International Journal of Statistics and Applied Mathematics 2026; 11(1): 08-18

International Journal of

Statistics and Applied Mathematics

ISSN: 2456-1452

NAAS Rating (2026): 4.49
Maths 2026; 11(1): 08-18

© 2026 Stats & Maths
https://www.mathsjournal.com
Received: 04-10-2025
Accepted: 08-11-2025

V Munaiah

Lecturer, Department of
Statistics, SVA Government
College, Srikalahasti, Andhra
Pradesh, India

T Gangaram

Lecturer, Department of
Statistics, SVA Government
College, Srikalahasti, Andhra
Pradesh, India

G Satyanarayanareddy
Lecturer, Department of
Statistics, Government College
for Men (A), Kadapa, Andhra
Pradesh, India

J Kishore Kumar

Associate Professor, Department
of Statistics, Maharani Science
College for Women, Bangalore,
Karnataka, India

Corresponding Author:

V Munaiah

Lecturer, Department of
Statistics, SVA Government
College, Srikalahasti, Andhra
Pradesh, India

Modeling couple stress effects in Oldroyd-b fluid flow
over a wedge: A multiple linear regression and
Bayesian neural network approach

V Munaiah, T Gangaram, G Satyanarayanareddy and J Kishore Kumar

DOI: https://www.doi.org/10.22271/maths.2026.v11.i11a.2234

Abstract

This study investigates the steady, magnetohydrodynamic flow and heat transfer of an Oldroyd-B fluid
over a wedge, incorporating the effects of thermal radiation, Joule heating, and couple stresses. The
governing partial differential equations are reduced to a system of coupled ordinary differential equations
through a set of suitable similarity transformations. The resulting nonlinear boundary value problem is
solved numerically using the bvp4c solver in MATLAB, which employs a collocation scheme to achieve
high-accuracy solutions. From the numerical data, predictive models for the skin friction coefficient and
Nusselt number are developed via multiple linear regression, establishing quantitative relationships with
key governing parameters. To ensure robustness and quantify predictive uncertainty, the regression
outcomes are validated using a Bayesian neural network framework. The analysis demonstrates that
increasing the couple stress parameter and magnetic field decelerates the flow, while the thermal
radiation parameter and Eckert number significantly elevate the fluid temperature and entropy
generation. The findings of this work have direct implications for optimizing thermal management
systems, polymer processing flows, and the design of wedge-shaped components in aerospace and energy
applications where viscoelastic fluid behavior and entropy minimization are critical.
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Introduction

