
 

~128~ 

International Journal of Statistics and Applied Mathematics 2026; 11(1): 128-133 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISSN: 2456-1452 

NAAS Rating (2025): 4.49 

Maths 2026; 11(1): 128-133 

© 2026 Stats & Maths 

www.mathsjournal.com 

Received: 20-12-2025 

Accepted: 15-01-2026 

 

Nilesh Kumar 

Staff Software Engineer, Sam’s 

Club (Walmart Inc.), 

Bentonville, USA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author: 

Nilesh Kumar 

Staff Software Engineer, Sam’s 

Club (Walmart Inc.), 

Bentonville, USA 

 
 

 

 

 

 

 
 

 

 

Applied artificial intelligence for intelligent and 

scalable technologies: The synapse-scale framework 

 
Nilesh Kumar 
 

DOI: https://www.doi.org/10.22271/maths.2026.v11.i1b.2248  

 
Abstract 

This paper introduces SYNAPSE-SCALE, an adaptive and intelligent artificial intelligence framework 

designed to optimize model selection, placement, and continual learning in distributed edge-cloud 

environments. The system integrates an elastic super-network, a drift-aware constrained contextual 

bandit router, and lightweight continual learning adapters. Our experimental evaluation compares 

SYNAPSE-SCALE against cloud-only, edge-only, static elastic, and bandit-based methods under 

identical non-stationary conditions. Results demonstrate that SYNAPSE-SCALE achieves near-cloud 

accuracy at significantly lower latency and cost, maintaining over 98% SLA compliance while adapting 

four times faster to drift. These results establish SYNAPSE-SCALE as a practical, scalable solution for 

intelligent AI deployment. 
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1. Introduction 

Artificial Intelligence (AI) has rapidly transitioned from a theoretical discipline to a practical 

foundation of modern digital life. It powers an astonishing range of technologies from 

autonomous vehicles that interpret complex road environments to voice assistants capable of 

natural dialogue and healthcare systems that predict diseases before symptoms appear 

(Goodfellow et al., 2016; Jordan & Mitchell, 2015) [18, 19]. This rapid expansion of AI 

capabilities has been propelled by the availability of large-scale data, high-performance 

computing resources, and advanced machine learning algorithms. However, as the reach of AI 

extends beyond the cloud into distributed, real-time, and resource-constrained environments, 

new challenges emerge that fundamentally reshape how intelligent systems must operate (Shi 

et al., 2016; Satyanarayanan, 2017) [25, 24]. 

One of the most pressing challenges in this new paradigm is latency. Many AI-driven 

applications such as real-time object detection in autonomous driving or emergency response 

systems in healthcare require decisions in milliseconds. When inference depends solely on 

remote cloud servers, network delays, bandwidth limitations, and congestion can lead to 

unacceptable response times (Satyanarayanan, 2017) [24]. The edge computing paradigm, in 

which AI computations are performed closer to the data source (e.g., IoT devices or local 

servers), offers a potential solution by reducing communication overhead (Shi et al., 2016) [25]. 

Yet, edge devices are constrained by limited processing power, energy capacity, and storage, 

making it impossible to deploy high-capacity models directly. Thus, a central tension emerges 

between the accuracy and resource efficiency of AI systems (Zhang et al., 2022) [28]. 

Beyond latency and computational limits, cost and energy efficiency also play crucial roles in 

the sustainability of AI infrastructures. Cloud-based inference demands significant resources, 

translating to financial costs and substantial carbon footprints (Patterson et al., 2021) [23]. 

Meanwhile, edge devices though cheaper and faster must operate within tight power budgets, 

particularly in mobile or battery-dependent contexts. Hence, balancing accuracy, energy 

efficiency, and operational cost becomes an essential design objective for scalable AI systems. 

Adding further complexity, real-world environments are non-stationary, meaning data 

distributions change over time a phenomenon known as concept drift.
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(Gama et al., 2014; Webb et al., 2016) [17, 26]. For instance, an 

AI model deployed in a smart surveillance system may 

perform differently during daytime versus nighttime or across 

changing weather conditions. Without mechanisms to adapt, 

model accuracy degrades sharply as the underlying data 

shifts. This dynamic nature of data necessitates continuous 

model adaptation a hallmark of intelligent and resilient AI 

systems (Bifet & Gavaldà, 2007; Žliobaitė, 2010) [32, 29]. 

