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Abstract

This paper introduces SYNAPSE-SCALE, an adaptive and intelligent artificial intelligence framework
designed to optimize model selection, placement, and continual learning in distributed edge-cloud
environments. The system integrates an elastic super-network, a drift-aware constrained contextual
bandit router, and lightweight continual learning adapters. Our experimental evaluation compares
SYNAPSE-SCALE against cloud-only, edge-only, static elastic, and bandit-based methods under
identical non-stationary conditions. Results demonstrate that SYNAPSE-SCALE achieves near-cloud
accuracy at significantly lower latency and cost, maintaining over 98% SLA compliance while adapting
four times faster to drift. These results establish SYNAPSE-SCALE as a practical, scalable solution for
intelligent Al deployment.
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1. Introduction

Artificial Intelligence (Al) has rapidly transitioned from a theoretical discipline to a practical
foundation of modern digital life. It powers an astonishing range of technologies from
autonomous vehicles that interpret complex road environments to voice assistants capable of
natural dialogue and healthcare systems that predict diseases before symptoms appear
(Goodfellow et al., 2016; Jordan & Mitchell, 2015) [*& 91 This rapid expansion of Al
capabilities has been propelled by the availability of large-scale data, high-performance
computing resources, and advanced machine learning algorithms. However, as the reach of Al
extends beyond the cloud into distributed, real-time, and resource-constrained environments,
new challenges emerge that fundamentally reshape how intelligent systems must operate (Shi
et al., 2016; Satyanarayanan, 2017) 2524,

One of the most pressing challenges in this new paradigm is latency. Many Al-driven
applications such as real-time object detection in autonomous driving or emergency response
systems in healthcare require decisions in milliseconds. When inference depends solely on
remote cloud servers, network delays, bandwidth limitations, and congestion can lead to
unacceptable response times (Satyanarayanan, 2017) 24, The edge computing paradigm, in
which Al computations are performed closer to the data source (e.g., 10T devices or local
servers), offers a potential solution by reducing communication overhead (Shi et al., 2016) 23],
Yet, edge devices are constrained by limited processing power, energy capacity, and storage,
making it impossible to deploy high-capacity models directly. Thus, a central tension emerges
between the accuracy and resource efficiency of Al systems (Zhang et al., 2022) 281,

Beyond latency and computational limits, cost and energy efficiency also play crucial roles in
the sustainability of Al infrastructures. Cloud-based inference demands significant resources,
translating to financial costs and substantial carbon footprints (Patterson et al., 2021) 23],
Meanwhile, edge devices though cheaper and faster must operate within tight power budgets,
particularly in mobile or battery-dependent contexts. Hence, balancing accuracy, energy
efficiency, and operational cost becomes an essential design objective for scalable Al systems.
Adding further complexity, real-world environments are non-stationary, meaning data
distributions change over time a phenomenon known as concept drift.
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(Gama et al., 2014; Webb et al., 2016) [7- 261, For instance, an
Al model deployed in a smart surveillance system may
perform differently during daytime versus nighttime or across
changing weather conditions. Without mechanisms to adapt,
model accuracy degrades sharply as the underlying data
shifts. This dynamic nature of data necessitates continuous
model adaptation a hallmark of intelligent and resilient Al
systems (Bifet & Gavalda, 2007; Zliobaité, 2010) [32 291,
However, enabling continual adaptation is not trivial. Naively
retraining models on new data often leads to catastrophic
forgetting, where previously acquired knowledge is
overwritten by new information (Kirkpatrick et al., 2017;
Parisi et al., 2019) [ 371, Addressing this problem requires
efficient continual learning strategies, such as regularization-
based methods, rehearsal memory, or parameter isolation,
which allow models to evolve without forgetting their earlier
competencies (Delange et al., 2021) [,

Existing research has made progress in individual aspects of
these challenges. For instance, elastic model architectures like
Once-for-All networks (Cai et al., 2020) ™ and slimmable
neural networks (Yu & Huang, 2019) B8l offer the flexibility
to deploy multiple sub-models from a single super-network,
balancing accuracy and efficiency. Likewise, contextual
bandit algorithms (Agrawal & Devanur, 2016; Auer et al.,
2002) 3231 provide an elegant framework for online decision-
making under uncertainty, optimizing model or placement
selection based on contextual cues such as latency or cost. In
parallel, advances in continual learning (Farajtabar et al.,
2020; Lopez-Paz & Ranzato, 2017) 34 38 have paved the way
for incremental learning without catastrophic forgetting.
Despite these developments, few frameworks combine
elasticity, adaptability, and learning continuity into a single
cohesive system that can operate reliably in heterogeneous,
time-varying environments. This paper addresses that gap
through the introduction of SYNAPSE-SCALE a unified
framework that integrates:

Elastic neural architectures
computation.

A drift-aware constrained contextual bandit router to
intelligently allocate inference tasks across devices, edge
servers, and cloud nodes, and.

Adapter-based continual learning mechanisms to sustain
long-term adaptability without retraining from scratch.

. to dynamically scale

By bridging these complementary approaches, SYNAPSE-
SCALE aims to deliver intelligent, scalable, and energy-
efficient Al systems capable of adapting autonomously to
environmental and data changes, making it a robust candidate
for next-generation edge cloud Al deployment.

2. Methodology

The SYNAPSE-SCALE framework is designed as an
intelligent, adaptive system that dynamically balances
accuracy, latency, and cost in distributed Al environments.

At its core, SYNAPSE-SCALE integrates three
complementary components that operate in synergy:

An Elastic Super-Network, which provides structural
scalability across different computational levels.