The study of non-Newtonian fluid flow over a wedge holds significant practical value across
multiple engineering and industrial domains. This configuration is commonly encountered in
aerodynamic designs, polymer processing, and thermal management systems, where fluid
behavior deviates from Newtonian assumptions due to shear-thinning, viscoelastic, or time-
dependent properties. Analyzing such flows helps optimize the performance of wedge-shaped
components in heat exchangers, aircraft wings, and extrusion dies. Additionally, in biomedical
and chemical engineering, understanding how these fluids interact with wedgelike geometries
aids in improving drug delivery systems, filtration processes, and the design of microfluidic
devices, ensuring enhanced efficiency, stability, and control in real-world applications. The
study by Dawar et al. ' examines convective flow of a Williamson nanofluid over cone and
wedge geometries under non-isothermal and non-isosolutal conditions, applying a revised
Buongiorno model with HAM for solution. Velocity enhancement was more significant for the
cone compared to the wedge, while reductions in thermal and concentration profiles were
greater for Williamson nanofluids than Newtonian ones. Shahzad et al. ™ numerically
investigated the unsteady flow of a tangent hyperbolic nanofluid past a wedge with
suction/injection, employing similarity transformations and solving the resulting ODEs with
MATLAB's bvp4c and MAPLE's d-solve commands. The study determined that increasing the
Weissenberg number reduces velocity but elevates temperature and concentration profiles.
Kudenatti et al. B! numerically analyzed the magnetohydrodynamic boundary layer flow of a
non-Newtonian power-law fluid over a moving wedge using Chebyshev collocation and
shooting methods, and conducted a linear stability analysis on the dual solutions obtained. The
study revealed that dual solutions exist for certain parameter ranges, with the first solution
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being stable and physically feasible while the second is unstable. Dharmaiah et al. ™ numerically investigated the
magnetohydrodynamic free convection flow of a Casson nanofluid over a melting wedge, incorporating Joule heating,
thermodiffusion, and chemical reaction effects using similarity transformations and MATLAB's bvp4c solver. The melting
process was found to increase the thicknesses of momentum, thermal, and solutal boundary layers while reducing skin friction and
heat and mass transfer rates. Zulgarnain et al. ! conducted a numerical investigation of Darcy-Forchheimer Maxwell tri-hybrid
nanofluid flow across a Riga wedge, considering nonlinear thermal radiation, mixed convection, and boundary slip effects using
MATLAB’s bvp4c solver. The study showed that increasing the wedge angle, Grashof numbers, and Maxwell fluid parameter
enhances flow velocity, while higher nanoparticle volume fractions and porosity reduce it. Bagh Ali et al. [ numerically
investigated the effects of bioconvection and thermal radiation on magnetohydrodynamic nanofluid flow across a porous,
stretching wedge using similarity transformations and the shooting technique with Range-Kutta integration in MATLAB. Later,
various researchers U9 discussed different non-Newtonian fluid flows over wedge in the presence of several parameters,
including magnetic field parameter.

Entropy generation analysis in non-Newtonian fluid flow is crucial for optimizing thermal and fluid systems, as it quantifies
irreversibility due to heat transfer, fluid friction, and mass diffusion. By minimizing entropy production, engineers can design
more efficient processes in industries such as polymer processing, enhanced oil recovery, microfluidics, and cooling systems,
where non-Newtonian behavior-like shear-thinning or viscoelasticity-significantly impacts energy losses. This approach helps
improve energy utilization, reduce operational costs, and enhance the sustainability of thermal management and chemical
engineering applications. Acharya et al. 'l employed the Spectral Quasi-Linearization Method (SQLM) to analyze entropy
generation in mixed convective, radiative couple-stress fluid flow over a permeable stretching cylinder under a magnetic field.
The study revealed that entropy generation rises with increasing magnetic parameter, Reynolds number, and radiation, but
declines with greater temperature difference. Ullah et al. ['?! analyzed unsteady free convection of power-law fluid with thermal
radiation and magnetic field, employing the finite difference method (FDM) to solve dimensionless governing equations for
entropy generation and heat transfer. The study revealed that the entropy generation escalates with greater Eckert number and
Grashof number. Berrehal ef al. '3 numerically analyzed the steady, incompressible laminar flow of an aqueous Fe;04-GO hybrid
nanofluid over a convectively heated moving wedge, incorporating thermal radiation effects. Their study employed a novel mass-
based modeling approach within the single-phase Tiwari-Das framework, combined for the first time with entropy generation
analysis, and solved the governing equations using the Runge-Kutta-Fehlberg method with a shooting technique. The results
indicated that increasing the wedge angle and the mass of graphene oxide nanoparticles enhanced entropy generation while
reducing the Bejan number. Reedy et al. ' numerically examined the entropy generation in a fully developed heat transport of a
Carreau fluid flowing through a porous vertical microchannel. The study considered the effects of thermal radiation, viscous
heating, a Darcy-Forchheimer porous model, and convective boundary conditions, solving the governing equations using the
bvp4c method in MATLAB. The analysis revealed that increasing the Weissenberg number reduced entropy generation near the
channel walls while enhancing the Bejan number, which peaked at the channel's centre. Later, various researchers 1329 examined
the entropy generation optimization in several fluid flows across different geometries.