However, enabling continual adaptation is not trivial. Naïvely 

retraining models on new data often leads to catastrophic 

forgetting, where previously acquired knowledge is 

overwritten by new information (Kirkpatrick et al., 2017; 

Parisi et al., 2019) [35, 37]. Addressing this problem requires 

efficient continual learning strategies, such as regularization-

based methods, rehearsal memory, or parameter isolation, 

which allow models to evolve without forgetting their earlier 

competencies (Delange et al., 2021) [15]. 

Existing research has made progress in individual aspects of 

these challenges. For instance, elastic model architectures like 

Once-for-All networks (Cai et al., 2020) [14] and slimmable 

neural networks (Yu & Huang, 2019) [38] offer the flexibility 

to deploy multiple sub-models from a single super-network, 

balancing accuracy and efficiency. Likewise, contextual 

bandit algorithms (Agrawal & Devanur, 2016; Auer et al., 

2002) [30, 31] provide an elegant framework for online decision-

making under uncertainty, optimizing model or placement 

selection based on contextual cues such as latency or cost. In 

parallel, advances in continual learning (Farajtabar et al., 

2020; Lopez-Paz & Ranzato, 2017) [34, 36] have paved the way 

for incremental learning without catastrophic forgetting. 

Despite these developments, few frameworks combine 

elasticity, adaptability, and learning continuity into a single 

cohesive system that can operate reliably in heterogeneous, 

time-varying environments. This paper addresses that gap 

through the introduction of SYNAPSE-SCALE a unified 

framework that integrates: 

 Elastic neural architectures to dynamically scale 

computation. 

 A drift-aware constrained contextual bandit router to 

intelligently allocate inference tasks across devices, edge 

servers, and cloud nodes, and. 

 Adapter-based continual learning mechanisms to sustain 

long-term adaptability without retraining from scratch. 

 

By bridging these complementary approaches, SYNAPSE-

SCALE aims to deliver intelligent, scalable, and energy-

efficient AI systems capable of adapting autonomously to 

environmental and data changes, making it a robust candidate 

for next-generation edge cloud AI deployment. 

 

2. Methodology 

The SYNAPSE-SCALE framework is designed as an 

intelligent, adaptive system that dynamically balances 

accuracy, latency, and cost in distributed AI environments. 

 

At its core, SYNAPSE-SCALE integrates three 

complementary components that operate in synergy: 

 An Elastic Super-Network, which provides structural 

scalability across different computational levels. 

 A Drift-Aware Constrained Contextual Bandit Router, 

which learns online how to select the best model variant 

and placement under changing conditions. 

 An Adapter-Based Continual Learning Module, which 

allows the system to adapt continuously to new data 

without forgetting previously learned knowledge. 

 

Together, these components form an evolving decision-

learning pipeline capable of delivering real-time intelligence 

in highly variable environments such as IoT systems, 

autonomous devices, and smart edge-cloud ecosystems. 

 

2.1 Elastic Super-Network 

The first pillar of SYNAPSE-SCALE is its Elastic Super-

Network, a versatile architecture capable of producing 

multiple specialized sub-models of varying width, depth, and 

quantization precision. This approach builds on the concept of 

Once-for-All networks (Cai, et al., 2020) [14], which enable a 

single large model to act as a “parent” from which smaller 

“child” models can be instantly derived without retraining. In 

practice, this means that one comprehensive neural 

architecture is trained using a progressive shrinking strategy, 

where the model learns to perform well under multiple 

configurations simultaneously. By adjusting its active width 

(number of channels), depth (number of layers), and bit 

precision, the system can instantly deploy sub-networks 

optimized for different device capabilities or latency 

requirements (Yu & Huang, 2019) [38]. For instance, a small 8-

bit shallow model might run on a wearable sensor, while a 

deeper 32-bit variant executes on the cloud when higher 

accuracy is essential. 

Each sub-network inherits parameters from the parent model 

and can be fine-tuned for specific hardware or energy 

constraints. This elasticity eliminates the need to maintain 

multiple independently trained models, dramatically reducing 

storage, training time, and deployment complexity. 

 

Mathematically, the elastic super-network can be 

expressed as:- 

 

M(θ, α) where α ∈ {width, depth, quantization} 

 

Where each configuration parameter α defines a sub-model 

Mα⊂M specialized for a given computational budget. 

 

2.2 Drift-Aware Constrained Contextual Bandit Router 

The second major component is the Drift-Aware Constrained 

Contextual Bandit Router, responsible for dynamically 

deciding which sub-model and placement should be used for 

each incoming data sample. In other words, it learns where to 

run inference (on-device, at the edge, or in the cloud) and 

which version of the model to use based on current context 

such as device load, network latency, and input uncertainty. 

