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Abstract 

This study introduces a new hierarchical formulation of the Bayesian Lasso by incorporating the Scale 

Mixture of Normals mixing with Rayleigh (BSCNRMIXING prior) into the Tobit Quantile Regression 

(Tobit Q Regression) framework. The BSCNRMIXING prior is proposed as a promising alternative to 

the widely used Scale Mixture of Normals mixing with Rayleigh (BSCNRMIXING prior), providing 

enhanced effectiveness in achieving simultaneous coefficient estimation and variable selection within the 

Bayesian Lasso paradigm. For Bayesian inference, Gibbs sampling schemes are derived for the full 

conditional posterior distributions. The proposed methodology is rigorously examined through 

comprehensive simulation experiments and an application to real data, with comparative analyses against 

established approaches, thereby highlighting its efficiency, stability, and robustness. 

 

Keywords: Variable selection, BSCNRMIXING prior distribution, lasso, new prior 

 

1. Introduction 

Tobit Quantile regression (Tobit Q Regression) models have gained substantial prominence 

since the pioneering work of Powell (1986) [22], and have since been widely applied across 

diverse fields, including Medical Expenditures (Yue and Hong (2012) [28], Female Labor 

Supply (Cunha, Divino, and Saulo (2021) [8], Education Outcomes in Iraqi Secondary Schools 

(Salih, Majid, and Muhsen (2024) [23], Clinical Trials (Wang, Z., et al (2023) [25], among others. 

In contrast to traditional tobit regression approaches, tobit Q Regression belongs to a robust 

class of models (Alhusseini, F. H. H. (2017) [4]. Notably, quantile regression does not require 

distributional assumptions on the error term, thereby offering greater statistical efficiency than 

standard mean regression, particularly in the presence of non-normal error distributions. In 

Tobit Q regression models, the inclusion of a large number of explanatory variables is 

common. These covariates may exhibit varying degrees of association with the censored 

response variable, while others may contribute little to no explanatory power within the model 

Ji, Y., Lin, N., & Zhang, B. (2012) [11]. Therefore, the inclusion of weak explanatory variables 

in the model lacks justification, as their presence may lead to inefficiency in estimation, 

inflated standard errors, and reduced interpretability of the results. However, identifying and 

diagnosing such weak independent variables remains a highly challenging task, particularly in 

high-dimensional settings or when multicollinearity is present. This challenge underscores the 

importance of employing robust statistical techniques such as variable selection procedures 

(Tibshirani, R. (1996) [24], penalization methods (e.g., Lasso and Elastic Net) (Tibshirani, R. 

(1996) [24], (Zou and Hastie, (2005) [29], or Bayesian shrinkage approaches to ensure that only 

the most informative covariates are retained in the model. This procedure demonstrates high 

effectiveness in constructing regression models, as it possesses a strong capability to select 

relevant explanatory variables while excluding those with limited or no explanatory power 

(Fan, J., & Lv, J. (2010) [9]. Recently, many researchers have employed efficient regularization 

methods in combination with the Bayesian approach. Park and Casella (2008) [19] introduced 

the Bayesian Lasso within the framework of traditional regression models. These ideas were 

later extended to Tobit quantile regression. For instance, Alhamzawi (2013) [1] proposed the 

use of an adaptive Lasso approach in Tobit quantile regression through a Bayesian framework.  
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Subsequently, Alhamzawi and Yu (2014) [3] developed a Bayesian method for coefficient estimation in the Tobit quantile 

regression model by employing a g-prior distribution with a ridge parameter. Moreover, Alhamzawi (2014) [2] introduced a 

Bayesian elastic net penalty for the Tobit quantile regression model. In the field of penalized Bayesian Tobit quantile regression, 

most methods initially relied on the scale mixture of normal (SMN) distribution before the development and application of the 

Bayesian Lasso in regression models (Alhusseini, F. H. H., & Georgescu, V. (2018) [4, 5]. Flaih, A. N., et al (2020) introduced an 

innovative approach to implement the Bayesian Lasso in conventional regression models by utilizing a Scale Mixture of Normals 

mixing with Rayleigh (BSCNRMIXING prior) distributions to represent the Laplace density. This formulation allows for more 

flexible prior specification and facilitates efficient posterior computation, thereby enhancing the performance of Bayesian Lasso 

in estimating regression coefficients and performing variable selection. In this study, we propose a novel Bayesian Lasso approach 

for Tobit quantile regression by employing a Scale Mixture of Normals mixing with Rayleigh (BSCNRMIXING prior) 

distributions. Based on the resulting posterior distributions, we develop a tractable and computationally efficient algorithm using 

Markov Chain Monte Carlo (MCMC) techniques. This framework facilitates accurate estimation of regression coefficients and 

effective variable selection in the presence of censoring. 

