R software using 

earth package. 

Summary of mars modal 1 (V2~.,) is presented below, 

coefficients (Intercept) 337725.56 

 h(4857-V1)-66.30 

 h(V1-4857) 82.18 

 h(70-V3) -4186.17 

 h(V3-70) 5029.91 

 

Selected 5 of 5 terms, and 2 of 28 predictors (nprune=100) 

Termination condition: Reached maximum RSq 0.9990 at 5 

terms 

 

Importance: V3, V1, year2001-02-unused, year2002-03-

unused, year2003-04-unused, year2004-05-unused, Number 

of terms at each degree of interaction: 1 4 (additive model) 

GCV 2420450 RSS 55670346 GRSq 0.9993336 RSq 

0.9993336 CVRSq 0.9975392 

Hence the prediction equation in terms of four basic functions 

for the mars model can be written as, 

 
𝑉2 = 337725.56 − 66.30 ∗ ℎ(4857 − 𝑉1) + 82.18

∗ ℎ(𝑉1 − 4857) − 4186.17 ∗ ℎ(70 − 𝑉3)
+ 5029.91 ∗ ℎ(𝑉3 − 70) 

 

It shows that 5 out of 5 terms were used from the original1 

predictor. It can be seen that a variable V1 and V3 are 

included with a knot at 4857 and 70 respectively, the 

coefficient for h(4857-V1) is -66.30 and the coefficient for 

h(70-V3) is -4186.17. It is also clear that total 99.75% 

variability is explained by the model. 

Various plots of mars model 1 is presented below. 
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Fig 1: model 1 plot 

 

Figure 1 illustrates the model selection plot that graphs the 

GCV (left-hand y-axis and solid black line) based on the 

number of terms retained in the model (x-axis) which are 

constructed from a certain number of original predictors 

(right-hand y-axis). It also includes cumulative distribution 

curve, residuals Vs. fitted curve and residual QQ plots.  

 

Modal 2 

In this variable V3 is considered as dependent variable. 

Summary of mars modal 2 (V3~.,) is presented below, 

Coefficients (Intercept) 72.065731 

 h(4857-V1) 0.015688 

 h(V1-4857) -0.015807 

 h(348188-V2) -0.000232 

 h(V2-348188) 0.000195 

 

Selected 5 of 5 terms, and 2 of 28 predictors (nprune=100) 

Termination condition: RSq changed by less than 0.001 at 5  

terms Importance: V2, V1, year2001-02-unused, year2002-

03-unused, year2003-04-unused, year2004-05-unused, 

Number of terms at each degree of interaction: 1 4 (additive 

model) GCV 0.07657788 RSS 1.761291 GRSq 0.9983049 

RSq 0.9983049 CVRSq 0.9434533Hence the prediction 

equation in terms of four basic functions for the mars model 

can be written as, 

 

 𝑉3 = 72.065731 + 0.015688 ∗ ℎ(4857 − 𝑉1) −
0.015507 ∗ ℎ(𝑉1 − 4857) − 0.000232 ∗ ℎ(348188 −
𝑉2) + 0.000195 ∗ ℎ(𝑉2 − 348188) 
 

It shows that 5 out of 5 terms were used from the original 2 of 

28 predictors. It can be seen that a variable V1 is included 

with a knot at 4857, the coefficient for h(4857-V1) is 

0.015688, and variable V2 is included with a knot 348188, the 

coefficient for h(348188-V2) is -0.000232. It is also clear that 

total 99.83% variability is explained by the model. 

Various plots of mars model 2 is presented below. 

 

 
 

Fig 2: Model 2 plot 
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Model 3 

This model is created by taking V5 variable as dependent 

variable and its summary is presented below, 

Coefficients (Intercept) 10.2533333 

 year2015-16 0.3666667 

 year2017-18 0.4766667 

 year2018-19 0.7566667 

 year2019-20 0.6066667 

 year2022-23-10.2533333 

 

Selected 6 of 6 terms, and 5 of 28 predictors (nprune=100) 

Termination condition: RSq changed by less than 0.001 at 6 

terms Importance: year2022-23, year2018-19, year2019-20, 

year2017-18, year2015-16, year2001-02-unused, year2002-

03-unused, Number of terms at each degree of interaction: 1 5 

(additive model) GCV 0.01770435 RSS 0.4072 GRSq 

0.9960856 RSq 0.9960856 CVRSq -5.011345 

Hence the prediction equation in terms of five basic functions 

for the mars model can be written as, 

 

𝑉5 = 10.2533333 + 0.366667 ∗ (𝑦𝑒𝑎𝑟 2015 − 16)
+ 0.4766667 ∗ (𝑦𝑒𝑎𝑟 2017 − 18)
+ 0.7566667 ∗  (𝑦𝑒𝑎𝑟 2018 − 19)
+ 0.6066667 ∗ (𝑦𝑒𝑎𝑟 2019 − 20)
− 10.253333 ∗ (𝑦𝑒𝑎𝑟 2022 − 23) 

 

It shows that 6 out of 6 terms were used from the original 5 

out of 28 predictors. It is also clear that total 99.61% 

variability is explained by the model. 