This component is inspired by the contextual multi-armed 

bandit (MAB) framework (Agrawal & Devanur, 2016; Auer 

et al., 2002) [30, 31], which balances exploration (trying new 

configurations) and exploitation (choosing known best-

performing ones). Here, each “arm” represents a possible 

(model configuration, placement) pair. 

 

The router computes a utility score for each arm: 

 

Uₜ(a) = μ̂a  + βσ̂ₐ − (λ_L P_lat(a) + λ_B C(a)) 

 

Where, 

 μ̂a  is the estimated reward (quality cost-atency balance). 

 σ̂ₐ is the exploration term representing uncertainty or 

variance in reward estimation. 
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 P_lat(a) is the latency penalty associated with exceeding 

the SLA threshold. 

 C(a) is the cost penalty, representing computational or 

energy cost of inference. 

 λ_L and λ_B are dynamically updated dual coefficients 

that enforce latency and budget constraints, respectively. 

 β is the exploration coefficient controlling the trade-off 

between exploitation (selecting known best arms) and 

exploration (trying uncertain arms). 

 

The router also incorporates drift detection based on adaptive 

windowing (Bifet & Gavaldà, 2007) [32], which monitors 

changes in observed reward distributions. If a significant 

deviation (i.e., concept drift) is detected, outdated statistics 

are reset, forcing the system to relearn optimal configurations 

for the new environment. This allows SYNAPSE-SCALE to 

remain robust even in rapidly changing conditions such as 

fluctuating network loads or evolving data patterns. 

 

2.3 Adapter-Based Continual Learning 

The third component focuses on the long-term 

adaptability of the framework 

In real-world deployments, data distributions evolve 

gradually, and static models lose their relevance over time. To 

address this, SYNAPSE-SCALE employs adapter-based 

continual learning, where small, trainable “adapter” modules 

are attached to frozen layers of the network (Lopez-Paz & 

Ranzato, 2017; Farajtabar et al., 2020) [36, 34]. These adapters 

are lightweight and require minimal additional computation. 

They allow localized parameter updates without modifying 

the base model’s weights, preventing catastrophic forgetting 

(Kirkpatrick et al., 2017) [35]. Gradients are orthogonalized to 

previous tasks to preserve knowledge (Farajtabar et al., 2020) 
[34], and a small replay buffer maintains representative 

samples for periodic rehearsal (Parisi et al., 2019) [37]. 

Through this mechanism, SYNAPSE-SCALE continuously 

learns from new inputs while retaining prior performance, 

achieving sustainable, on device intelligence. 

 

3. Results and Discussion 

We evaluated SYNAPSE-SCALE and four baseline systems 

Cloud-only, Edge-only, Static Elastic, and Bandit without 

elasticity under identical dynamic conditions. A total of 1,200 

sequential inference requests were simulated, including an 

easy, hard, and moderate phase to emulate real-world drift. 

Each system was assessed for quality, latency, cost, and SLA 

compliance under a strict latency threshold of 75 ms. 

 

Table 1: Presents a comparative summary of performance metrics for all evaluated methods 
 

Method Avg Quality Avg Latency (ms) Avg Cost (units) SLA Violations (%) 

Cloud-only 0.89 120 100 5.0 

Edge-only 0.81 40 30 0.0 

Static Elastic 0.86 60 45 0.5 

Bandit (no elasticity) 0.87 70 60 1.2 

SYNAPSE-SCALE 0.88 55 38 0.8 
 

As shown in Table 1, SYNAPSE-SCALE achieved accuracy 

comparable to cloud inference while maintaining low latency 

and cost similar to edge-based approaches. 

To evaluate the performance and adaptability of the proposed 

SYNAPSE-SCALE framework, a series of controlled 

experiments were conducted and compared against four 

baseline methods: Cloud-only, Edge-only, Static Elastic, and 

Bandit (no elasticity). Each baseline was carefully chosen to 

represent a distinct paradigm of AI deployment ranging from 

centralized cloud inference to fully localized edge 

computation. This experimental diversity allows a 

comprehensive assessment of how SYNAPSE-SCALE 

performs under varying conditions of resource availability, 

latency constraints, and environmental drift. 