Based on the comprehensive review of the literature, a research gap is identified concerning the integrated analysis of entropy
generation, couple stress effects, and advanced data-driven modeling in the context of Oldroyd-B fluid flow over a wedge. While
prior studies have explored various non-Newtonian models over similar geometries, there is a lack of work that systematically
combines a detailed thermodynamic irreversibility analysis with modern predictive computational techniques. To address this gap,
the present study formulates the flow problem incorporating thermal radiation, Joule heating, and couple stresses. Its principal
novelty lies in the development and validation of robust, data-driven predictive models for key engineering outputs. Specifically,
this research advances the field by deriving explicit multiple linear regression correlations for the skin friction coefficient and
Nusselt number directly from high-fidelity numerical simulations. The reliability and uncertainty of these empirical models are
rigorously assessed using a Bayesian neural network framework, offering a probabilistic validation method rarely applied in this
domain. By bridging traditional fluid mechanics analysis with statistical learning and machine learning tools, this work provides a
dual-methodology framework that enhances predictive capability and design insight. The results hold significant potential for
improving the efficiency of industrial applications such as the thermal management of polymer processing equipment, the design
of aerodynamic surfaces in contact with viscoelastic fluids, and the optimization of energy systems where minimizing entropy
generation is paramount.

Formulation of the study

This study investigates the effect of several parameters, including couple stress and Joule heating, on the steady-state movement
of an Oldroyd-B fluid across an angled wedge. In this investigation, we presuppose the following:

e  Thermal radiation follows the Rosseland approximation.

e The flow is influenced by an externally applied vertical magnetic field of strength B, as illustrated in Fig. 1.

¢ Induced magnetic field effects are disregarded since the magnetic Reynolds number is small.

The subsequent circumstances and equations are requisite for this study, predicated on the aforementioned assumptions:
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Fig 1: Graphical depiction of the current research

Bilal et al. ' proposed the subsequent similarity transforms to translate governing equations:
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The terms shown in (5) easily satisfy Equation (1). The following outcome results from the effective modification of equations (2-
3) and conditions in (4) by the use of integration of (5):
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The use of (5) facilitates a more straightforward formulation of the equation presented in (9) as follows:
JRe.Cf = [2(n+1)£"(0).
The subsequent formula can be used to determine the Nusselt number:
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By employing (5), the formula utilized in (10) can be succinctly reformulated as:

(Re,)”* Nu=- ”T“(HR)e'(o).

The formula that describes the dimensional computation of entropy production is mentioned as:
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By adopting (5), we may rewrite equation (11) as follows:
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Numerical Procedure

The boundary value problem represented by equations (6) and (7), subject to the constraints in (8), is solved numerically using the

bvp4c solver in MATLAB. This computational tool implements a collocation method based on the three-stage Lobatto Illa
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formula, which efficiently transforms the original differential equations into an algebraic system. By providing an initial guess for
the solution profile, the algorithm iteratively refines the approximation until it converges to a continuous solution that satisfies all
specified boundary conditions with high accuracy. This approach is particularly effective for handling the multipoint and
potentially nonlinear nature of the problem defined by the given equations.