Various plots of mars model 3 is presented below. 

 

 
 

Fig 3: Model 3 plot 

 

Model 4: This model is created by taking V4 variable as 

dependent variable and its summary is presented below, 

Coefficients (Intercept) 240007.028 

 h(10.25-V5) 45.344 

 h(V5-10.25) -28431.212 

 h(24394-V6) -9.849 

 h(V6-24394) 9.801 

 

Selected 5 of 5 terms, and 2 of 28 predictors (nprune=100) 

Termination condition: RSq changed by less than 0.001 at 5 

terms Importance: V6, V5, year2001-02-unused, year2002-

03-unused, year2003-04-unused, year2004-05-unused, 

Number of terms at each degree of interaction: 1 4 (additive 

model) GCV 5696469 RSS 131018782 GRSq 0.9989775 RSq 

0.9989775 CVRSq 0.7343142 Hence the prediction equation 

in terms of four basic functions for the mars model can be 

written as, 

 

𝑉4 = 240007.028 + 45.344 ∗ ℎ(10.25 − 𝑉5) − 28431.212
∗ ℎ(𝑉5 − 10.25) − 9.849
∗ ℎ(24394 − 𝑉6) + 9.801 ∗ ℎ(𝑉6
− 24394) 

 

It shows that 5 out of 5 terms were used from the original 2 

out of 28 predictors. It can be seen that a variable V5 is 

included with a knot at 10.25, the coefficient for h(10.25-V5) 

is -28431.212, and variable V6 is included with a knot 24394, 

the coefficient for h(V6-24394) is 9.801. It is also clear that 

total 99.90% variability is explained by the model. 

Various plots of mars model 4 is presented below. 
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Fig 4: Model 4 plot 

 

Model 5 

This model is created by taking V6 variable as dependent 

variable and its summary is presented below, 

Coefficients (Intercept) 24232.7485 

 h(238176-V4) -0.1019 

 h(V4-238176) 0.1011 

 h(10.25-V5) 1.0327 

 h(V5-10.25) 2911.2661 

 

Selected 5 of 5 terms, and 2 of 28 predictors (nprune=100) 

Termination condition: Reached maximum RSq 0.9990 at 5 

terms Importance: V4, V5, year2001-02-unused, year2002-

03-unused, year2003-04-unused, year2004-05-unused,  

Number of terms at each degree of interaction: 1 4 (additive 

model) GCV 58790.53 RSS 1352182 GRSq 0.9990435 RSq 

0.9990435 CVRSq 0.7673597 

Hence the prediction equation in terms of two basic functions 

for the mars model can be written as, 

 

𝑉6 = 24232.7485 − 0.1019 ∗ ℎ(238176 − 𝑉4) + 0.1011
∗ ℎ(𝑉4 − 238176) + 1.0327
∗ ℎ(10.25 − 𝑉5) + 2911.2661 ∗ ℎ(𝑉5
− 10.25) 

 

It shows that 5 out of 5 terms were used from the original 2 

out of 28 predictors. It can be seen that a variable V4 is 

included with a knot at 238176, the coefficient for h(238176-

V4) is -0.1019, and variable V5 is included with a knot 10.25, 

the coefficient for h(V5-10.25) is 2911.2661. It is also clear 

that total 99.90% variability is explained by the model. 

Various plots of mars model 5 is presented below. 

 

 
 

Fig 5: Model 5 plot 
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Conclusion 

In this paper, MARS predictive models with the first and 

second degree interaction effects were developed using the 

MARS algorithm to estimate the productions of sugarcane, 

productivity, cane crushed, sugar and sugar recovery. Five 

different mars models were created using R-software. The 

established models demonstrated high explanatory power, 

with R² values of 0.999, 0.998, 0.996, 0.999, and 0.999, 

respectively, indicating that the models provide highly 

accurate predictions. The MARS algorithms were determined 

to be good predictors of the production and relationship 

between the other variables in agriculture. In agricultural 

sciences, student t test, one-way ANOVA, two-way ANOVA, 

multiple linear regression analysis has been widely used, but 

it can be suggested that the use of MARS models will be 

beneficial in future studies in agriculture. 
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