A total of 1,200 sequential inference requests were simulated 

to mirror real-world deployment scenarios. The simulation 

was divided into three temporal phases easy, hard, and 

moderate to emulate dynamic environmental changes and data 

distribution shifts, often referred to as concept drift (Gama et 

al., 2014; Webb et al., 2016) [17, 26]. During the “easy” phase, 

data patterns remained stable and predictable. The “hard” 

phase introduced significant variability and increased input 

difficulty, simulating conditions such as degraded network 

connectivity, hardware throttling, or increased input noise. 

Finally, the “moderate” phase reflected a partially stabilized 

state, resembling post-drift adaptation in real-world systems. 

Each system was evaluated using four key performance 

indicators: Average quality (accuracy or model performance), 

average latency, average computational cost, and SLA 

violation rate the percentage of requests exceeding the strict 

75 ms latency threshold (Satyanarayanan, 2017) [24]. This 

threshold reflects practical requirements for low-latency 

applications such as autonomous navigation, real-time 

analytics, and interactive services (Shi et al., 2016) [25]. 

 

3.1 Quantitative Results 

As evident from Table 2, SYNAPSE-SCALE demonstrates 

superior balance across all performance dimensions. While 

the Cloud-only approach yields slightly higher accuracy 

(0.89), it suffers from significant latency (120 ms) and cost 

overheads due to remote processing and bandwidth 

consumption. Conversely, the Edge-only system achieves the 

lowest latency and cost but sacrifices quality, indicating its 

inability to maintain accuracy in complex or variable 

conditions (Zhang et al., 2022) [28]. The Static Elastic model 

offers moderate improvements through its flexible 

architecture but lacks the adaptive routing and continual 

learning mechanisms required to handle drift efficiently. The 

Bandit without elasticity baseline adapts placement decisions 

but is limited by its static model configurations. 
 

Table 2: Comparative performance metrics of SYNAPSE-SCALE and baseline systems 
 

Method Avg Quality Avg Latency (ms) Avg Cost (units) SLA Violations (%) 

Cloud-only 0.89 120 100 5.0 

Edge-only 0.81 40 30 0.0 

Static Elastic 0.86 60 45 0.5 

Bandit (no elasticity) 0.87 70 60 1.2 

SYNAPSE-SCALE (ours) 0.88 55 38 0.8 
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In contrast, SYNAPSE-SCALE achieves a near-cloud level of 

accuracy (0.88) while maintaining latency (55 ms) and cost 

(38 units) close to the Edge-only baseline. Importantly, SLA 

violations remain below 1%, demonstrating that the system 

successfully adheres to latency constraints while optimizing 

performance dynamically. These results highlight the 

effectiveness of combining elastic architecture selection with 

contextual bandit routing and continual learning, as proposed 

in this study. 

 

3.2 Quality over time 

 

 
 

Fig 1: The graph representing illustrates the moving-average quality trends for all methods across the 1,200 inference steps 

 

During the initial “easy” phase, all models perform 

comparably, reflecting stable conditions. However, as the 

simulation enters the “hard” phase, models without adaptive 

mechanisms experience a notable drop in accuracy. The 

Edge-only and Static Elastic baselines decline rapidly due to 

their inability to adjust to new input patterns, while the Cloud-

only method retains high accuracy but incurs substantial 

latency penalties. The Bandit without elasticity method 

manages to mitigate this degradation partially but lacks the 

flexibility to restructure its model configuration. 

By contrast, SYNAPSE-SCALE shows remarkable resilience. 

Its drift-aware contextual bandit router detects distributional 

shifts and rebalances routing decisions accordingly. 

Simultaneously, its adapter-based continual learning module 

fine-tunes lightweight network components, allowing it to 

recover faster after drift. Notably, SYNAPSE-SCALE 

achieves full recovery in approximately 120 time steps, 

compared to 500 steps for the Bandit baseline (Figure 1). 

These observations align with findings in continual learning 

literature emphasizing the importance of online adaptation for 

maintaining long-term performance (Farajtabar et al., 2020; 

Parisi et al., 2019) [34, 37]. 

 

3.3 Latency Distribution 

 

 
 

Fig 2: The graph representing Cumulative Distribution Function (CDF) of latency for all tested methods. 
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The Cloud-only approach exhibits a long-tail latency 

distribution, with 99th-percentile latency exceeding 200 ms 

due to communication overheads and server-side queuing 

delays (Satyanarayanan, 2017) [24]. The Edge-only approach 

delivers consistently low latency but lacks flexibility in 

handling difficult inputs. The Static Elastic and Bandit 

without elasticity systems perform moderately well but fail to 

guarantee low tail latency during high-load periods. 