 

2.Tobit quantile regression  

Tobit quantile regression (often called censored quantile regression (CQR), at zero point) models a latent outcome 

 

 𝑦𝑖 = max(𝑦𝑖
∗, 0) , where 𝑦𝑖

∗ = 𝑥𝑖
𝑇𝛽𝜏 + 𝑢𝑖                  (1) 

 

where 𝑥𝑖 ∈ 𝑅𝑝, denotes regressors, 𝛽𝜏, is the vector of coefficients associated with the conditional 𝜏 − 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒, and 𝑢𝑖is an 

unobserved error term. The quantile restriction is imposed by requiring the 𝜏𝑡ℎ 

 

𝑄𝜏(𝑢𝑖|𝑥𝑖) = 0
,

⇒ 𝑄𝜏(𝑦𝑖
∗|𝑥𝑖) = 𝑥𝑖

𝑇𝛽𝜏                    (2) 

 

This formulation extends the classical (uncensored) quantile regression framework of Koenker & Bassett (1978) [15] to cases where 

the response is censored. A natural estimator is obtained by minimizing the quantile (check) loss applied to the observed, censored 

residuals. With the check loss function 𝜌𝜏(𝑢) = 𝑢(𝜏 − 𝐼{𝑢 < 0}). Powell (1986) [22] 1989 introduce estimator solves of CQR as 

following:  

 

 𝛽̂𝜏 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝜌𝜏(𝑦𝑖 − 𝑚𝑎𝑥{0, 𝑥𝑖
𝑇𝛽𝜏 + 𝑢𝑖}

𝑛
𝑖=1                   (3) 

 

The estimation of parameters in the Tobit Quantile Regression (T Q Regression) model is performed through the minimization of 

the objective function specified in equation [3]. A significant computational difficulty, however, arises from the fact that equation 

[3] is non-differentiable at zero, which restricts the use of conventional gradient-based optimization procedures. To address this 

limitation, Koenker and D’Orey (1987) [14] introduced an effective approach utilizing linear programming methods. (T Q 

Regression) model have been extensively investigated and several estimation algorithms have been proposed, many of these 

methods become computationally inefficient when the proportion of censored observations is high. At present, coefficient 

estimation for Tobit QR can be implemented through the crq function available in the quantreg package (Koenker, 2011). 

 

3. Bayesian Tobit Quantile Regression  

Bayesian Tobit quantile regression combines the Tobit framework for censored outcomes with Bayesian quantile regression to 

estimate conditional quantiles of a latent (uncensored) response while fully accounting for censoring uncertainty. The Bayesian 

approach typically models the regression errors with an asymmetric Laplace distribution (ALD). It take the following formula: 

 

𝑓(𝑢𝑖|𝜎, 𝜏) = 𝜏(1 − 𝜏) exp(−𝜌𝜏{(𝜖𝑖)} ) (with 𝜇 = 0 and 𝜎 = 1 )             (4) 

 

With mean, 𝐸(𝑢𝑖) =
1−2𝜏

𝜏(1−𝜏)
 and variance, var (𝑢𝑖) =

1−2𝜏+2𝜏2

𝜏2(1−𝜏)2 . 

 

From these information, The joint distribution of 𝑦 = (𝑦1, 𝑦2, … 𝑦𝑛)𝑇  𝑔𝑖𝑣𝑒𝑛 𝑋 = (𝑥1, 𝑥2, … 𝑥𝑛)𝑇 , is:  

 

(𝑦|𝑋, 𝛽, 𝜎, 𝜏) = 𝜏𝑛(1 − 𝜏)𝑛𝑒𝑥𝑝{− ∑ 𝜌𝜏(𝑦𝑖 − 𝑚𝑎𝑥{0, 𝑥𝑖
𝑇𝛽𝜏 + 𝑢𝑖}

𝑛
𝑖=1 }             (5) 

 

Maximizing the likelihood function in equation [5] is equivalent to minimizing the expression in equation [3]. However, directly 

employing the Laplace distribution results in complex computations and a highly challenging algorithm implementation. 