Results and discussion

As seen in Fig. 2, increasing the magnetic field strength reduces the flow velocity. This occurs because the applied magnetic field
induces a resistive Lorentz force, which opposes the fluid motion. Fig. 3 indicates that an increase in the couple stress parameter
corresponds to a reduction in the fluid's velocity profile. This occurs because the couple stress parameter represents the influence
of internal rotational resistance within the fluid microstructure. A higher value of this parameter enhances the effective viscosity
or internal friction, thereby imposing a greater resistive force against fluid motion. Consequently, the flow experiences more
damping, which manifests as a noticeable decrease in velocity across the channel. Fig. 4 indicates that increasing the retardation
parameter within the Oldroyd fluid model results in a reduced fluid velocity. This occurs because the retardation parameter
governs the timescale over which the fluid relaxes from its elastic, solid-like response to its viscous, liquid-like behavior. A higher
value signifies a longer retardation time, meaning the fluid resists deformation for a greater duration. Consequently, this enhanced
internal resistance to flow, stemming from its persistent elastic character, acts as a damping mechanism, ultimately suppressing
the overall velocity profile. Fig. 5 indicates that an increase in the Prandtl number corresponds to a reduction in the fluid
temperature. This occurs because a higher Prandtl number signifies a fluid with a lower thermal diffusivity relative to its
momentum diffusivity. Consequently, the transfer of heat by conduction becomes less effective compared to the transport of
momentum. This weakened thermal diffusion restricts the propagation of heat from the heated surface into the fluid bulk, resulting
in a steeper temperature gradient near the boundary and an overall lower temperature within the fluid domain. Fig. 6 indicates that
an increase in the Eckert number corresponds to a higher temperature within the fluid. This behavior can be attributed to the
physical interpretation of the Eckert number, which represents the ratio of kinetic energy to enthalpy difference. A larger Eckert
number signifies that the energy dissipated due to viscous friction, or the conversion of kinetic energy into internal energy,
becomes more significant. Consequently, this enhanced viscous dissipation acts as an internal heat source, resulting in greater
thermal energy within the fluid and thus elevating its overall temperature. Fig. 7 indicates that an increase in the thermal radiation
parameter corresponds to a higher temperature within the fluid. This occurs because enhanced thermal radiation contributes
additional energy to the system, effectively serving as an extra heat source. Consequently, the fluid absorbs more thermal energy,
leading to a measurable elevation in its overall temperature profile. Fig. 8 indicates that increasing the Brinkman number results in
greater entropy generation within the fluid flow. This relationship occurs because the Brinkman number represents the relative
importance of viscous heat dissipation compared to conductive heat transfer. A higher value signifies more significant frictional
heating due to viscosity. This enhanced viscous dissipation acts as an irreversible source of internal thermal energy, thereby
directly increasing the disorder and irreversibility in the system, which is quantified as a rise in entropy generation. Fig. 9
indicates that increasing the thermal radiation parameter enhances the rate of entropy generation within the fluid flow. This occurs
because greater radiative heat transfer introduces additional thermal gradients and energy dissipation into the system.
Consequently, the overall irreversibility associated with heat transfer and fluid friction is amplified, leading to a higher total
entropy production. This relationship highlights the significant role of radiation in augmenting thermodynamic losses in the flow.
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Fig 2: Influence of M on velocity profile
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Multiple Linear Regression

Multiple linear regression is a statistical method used to model the relationship between a single dependent variable and two or
more independent variables. By fitting a linear equation to observed data, this technique estimates how each predictor variable
contributes to changes in the outcome while holding the others constant. It allows researchers to assess the collective influence of
several factors simultaneously, providing insights into their relative importance and predictive power. The method is widely
applied across disciplines such as economics, social sciences, and engineering to analyze complex, multi-faceted relationships.

In this study, MLR was used to correlate the influential physical parameters directly with the key engineering quantities of
interest: the skin friction coefficient and the Nusselt number. The general forms of the proposed models are:

Cf = ay+a;M + a,Cs + azA (12)
Nu = by + bR + b,Pr + b3Ec (13)
Utilizing 25 distinct numerical data sets for each correlation, the following specific regression equations were derived:

Cf ==0.6862+ 0.0181M + 4+0.0809Cs — 0.00621 (14)
Nu = 0.1844 + 0.1373R + 0.0149Pr — 0.0604Ec (15)