In contrast, SYNAPSE-SCALE maintains tight latency 

bounds throughout the simulation (Figure 2). By dynamically 

routing low-uncertainty samples to local devices and 

delegating high-uncertainty cases to edge or cloud resources, 

it minimizes both average and tail latencies. This adaptive 

trade-off mechanism proves crucial in ensuring QoS (Quality 

of Service) compliance, which is essential in latency-sensitive 

applications such as augmented reality, smart manufacturing, 

and autonomous control systems (Shi et al., 2016; Varghese 

et al., 2018) [25, 8]. 

 

3.4 Cost Distribution 

 

 
 

Fig 3: The graph showing comparing the cost per inference request for Cloud-only and SYNAPSE-SCALE methods 
 

Unsurprisingly, the Cloud-only configuration incurs the 

highest cost per request due to continuous remote 

computation and bandwidth usage. SYNAPSE-SCALE, on 

the other hand, demonstrates a significant cost reduction of 

approximately 60%, shifting the majority of requests into 

lower-cost operational zones (Figure 3). This efficiency is 

achieved through intelligent model selection, quantization-

aware sub-network activation, and adaptive placement 

deploying smaller, energy-efficient models for low-

complexity tasks while reserving high-cost computation for 

high-uncertainty cases  

These results align with recent findings in green AI and 

sustainable computing, emphasizing that intelligent 

scheduling and architectural elasticity can drastically reduce 

energy consumption and carbon emissions without sacrificing 

performance (Patterson et al., 2021; Strubell et al., 2019) [23, 

7]. 

 

4. Discussion 

The results affirm that SYNAPSE-SCALE successfully 

integrates accuracy, adaptability, and efficiency within a 

single, unified framework. Unlike traditional models that 

prioritize one metric at the expense of others, SYNAPSE-

SCALE demonstrates that adaptive elasticity and continual 

learning can co-exist to maintain optimal balance. Its drift-

aware contextual bandit mechanism enables responsive 

decision-making, while adapter-based continual learning 

ensures long-term stability under evolving conditions. 

The observed improvements in both quantitative and 

qualitative metrics position SYNAPSE-SCALE as a strong 

candidate for real-world deployment in heterogeneous AI 

ecosystems, where tasks, environments, and resources 

fluctuate dynamically. Future research may explore extending 

this architecture to multi-modal and federated learning 

settings, where similar trade-offs exist between 

communication efficiency and model adaptability. 

 

References 

1. Farajtabar M, Azizan N, Mott A, Li A. Orthogonal 

gradient descent for continual learning. In: Proceedings 

of the AISTATS Conference; 2020. 

2. Gama J, Žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia 

A. A survey on concept drift adaptation. ACM Comput 

Surv. 2014;46(4):44-64. 

3. Parisi GI, Kemker R, Part JL, Kanan C, Wermter S. 

Continual lifelong learning with neural networks: A 

review. Neural Netw. 2019;113:54-71. 

4. Patterson D, Gonzalez J, Hölzle U, Le Q, Dean J, Jouppi 

NP. Carbon emissions and large neural network training. 

arXiv [Preprint]. 2021. arXiv:2104.10350. 

5. Satyanarayanan M. The emergence of edge computing. 

Computer. 2017;50(1):30-39. 

6. Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge computing: 

Vision and challenges. IEEE Internet Things J. 

2016;3(5):637-646. 

7. Strubell E, Ganesh A, McCallum A. Energy and policy 

considerations for deep learning in NLP. In: ACL 2019: 

Proceedings of the 57th Annual Meeting of the 

Association for Computational Linguistics; 2019. 

8. Varghese B, Wang N, Barbhuiya S, Kilpatrick P, 

Nikolopoulos DS. Challenges and opportunities in edge 

computing. Future Gener Comput Syst. 2018;89:849-859. 

https://www.mathsjournal.com/


 

~133~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

9. Webb GI, Hyde R, Cao H, Nguyen HL, Petitjean F. 

Characterizing concept drift. Data Min Knowl Discov. 

2016;30(4):964-994. 

10. Zhang C, Xu C, Huo Y, Li J, Xiong N. Energy-efficient 

edge-cloud AI computing: A survey and outlook. IEEE 

Access. 2022;10:113467-113486. 

11. Agrawal S, Devanur N. Linear contextual bandits with 

knapsacks. In: Conference on Learning Theory (COLT); 

2016. 

12. Auer P, Bianchi CN, Fischer P. Finite-time analysis of 

the multiarmed bandit problem. Mach Learn. 2002;47(2-

3):235-256. 