However, Kozumi and Kobayashi (2011) [17] demonstrated that the asymmetric Laplace distribution (ALD) can be reformulated as 

a function of the scale mixture of normal (SMN) distributions. Therefore, the likelihood function in equation [5] can be 

alternatively expressed as follows: 

 

 𝑦𝑖=𝑚𝑎𝑥{0,𝑦𝑖
∗},  

 

𝑦𝑖
∗|, 𝛽𝜏, 𝑚𝑖~𝑁(𝛼𝜏 + 𝑥𝑖

𝑇𝛽𝜏 + (1 − 2𝜏)𝑧𝑖 , 2𝑧𝑖)                 (6)  

 

A convenient working likelihood because its mode corresponds to the targeted conditional quantile and then uses latent-variable 

representations of the ALD to obtain tractable Gibbs or other MCMC samplers for posterior inference (Yu & Moyeed, 2001; Yu 
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& Stander, 2007; Kozumi & Kobayashi, 2011) [26, 27, 17]. This formulation permits straightforward incorporation of prior 

information, hierarchical extensions (e.g., random effects or shrinkage priors), and posterior measures of uncertainty that are often 

difficult to obtain with classical censored-quantile methods (Yu & Stander, 2007; Kozumi & Kobayashi, 2011) [27, 17]. Practical 

implementations exploit the ALD’s mixture-of-normals representation to derive full conditional distributions and efficient Gibbs 

updates, which markedly improve computational performance versus naïve Metropolis schemes (Kozumi & Kobayashi, 2011) [17]. 

Recent Bayesian work has extended the Tobit-quantile framework to handle endogeneity, panel/longitudinal structures, and 

variable selection, showing that Bayesian methods can flexibly address identification and model-selection issues that arise with 

heavy censoring (Kobayashi, 2015; Ji, Lin, & Zhang, 2012) [11]. The Bayesian Tobit-QR literature builds on foundational 

frequentist developments for censored quantile estimation (Powell, 1986; Koenker & D’Orey, 1987; Chernozhukov & Hong, 

2002; Portnoy, 2003; Peng & Huang, 2008) [22, 14, 7, 21, 20] and is supported by software implementations and packages (e.g., 

quantreg, bayesQR) that facilitate applied use and comparison with classical estimators (Koenker, 2005; Koenker et wal., CRAN) 

[13]. Overall, Bayesian Tobit quantile regression offers a conceptually coherent and computationally practical route to estimating 

conditional quantiles under censoring while allowing full posterior inference, flexible prior modeling, and extensions for 

endogeneity and hierarchical data structures (Yu & Stander, 2007; Kozumi & Kobayashi, 2011; Kobayashi, 2015) [27, 17]. Then the 

likelihood function of the probability density function 𝑓(𝑦𝑖
∗|, 𝛽𝜏, 𝑧𝑖) is  

 

𝑓(𝑦𝑖
∗|, 𝑥𝑖

𝑇 , 𝜏, 𝛽𝜏, 𝑧𝑖) = [
1

√4𝜋𝑧𝑖
]

𝑛

𝑒
− ∑

(𝑦𝑖
∗−𝑥𝑖

𝑇𝛽𝜏−(1−2𝜏)𝑧𝑖)
2

4𝑧𝑖

𝑛
1                  (7) 

 

The probability density function presented above (6) is considered one of the most important functions for estimating the 

parameters of the Tobit quantile regression model within the Bayesian framework. 

 

3.1 A New Laplace distribution 

The Laplace prior distribution (double-exponential) is widely used in Bayesian inference for sparse modeling and variable 

selection. Its sharp peak at zero and heavy tails induce shrinkage on regression coefficients, driving many toward zero while 

allowing important ones to remain large. This balances bias and variance effectively, making it a powerful alternative to Gaussian 

priors, particularly in the context of the Bayesian lasso (Tibshirani, 1996; Park & Casella, 2008) [24, 19]. The Laplace have the 

probability density function (PDF) is defined as 

 

𝑓(𝛽𝑗|𝜆) = 𝜆
2⁄  𝑒−𝜆|𝛽𝑗|                      (8) 

 

Where 𝜆 is the shrinkage parameter and (𝜆 ≥ 0). 

Direct utilization of the Laplace distribution in Bayesian inference often leads to substantial computational burdens and 

inefficiencies in estimation procedures. To address these challenges, various alternative formulations of the Laplace prior have 

been developed, enabling more efficient computation while preserving its favorable shrinkage characteristics see (Andrews and 

Mallows (1974), (Alhusseini, F. H. H. (2017) [4]. In this paper, we introduce a new hierarchical model representation by 

expressing the double-exponential (Laplace) prior distribution for the parameters as a scale mixture of normal distributions with 

the mixing density specified by the Rayleigh distribution with tobit quantile regression. 

 

3.2 Scale Mixture of Normal Distribution 

We introduce a hierarchical model in which the double-exponential prior for the parameters is reformulated as a scale mixture of 

normal distributions, with a Rayleigh mixing distribution. 