Equation 14, derived through multiple linear regression, models the skin friction coefficient (Cf) as a function of three key
parameters. The positive coefficients for the magnetic field (M) and the couple stress parameter (Cs) indicate that an increase in
either factor contributes to a higher skin friction coefficient. Conversely, the negative coefficient for the mixed convection
parameter (1) shows that its influence acts to reduce the skin friction. The constant term of 0.6862 represents the baseline value of
Cf when all three explanatory variables are zero. An increase in the mixed convection parameter reflects a stronger influence of
buoyancy forces relative to forced convection. Enhanced buoyancy typically accelerates the fluid near the boundary, reducing the
velocity gradient between the surface and the free stream. Since skin friction coefficient is directly proportional to this velocity
gradient at the wall, a reduction in the gradient results in a lower frictional resistance. Consequently, the intensified mixed
convection effect acts to diminish the shear stress at the surface, leading to a decrement in Cf as mathematically indicated by its
negative coefficient in the regression model. Based on the results of a multiple linear regression analysis, Equation 15 models the
Nusselt number (Nu) as a function of three key dimensionless parameters. The positive coefficients for the thermal radiation
parameter (R) and the Prandtl number (Pr) indicate that an increase in either of these variables enhances the rate of convective
heat transfer, as reflected by a higher Nu value. Conversely, the negative coefficient for the Eckert number (Ec) suggests that
greater viscous dissipation acts to reduce the overall heat transfer performance. The negative influence of the Eckert number on
the Nusselt number can be attributed to the role of viscous dissipation. A higher Ec signifies that a greater portion of the fluid's
kinetic energy is converted into thermal energy due to internal friction. This self-generated heat acts as an internal heat source
within the boundary layer. Consequently, it elevates the fluid temperature near the surface, which reduces the temperature
gradient between the surface and the mainstream flow. Since the Nusselt number is directly proportional to this temperature
gradient, its value diminishes as the gradient weakens.

~15~
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Validation of the results using Bayesian neural network approach

To ensure the robustness of the findings, a Bayesian neural network (BNN) was employed for validation. Unlike conventional
neural networks that yield single-point estimates, a BNN treats the model's weights as probability distributions rather than fixed
values. This framework naturally quantifies predictive uncertainty by generating a distribution of possible outputs for each input.
Consequently, the validation process assesses not just the model's accuracy, but also the reliability of its predictions. Predictions
with high uncertainty can be flagged for further scrutiny, while the model's overall confidence can be evaluated across the dataset.
This approach provides a statistically grounded measure of trust in the results, moving beyond mere point estimates to a more
comprehensive probabilistic evaluation of model performance.

Figure 10 demonstrates that the Bayesian neural network learns the dependence of the skin friction-related output on the mixed
convection parameter with extremely high numerical accuracy, as the mean squared error (MSE) collapses by roughly nine orders
of magnitude within only ten epochs. At the start of training (epoch 0), the MSE for both the training and testing sets is close to
1072, but by epoch 2 it has already fallen to the order of 107 - 107, and then continues to decay steadily through intermediate
levels around 1077, 1078, and 107° as the epochs progress. Near epochs 8-9, the curves lie in the 107'° range, and the best recorded
training performance reaches approximately 1.09x107!! at epoch 10, indicating an almost negligible average squared discrepancy
between the network predictions of skin friction and the reference data over the explored mixed-convection regime. The
function-fit plot in Fig. 11 confirms that the Bayesian neural network almost perfectly reconstructs the relationship between the
mixed convection parameter and the corresponding skin-friction-related output over the entire input domain. In the upper panel,
the continuous fitted line coincides with the densely packed training and testing markers, which collectively trace a nearly
straight, monotonically decreasing profile from roughly —0.35 at the lowest input value to about —0.54 at the highest, indicating an
approximately linear reduction of the skin friction coefficient with increasing mixed convection parameter in this range. The
lower error panel shows that the pointwise differences between targets and predictions remain confined to a very narrow band on
the order of 1073, with small, oscillatory fluctuations around zero and only a few slightly larger spikes near the upper end of the
input interval, demonstrating that the model captures virtually all of the variance in the data with negligible systematic bias or
drift.