13. Bifet A, Gavaldà R. Learning from time-changing data 

with adaptive windowing. In: SIAM International 

Conference on Data Mining; 2007. 

14. Cai H, Gan C, Han S. Once-for-all: Train one network 

and specialize it for efficient deployment. In: 

International Conference on Learning Representations 

(ICLR); 2020. 

15. Delange M, Aljundi R, Masana M, Parisot S, Jia X, 

Leonardis A, et al. A continual learning survey: Defying 

forgetting in classification tasks. IEEE Trans Pattern 

Anal Mach Intell. 2021;44(7):3366-3385. 

16. Farajtabar M, Azizan N, Mott A, Li A. Orthogonal 

gradient descent for continual learning. In: Proceedings 

of the AISTATS Conference; 2020. 

17. Gama J, Žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia 

A. A survey on concept drift adaptation. ACM Comput 

Surv. 2014;46(4):44-64. 

18. Goodfellow I, Bengio Y, Courville A. Deep learning. 

Cambridge (MA): MIT Press; 2016. 

19. Jordan MI, Mitchell TM. Machine learning: Trends, 

perspectives, and prospects. Science. 

2015;349(6245):255-260. 

20. Kirkpatrick J, Pascanu R, Rabinowitz N, et al. 

Overcoming catastrophic forgetting in neural networks. 

Proc Natl Acad Sci, U.S.A. 2017;114(13):3521-3526. 

21. Lopez-Paz D, Ranzato M. Gradient episodic memory for 

continual learning. In: Advances in Neural Information 

Processing Systems (NeurIPS); 2017. 

22. Parisi GI, Kemker R, Part JL, Kanan C, Wermter S. 

Continual lifelong learning with neural networks: A 

review. Neural Netw. 2019;113:54-71. 

23. Patterson D, Gonzalez J, Hölzle U, Le Q, Dean J, Jouppi 

NP. Carbon emissions and large neural network training. 

arXiv [Preprint]. 2021. arXiv:2104.10350. 

24. Satyanarayanan M. The emergence of edge computing. 

Computer. 2017;50(1):30-39. 

25. Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge computing: 

Vision and challenges. IEEE Internet Things J. 

2016;3(5):637-646. 

26. Webb GI, Hyde R, Cao H, Nguyen HL, Petitjean F. 

Characterizing concept drift. Data Min Knowl Discov. 

2016;30(4):964-994. 

27. Yu J, Huang T. Universally slimmable networks and 

improved training techniques. In: IEEE/CVF 

International Conference on Computer Vision (ICCV); 

2019. 

28. Zhang C, Xu C, Huo Y, Li J, Xiong N. Energy-efficient 

edge-cloud AI computing: A survey and outlook. IEEE 

Access. 2022;10:113467-113486. 

29. Žliobaitė I. Learning under concept drift: An overview. 

arXiv [Preprint]. 2010. arXiv:1010.4784. 

30. Agrawal S, Devanur N. Linear contextual bandits with 

knapsacks. In: Conference on Learning Theory (COLT); 

2016. 

31. Auer P, Cesa-Bianchi N, Fischer P. Finite-time analysis 

of the multiarmed bandit problem. Mach Learn. 

2002;47(2-3):235-256. 

32. Bifet A, Gavaldà R. Learning from time-changing data 

with adaptive windowing. In: SIAM International 

Conference on Data Mining; 2007. 

33. Cai H, Gan C, Han S. Once-for-all: Train one network 

and specialize it for efficient deployment. In: 

International Conference on Learning Representations 

(ICLR); 2020. 

34. Farajtabar M, Azizan N, Mott A, Li A. Orthogonal 

gradient descent for continual learning. In: Proceedings 

of the AISTATS Conference; 2020. 

35. Kirkpatrick J, Pascanu R, Rabinowitz N, et al. 

Overcoming catastrophic forgetting in neural networks. 

Proc Natl Acad Sci U S A. 2017;114(13):3521-3526. 

36. Paz LD, Ranzato M. Gradient episodic memory for 

continual learning. In: Advances in Neural Information 

Processing Systems (NeurIPS); 2017. 

37. Parisi GI, Kemker R, Part JL, Kanan C, Wermter S. 

Continual lifelong learning with neural networks: A 

review. Neural Netw. 2019;113:54-71. 

38. Yu J, Huang T. Universally slimmable networks and 

improved training techniques. In: IEEE/CVF 

International Conference on Computer Vision (ICCV); 

2019. 

https://www.mathsjournal.com/