 

1

2𝑏
𝑒(

|𝑧|

𝑏
) = ∫

1

√2𝜋𝑠2

∞

0
exp (

−𝑧2

2𝑠2 ) 
𝑠

𝑏
𝑒

(
−𝑠2

2𝑏
)
𝑑𝑠                   (9) 

 

Then, 𝑧~𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 𝑧𝑒𝑟𝑜 𝑎𝑛𝑑 𝑏 𝑝𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑧|𝑠~𝑁(0, 𝑠2) and 𝑠~𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ(𝑏). We specify a zero-mean 

normal prior distribution for 𝛽 

 

Let 𝑏 =
𝜎2

λ
, = 𝛽, 𝑠 = 𝜎√𝜏, as the result the (8) is become 

 

λ

2𝜎2 𝑒
(

λ|𝛽|

𝜎2 )
= ∫

1

√2𝜋𝜎2𝜏

∞

0
exp (

−𝛽2

2𝜎2𝜏
)  

λ

2
𝑒(

−λτ

2
)𝑑𝜏                  (10) 

 

We specify a zero-mean normal prior distribution for 𝛽 taking form of 

 

,𝑓( 𝛽|𝜎2) =
1

√2𝜋𝜎2𝜏
exp (

−𝛽2

2𝜎2𝜏
)                     (11) 

 

Where 𝜎2 is = unknown prior variance of the parameter 𝛽, Then we assign an Rayleigh prior distribution on τ is takes the 

following form 

 
λ

2
 𝑒(

−λτ

2
)
                          (12) 

https://www.mathsjournal.com/


 

~29~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

 

The parameter 𝜎2 give as guarantees unimodal posterior distribution (T. Park, and, G. Casella(2008) [19]. In summary, the 

proposed Bayesian hierarchical model can be expressed as: 

𝑦𝑖=𝑚𝑎𝑥{0,𝑦𝑖
∗},𝑖=1,….,𝑛,, 

 

𝑦𝑖
∗|, 𝛽𝜏, 𝑥𝑖~𝑁(𝑥𝑖

𝑇𝛽𝜏 + (1 − 2𝜏)𝑧𝑖, 2𝑧𝑖), 
 

β|σ2Aτ𝜏1, 𝜏2 … 𝜏𝑝~𝑁𝑃(0, σ2Aτ) 

 

Aτ = diag(τ1, τ2, , , , , , τp) τ|λ~Rayleigh(λ) 

 

τ~τa−1exp(−bτ) 

 

λ~λc−1exp(−dλ) 

 

σ2, τ1, τ2, … . τ𝑝~𝜋(𝜎2) 𝑑(𝜎2) ∏
λ

2

𝑝
𝑖=1 𝑒

λτ𝑗
2  𝑑τ𝑗  

 

𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑑 are hyperparameters (Alhusseini, F. H. H., & Al-Naeli, A. A. J. (2024). 

 

3.3 Conditional Posterior Distribution Computation Inferences 

3.3.1-Updating conditional posterior of 𝒚𝒊 is 

 

𝑦𝑖|𝑦𝑖
∗, 𝑥𝑖 , 𝑚𝑖 , 𝛼𝜏, 𝛽𝜏~ {

𝛾(𝑦𝑖) 𝑖𝑓 𝑦𝑖  > 𝑜 

𝑁(𝑥𝑖
𝑇𝛽𝜏 + (1 − 2𝜏)𝑧𝑖 , 2𝑧)𝐼(𝑦𝑖 ≤ 0) otherwise 

 

 

Where 𝛾(𝑦𝑖) denotes a degenerate distribution placing mass at the observed uncensored value 𝑦𝑖 is normal distribution with mean 

(𝑥𝑖
𝑇𝛽𝜏 + (1 − 2𝜏)𝑧𝑖)and variance (2𝑚𝑖) truncated to (−∞, 0). 

 

3.3.2-Updating conditional posterior of 𝜷 is  

 

𝛽|𝑦𝑖
∗, 𝑧, 𝜏, λ~N(μ𝛽 , Λ𝛽

−1), μ𝛽 = Λ𝛽
−1𝑋𝑇𝑆(𝑦 − (1 − 2𝜏)𝑧)) = Λ𝛽

−1 1

2
𝐷−1(𝑦 − (1 − 2𝜏)𝑧)), Λ𝛽 = 𝑋𝑇𝑆𝑋 + (𝜎2𝐴)−1 =

1

2
𝑋𝑇𝐷−1𝑋 +

1

𝜎2
𝐴−1 

 

, 𝑉 = 𝑑𝑖𝑎𝑔(𝑍1, 𝑍2, … . 𝑍𝑛) 

 

3.3.3-Updating conditional posterior of 𝝈𝟐 is 

 