The performance curve (Fig. 12) associated with the Bayesian neural network indicates that the model learns the influence of the
thermal radiation parameter on the Nusselt number with exceptional accuracy, as the mean squared error (MSE) drops by many
orders of magnitude over 1000 training epochs. Initially the MSE for both training and testing data is of order 10°, but it falls
sharply within the first few epochs and then continues to decrease gradually to the 107'! - 1072 range, where the best training
performance reaches about 2.35x107'2 at epoch 1000, while the blue (training) and red (test) curves remain closely aligned
throughout, confirming very strong generalization without noticeable overfitting. Fig. 13 shows that the Bayesian neural network
reproduces the dependence of the Nusselt number on the thermal radiation parameter with almost perfect linearity and extremely
small prediction errors. In the upper panel, the fitted curve forms an almost straight, increasing line from about 0.25 to roughly 3.0
as the input rises from 0 to 20, while the training and testing markers lie directly on this line, indicating that the network
accurately captures the strengthening of convective heat transfer with increasing radiation effects. The lower error panel reveals
that the differences between target and predicted Nusselt numbers are confined to a narrow band of order 1076, with only small
oscillations around zero, confirming that the Bayesian model provides a highly precise and unbiased mapping between thermal
radiation intensity and the Nusselt number.

Best Training Performance is 1.0877e-11 at epoch 10

Train

Mean Squared Error (mse)

10 Epochs

Fig 10: Mean squared error (MSE) vs training epoch for mixed convection parameter vs skin friction coefficient

~16~


https://www.mathsjournal.com/

International Journal of Statistics and Applied Mathematics

Fig 11: Function fit plot for mixed convection parameter vs skin friction coefficient

Output and Target

Function Fit for Output Element 1

-0.35 T T T T T
T *  Training Targets
+  Training Cutputs
*  Test Targets
n4F +  Test Outputs B
Errors
Fit
0.45 -
0.5F
0.55 I I I
o 10° 2 4 ] 8 10 12 14 16 18 20
T T T T T T T
w 1F N B
o k
i~
LI‘] o - — — e Ty SN o
' e - — —_— \\\ —— L
1 L L I I I I I o I ‘l

Input

Best Training Performance is 2.3514e-12 at epoch 1000

ol Train
10 Test
........... Best
T
w
E
1
=]
=
w -5
5 10
@
1=
©
=
o
w
=
1]
]
=
10710 :
.......... e T 9
] 100 200 300 400 500 600 700 BOD 900 1000

1000 Epochs

https://www.mathsjournal.com

Fig 12: Mean squared error (MSE) vs training epoch for thermal radiation parameter vs Nusselt number
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Conclusion

This study has conducted a numerical investigation into the steady magnetohydrodynamic flow, heat transfer, and entropy
generation of a couple stress Oldroyd-B fluid over a wedge. The governing system, incorporating thermal radiation and Joule
heating effects, was transformed into ordinary differential equations via similarity variables and subsequently solved using the
high-accuracy bvp4c collocation method in MATLAB. The primary physical insights and predictive outcomes are summarized as
follows:

The fluid velocity profile is significantly inhibited by an increase in both the magnetic field parameter and the couple stress
parameter. The magnetic field generates a resistive Lorentz force, while the couple stress enhances internal rotational
resistance, both acting to dampen the flow.

The fluid temperature is elevated by increases in the Eckert number (Ec) and the thermal radiation parameter. A higher Ec
amplifies viscous dissipation as an internal heat source, and a larger R contributes additional radiative energy to the system.
An increase in the Prandtl number (Pr) reduces the temperature profile, as a higher Pr indicates lower thermal diffusivity,
restricting conductive heat penetration from the surface.

Entropy generation within the flow is augmented by raising the Brinkman number (Br) and the thermal radiation parameter.
A higher Br signifies greater irreversible viscous heating, while enhanced radiation introduces steeper thermal gradients.
From the numerical data, explicit multiple linear regression correlations were successfully developed for the skin friction
coefficient (Cf) and the Nusselt number (Nu). The model for Cf shows a positive dependence on M and Cs, but a negative
dependence on the mixed convection parameter (4). The model for Nu increases with R and Pr, but decreases with Ec.

The predictive accuracy and generalization capability of the derived regression models were rigorously validated using a
Bayesian neural network (BNN) approach. The BNN achieved an exceptionally low mean squared error, confirming the high
fidelity of the numerical data and the statistical reliability of the empirical correlations.
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