𝜎2|𝛽, 𝜏1:𝑃~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 gamma with rate paramter
𝑝

2
 and scale paramter 

1

2
𝛽𝑇𝐴−1𝛽  

 

Where 𝐴 = 𝑑𝑖𝑎𝑔(𝜏1, 𝜏2, … . . 𝜏𝑝) 

 

3.3.4-Updating conditional posterior of 𝜏𝑗 is 

 

𝑝(𝜏𝑗|. )  ∝  𝜏𝑗
1

2⁄  exp (
−𝛽𝑗

2

2𝜎2𝜏𝑗
−

λ

2
 𝜏2)  

 

3.3.5-Updating conditional posterior of 𝑧𝑖 is 

 

𝑝(𝑧𝑖|𝑦𝑖
∗, 𝛽)  ∝  𝑧𝑖

−1
2⁄  exp (

(𝑦𝑖
∗ − 𝑥𝑖

𝑡𝛽𝜏 − (1 − 2𝜏)𝑧𝑖)
2

4𝑧𝑖
−

1

2
 𝑧𝑖)  

 

3.3.6-Updating conditional posterior of λ is 

 

λ~Gamma (c + p, d +
1

2
 ∑ 𝜏𝑗

2

𝑝

𝑗=1

 

 

The Gibbs sampler described above sequentially draws each unknown parameter, as well as the latent variables y𝑖and z𝑖, from 

their respective full conditional distributions, given all other unknowns. During each iteration, the sampler updates all 

(y𝑖 , z𝑖 , β, 𝜎2, z𝑖 , 𝜏𝑗 , λ). In both simulation studies and real-data applications, the algorithm is executed for 11,000 iterations, with 

the initial 1,000 iterations discarded as burn-in. 
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4. Simulation studies  
In this section, we conduct a series of simulation experiments to evaluate, performance of the proposed method. The simulations 
are designed to examine the accuracy, robustness, and computational efficiency of our proposed method under various scenarios. 
We assess the performance of the proposed Bayesian method with a scale-normal Rayleigh mixing prior distribution 
(BSCNRMixing) in comparison with several benchmark approaches. Specifically, we include the standard Tobit quantile 
regression estimator based on Powell’s method, implemented through the crq() function in Koenker’s framework (denoted as crq), 
the Bayesian adaptive elastic net Tobit quantile regression introduced by Alhamzawi (2014) [2] (referred to as BAnet), and the 
Bayesian Tobit quantile regression model employing new hierarchical Laplace prior distributions, recently proposed by 
Alhusseini and Jaber (2023) (referred to as NBTQR). The competing methods are evaluated using the root mean square error 

referred to as (RMSE),where RMSE = √
1

𝑟
 ∑ (𝑦𝑖 − 𝑦̂𝑖)

2, 𝑤ℎ𝑒𝑟𝑒 𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟
𝑖=1  

 
The standard deviations are also introduced. 

 
𝑦 = max(0, 𝑦𝑖

∗),  
 

𝑦𝑖
∗ = 𝑥1𝑖 + 𝑥8𝑖 + 𝜖𝑖 , 𝑖 = 1,2, … … . .100  

 
The explanatory variables (𝑥1𝑖 , 𝑥2𝑖 , 𝑥3𝑖 , 𝑥4𝑖 , 𝑥5𝑖 , 𝑥6𝑖 , 𝑥7𝑖 , 𝑥8𝑖), were simulated from an 8-dimensional multivariate normal 

distribution 𝑋~𝑁(𝜇, Σ), 𝜇 ∈ 𝑅𝑛 is the mean vector and Σ is the covariance matrix defined as (Σ𝑥)𝑎,𝑏 =

(2−1)|𝑎−𝑏| 𝑤ℎ𝑒𝑟𝑒 𝑎 𝑖𝑠 𝑟𝑜𝑤 𝑎𝑛𝑑 𝑏 𝑖𝑠 𝑐𝑜𝑙𝑢𝑚𝑛. 
 
We carry out two simulation studies. 

 

Simulation example 1: 𝛽 = (1,0,0,0,0,0,0,0)𝑇 is very sparse case 
 

Simulation example 2: 𝛽 = (0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85)𝑇 
 

The rows of 𝑋 follow is 𝑁𝑜𝑟𝑚𝑎𝑙 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 0 and variance Σ𝑥, 𝑋~𝑁𝑝(0, Σ) with (Σ𝑥)𝑟.𝑐 = (0.5)|𝑟+𝑐|. The random error 

(𝑢𝑖 , 𝑖 = 1,2,3, … . 𝑛, 𝑛 = 100) are obtained from three separate distributions: 𝑢𝑖~𝑁(0,1), the random error 𝑢𝑖 is distributed with 

mean 0 and variance 1. 𝑢𝑖~𝑡(3), the random error 𝑢𝑖 is distributed as Student’s t-distribution with 3 degree of 

freedom. 𝑢𝑖~𝐿𝑝𝑙𝑎𝑐𝑒(0,1) the random error 𝑢𝑖 is distributed as Laplace-distribution with 0,1 location and scale respectively. In 
this paper, we used five specific quantile levels are 𝜏1 = 0.15, 𝜏2 = 0.30, 𝜏3 = 0.45, 𝜏4 = 0.60, 𝜏5 = 0.75 𝑎𝑛𝑑 𝜏6 = 0.90. For 
each simulation example. 
 

Table 1: Root mean square error( RMSE) and standard division are SD 

 

Sim1 

Quantile level Methods 𝑢𝑖~𝑵(𝟎, 𝟏) 𝑢𝑖~𝒕(𝟒) 𝜖𝑖~𝝌𝟐
(𝟒) 

𝜏1 = 0.15 

crq 1.4465 (0.8846) 1.3365 (0.7984) 1.2987 (0.7514) 

BAnet 1.2526 (0.7822) 1.2141 (0.7614) 1.1244 (0.6122) 

NBTQR 0.9645 (0.4854) 0.9548 (0.5864) 0.8275 (0.4168) 

BSCNRMixing 0.5312 (0.3534) 0.6547 (0.2845) 0.5854 (0.3421) 

𝜏2 = 0.30 

crq 1.3554 (0.8246) 1.3144 (0.9126) 1.2112 (0.7217) 

BAnet 1.2471 (0.8254) 1.2792 (0.8710) 1.2483 (0.7211) 

NBTQR 0.9427 (0.4587) 0.7641 (0.4554) 0.7154 (0.4614) 

BSCNRMixing 0.4647 (0.2095) 0.3754 (0.1637) 0.3777 (0.2041) 

𝜏3 = 0.45 

crq 1.465 (0.846) 1.472 (0.743 1.257 (0.792) 

BAnet 1.257 (0.783) 1.261 (0.728) 1.362 (0.782) 

NBTQR 0.829 (0.396) 0.694 (0.284) 0.834 (0.356) 

BSCNRMixing 0.405 (0.261) 0.327 (0.328) 0.463 (0.362) 

𝜏4 = 0.60 

crq 1.471 (0.945) 1.257 (0.792) 1.685 (0.867) 

BAnet 1.515 (0.832) 1.634 (0.957) 1.515 (0.832) 

NBTQR 0.945 (0.539) 0.748 (0.436) 0.892 (0.372) 

BSCNRMixing 0.472 (0.276) 0.361 (0.192) 0.463 (0.362) 

𝜏5 = 0.75 

crq 1.175 (0.938) 1.019 (0.751) 1.212 (0.792) 

BAnet 1.374 (0.804) 0.828 (0.927) .007 (0.871) 

NBTQR 0.756 (0.362) 0.871 (0.415) 0.709 (0.361) 

BSCNRMixing 0.518 (0.268) 0.462 (0.142) 0.462 (0.142) 

𝜏5 = 0.90 

crq 1.251 (0.863) 1.106 (0.856) 0.816 (0.672) 

BAnet 1.262 (0.953) 0.943 (0.905) 0.709 (0.361) 

NBTQR 0.844 (0.264) 0.821 (0.431 0.414 (0.132) 

BSCNRMixing 0.615 (0.252) 0.572 (0.183) 0.356 (0.089) 

Sim2 

𝜏1 = 0.15 

crq 1.251 (0.863) 1.464 (0.954) 0.892 (0.411) 

BAnet 0.826 (0.461) 0.745 (0.363) 1.064 (0.761) 

NBTQR 0.854 (0.475) 0.682 (0.201) 0.764 (0.176) 

BSCNRMixing 0.482 (0.184) 0.461 (0.095) 0.381 (0.071) 

𝜏2 = 0.30 
crq 1.0573 (0.7937) 1.5215 (0.9836) 1.246 (0.943) 

BAnet 0.7839 (0.2393) 0.6582 (0.3204) 0.857 (0.463) 
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NBTQR 0.6574 (0.3564) 0.4998 (0.1189) 0.682 (0.217) 

BSCNRMixing 0.3794 (0.1143) 0.3220 (0.1097) 0.263 (0.028) 

𝜏3 = 0.45 

crq 1.2261 (0.7628) 1.515 (0.832) 1.374 (0.804) 

BAnet 0.7679 (0.4361) 0.945 (0.539) 0.681 (0.361) 

NBTQR 0.8627 (0.4316) 0.863 (0.572) 0.396 (0.094) 

BSCNRMixing 0.5263 (0.3028) 0.372 (0.193) 0.246 (0.096) 

𝜏4 = 0.60 

crq 0.921 (0.574) 0.964 (0.562) 0.832(0.610) 

BAnet 0.763 (0.430) 0.714(0.505) 0.924(0.601) 

NBTQR 0.581 (0.294) 0.624(0.175) 0.573(0.267) 

BSCNRMixing 0.473 (0.219) 0.562 (0.373) 0.482(0.195) 

𝜏5 = 0.75 

crq 0. 708 (0.483) 0. 729 (0.509) 0. 708 (0.483) 

BAnet 0.696 (0.523) 0.638 (0.466) 0.518 (0.319) 

NBTQR 0.564 (0.464) 0.515 (0.391) 0.459 (0.253) 

BSCNRMixing 0.487 (0.312) 0.4862 (0.293) 0.375 (0.164) 

𝜏6 = 0.90 

crq 0.798 (0. 562) 0. 708 (0.483) 0.766 (0.506) 

BAnet 0.696 (0.523) 0.625 (0.451) 0.584 (0.358) 

NBTQR 0.601 (0.497) 0.529 (0.339) 0.4862 (0.293) 

BSCNRMixing 0.509 (0.364) 0.493 (0.106) 0.372 (0.130) 

 
Table 1 summarizes the root mean square error (RMSE) and standard deviation (SD) obtained from 100 simulated datasets, 
providing a comparative evaluation of the four methods under consideration. t is evident from Table 1 that the proposed 
BSCNRMixing method demonstrates superior performance relative to the crq, BAnet, and NBTQR methods. This is apparent The 
RMSE obtained from our proposed method(BSCNRMixing) is much smaller than RMSR that produced by the crq, BAnet, and 
NBTQR methods across all distributions under consideration. Moreover, throughout the simulation studies involving different 
error distributions. Also, The standard deviation (SD) produced by the proposed method is considerably smaller than that of the 
competing methods (crq, BAnet, and NBTQR). Instead of looking at the RMSE and the SDs, one may also look at the bias of 
parameters estimation. The figure -1- lists the bias of parameters estimation in the first simulation Instead of looking at the RMSE 
and the SDs, one may also look at the bias of parameters estimation. The figure -1- lists the bias of parameters estimation In the 
first simulation, when the random error follows the standard normal distribution. 
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Fig 1: is illustrates the bias of the estimates across the different methods. It is evident that the BSCNRMixing method achieves the lowest bias. 

Consequently, the our proposed method is a good overall performance compared by other three methods. 

 

5. Real data  

To demonstrate the applicability of the our proposed method (BSCNRMixing) and to conduct a comparative assessment against 

existing other method. The focus will be on Household Survey data, that collected from Household Survey of Diwaniyah 

Governorate. The dataset comprises 𝑛=565 observations, of which 275 are censored. This corresponds to a censoring proportion 

of approximately 48.67%. The response variable in this study is defined as the monthly health expenditure (MHE) incurred by 

each family and eleven independent variables are Monthly household income (MHI) denoted as 𝑥1, Number of chronic in family 

members ( N C F M) denoted as 𝑥2, Household head’s age or mean age of adults (H HAMAA) denoted as 𝑥3, Education level of 

the Household head(ELHH) denoted as 𝑥4, Distance from the household to the nearest health center (DHNHC) denoted as 𝑥5, 

Household Size denoted as 𝑥6, Household includes an infant or a pregnant member (HIIPM) denoted as 𝑥7, Health Awareness 

Score (HAS) denoted as 𝑥8, Number of children below five years in one household (NCBF), denoted as 𝑥9, Is the household 

covered by health insurance (HCHI) denoted as 𝑥10, Engagement in healthy dietary habits (EHDH)denoted as 𝑥11. In Section 5, 

we set 𝑎 = 𝑏 = 𝑐 = 𝑑 = 0.1 and ran the our algorithm for 11,000 iterations, discarding the first 1,000 as burn-in. 

 
Table 2: Mean squared errors (MSE) and standard deviation (SD) for the methods under comparison. 

 

Methods  𝝉𝟏 = 𝟎. 𝟏𝟓 𝝉𝟐 = 𝟎. 𝟑𝟎 𝝉𝟑 = 𝟎. 𝟒𝟓 𝝉𝟒 = 𝟎. 𝟔𝟎 𝝉𝟓 = 𝟎. 𝟕𝟓 𝝉𝟔 = 𝟎. 𝟗𝟎 

crq 0.554 (0.214) 0.531 (0.120) 0.528 (0.151) 0.538 (0.127) 0.497 (0.274) 0.526 (0.305) 

BAnet 0.412 (0. 238) 0.452 (0. 284) 0.454 (0. 214) 0.454 (0. 239) 0.459 (0. 234) 0.487 (0. 183) 

NBTQR 0.385 (0.208) 0.363 (0.127) 0.318 (0.206) 0.301 (0.109) 0.311 (0.234) 0.376 (0.204) 

BSCNRMixing 0.225 (0.102) 0.246 (0.114) 0.230 (0.118) 0.254 (0.110) 0.224 (0.117) 0.266 (0.112) 

 

As well, Table 2 shows that the less MSE is in the our proposed method (BSCNRMixing), Therefore, our proposed method 

(BSCNRMixing) demonstrates superior performance in variable selection and parameter estimation at tobit quantile regression, 

even with real data, compared to the three other methods. 

 
Table 3: coefficient estimation for the four methods in the comparison. 

 

variables 
Variables symbols  BSCNRMixing 

Quantile level  𝝉𝟏 = 𝟎. 𝟏𝟓 𝝉𝟐 = 𝟎. 𝟑𝟎 𝝉𝟑 = 𝟎. 𝟒𝟓 𝝉𝟒 = 𝟎. 𝟔𝟎 𝝉𝟓 = 𝟎. 𝟕𝟓 𝝉𝟔 = 𝟎. 𝟗𝟎 

𝑥1 MHI 0.1842 0.1841 0.2107 0.1163 0.2821 0.1152 

𝑥2 N C F M 1.1275 1.0041 1.0002 1.1183 1.3164 1.1247 

𝑥3 H HAMAA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

𝑥4 ELHH 0.0062 0.0051 0.0025 0.0003 0.0082 0.0090 

𝑥5 DHNHC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

𝑥6 HIIPM 1.0765 1.4212 1.1109 1.1193 1.1002 1.0218 

𝑥7 HAS) 0.0786 0.0245 0.1285 0.1346 0.1809 0.2370 

𝑥8 NCBF -0.1527 -0.0238 -0. 0331 -0.1019 -0.2316 -0.1016 

𝑥9 HCHI 0.0091 0.0011 0.0007 0.0000 0.0000 0.0000 

𝑥10 EHDH 0.0021 0.0132 0.0103 0.0016 0.0182 0.0274 

𝑥11 MHI 0.0004 0.0001 0.2117 0.0255 0.0105 0.0018 
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The results presented in Table 3 represent the estimated coefficients of the Tobit quantile regression model obtained using our 

proposed method across all quantile levels. It can be observed that some estimated coefficients are exactly zero, while others take 

nonzero values. These results indicate that our method successfully achieves the intended objectives of both parameter estimation 

and variable selection.  

The trace plots in Figure -2- demonstrate that the MCMC samples converge to stationarity, indicating good mixing of the Markov 

chains and convergence to the target distribution. 

 

 
 

Fig 2: Show the Trace Plots of 𝛽1 − 𝛽11 of the conditional Posterior parameter estimates 

 

 
 

Fig 3: Show the histograms of parameter estimates 𝛽1 − 𝛽11. 

 

6. Conclusion and Future work 

This study proposed a novel Bayesian Lasso framework for Tobit Quantile Regression by employing a Scale Mixture of Normals 

with Rayleigh priors (BSCNRMIXING prior). The hierarchical representation allows for efficient posterior computation via Gibbs 

sampling and provides a flexible approach to simultaneous coefficient estimation and variable selection under censoring. 

Simulation studies across different quantile levels and error distributions demonstrated that the proposed method (BSCNRMixing) 

consistently outperformed existing approaches (crq, BAnet, NBTQR) in terms of root mean square error (RMSE), standard 

deviation (SD), and bias of parameter estimates. The superior performance was particularly evident in high-sparsity scenarios, 

where variable selection is crucial, as well as in heavy-tailed error distributions where robustness is essential. The application to 

real household health expenditure data further confirmed the effectiveness of the proposed approach. Compared with competing 

Bayesian and frequentist estimators, the BSCNRMixing prior-based method achieved lower mean squared errors (MSE) and 

demonstrated greater stability in coefficient estimation across different quantile levels. Importantly, the proposed framework 

successfully identified influential covariates, while shrinking irrelevant ones toward zero, thereby enhancing interpretability and 
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predictive accuracy. Our proposed method can be extended in several directions. For instance, it may be adapted to the Bayesian 

elastic net Tobit quantile regression model by employing a scale mixture of normal distributions with a Rayleigh mixing 

distribution. 
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