A Drift-Aware Constrained Contextual Bandit Router,
which learns online how to select the best model variant
and placement under changing conditions.

An Adapter-Based Continual Learning Module, which
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allows the system to adapt continuously to new data
without forgetting previously learned knowledge.

Together, these components form an evolving decision-
learning pipeline capable of delivering real-time intelligence
in highly variable environments such as loT systems,
autonomous devices, and smart edge-cloud ecosystems.

2.1 Elastic Super-Network

The first pillar of SYNAPSE-SCALE is its Elastic Super-
Network, a versatile architecture capable of producing
multiple specialized sub-models of varying width, depth, and
guantization precision. This approach builds on the concept of
Once-for-All networks (Cai, et al., 2020) ', which enable a
single large model to act as a “parent” from which smaller
“child” models can be instantly derived without retraining. In
practice, this means that one comprehensive neural
architecture is trained using a progressive shrinking strategy,
where the model learns to perform well under multiple
configurations simultaneously. By adjusting its active width
(number of channels), depth (number of layers), and bit
precision, the system can instantly deploy sub-networks
optimized for different device capabilities or latency
requirements (Yu & Huang, 2019) 81, For instance, a small 8-
bit shallow model might run on a wearable sensor, while a
deeper 32-bit variant executes on the cloud when higher
accuracy is essential.

Each sub-network inherits parameters from the parent model
and can be fine-tuned for specific hardware or energy
constraints. This elasticity eliminates the need to maintain
multiple independently trained models, dramatically reducing
storage, training time, and deployment complexity.
Mathematically, the elastic
expressed as:-

super-network can be

M(6, o) where o, € {width, depth, quantization}

Where each configuration parameter o defines a sub-model
M,cM specialized for a given computational budget.

2.2 Drift-Aware Constrained Contextual Bandit Router
The second major component is the Drift-Aware Constrained
Contextual Bandit Router, responsible for dynamically
deciding which sub-model and placement should be used for
each incoming data sample. In other words, it learns where to
run inference (on-device, at the edge, or in the cloud) and
which version of the model to use based on current context
such as device load, network latency, and input uncertainty.
This component is inspired by the contextual multi-armed
bandit (MAB) framework (Agrawal & Devanur, 2016; Auer
et al., 2002) [ 31 which balances exploration (trying new
configurations) and exploitation (choosing known best-
performing ones). Here, each “arm” represents a possible
(model configuration, placement) pair.

The router computes a utility score for each arm:
Uda) = 1 + B, — (A_L P_lat(a) + A_B C(a))

Where,

1 is the estimated reward (quality cost-atency balance).
o, is the exploration term representing uncertainty or
variance in reward estimation.


https://www.mathsjournal.com/

International Journal of Statistics and Applied Mathematics

e P lat(a) is the latency penalty associated with exceeding
the SLA threshold.

e C(a) is the cost penalty, representing computational or
energy cost of inference.

e A L and A_B are dynamically updated dual coefficients
that enforce latency and budget constraints, respectively.

e B is the exploration coefficient controlling the trade-off
between exploitation (selecting known best arms) and
exploration (trying uncertain arms).

The router also incorporates drift detection based on adaptive
windowing (Bifet & Gavalda, 2007) B2, which monitors
changes in observed reward distributions. If a significant
deviation (i.e., concept drift) is detected, outdated statistics
are reset, forcing the system to relearn optimal configurations
for the new environment. This allows SYNAPSE-SCALE to
remain robust even in rapidly changing conditions such as
fluctuating network loads or evolving data patterns.

2.3 Adapter-Based Continual Learning
The third component focuses on
adaptability of the framework

In  real-world deployments, data distributions evolve
gradually, and static models lose their relevance over time. To

the long-term
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address this, SYNAPSE-SCALE employs adapter-based
continual learning, where small, trainable “adapter” modules
are attached to frozen layers of the network (Lopez-Paz &
Ranzato, 2017; Farajtabar et al., 2020) [3¢ 34, These adapters
are lightweight and require minimal additional computation.
They allow localized parameter updates without modifying
the base model’s weights, preventing catastrophic forgetting
(Kirkpatrick et al., 2017) . Gradients are orthogonalized to
previous tasks to preserve knowledge (Farajtabar et al., 2020)
4 and a small replay buffer maintains representative
samples for periodic rehearsal (Parisi et al., 2019) 7,
Through this mechanism, SYNAPSE-SCALE continuously
learns from new inputs while retaining prior performance,
achieving sustainable, on device intelligence.

3. Results and Discussion

We evaluated SYNAPSE-SCALE and four baseline systems
Cloud-only, Edge-only, Static Elastic, and Bandit without
elasticity under identical dynamic conditions. A total of 1,200
sequential inference requests were simulated, including an
easy, hard, and moderate phase to emulate real-world drift.
Each system was assessed for quality, latency, cost, and SLA
compliance under a strict latency threshold of 75 ms.

Table 1: Presents a comparative summary of performance metrics for all evaluated methods

Method Avg Quality Avg Latency (ms) Avg Cost (units) SLA Violations (%)
Cloud-only 0.89 120 100 5.0
Edge-only 0.81 40 30 0.0

Static Elastic 0.86 60 45 0.5
Bandit (no elasticity) 0.87 70 60 1.2
SYNAPSE-SCALE 0.88 55 38 0.8

As shown in Table 1, SYNAPSE-SCALE achieved accuracy
comparable to cloud inference while maintaining low latency
and cost similar to edge-based approaches.

To evaluate the performance and adaptability of the proposed
SYNAPSE-SCALE framework, a series of controlled
experiments were conducted and compared against four
baseline methods: Cloud-only, Edge-only, Static Elastic, and
Bandit (no elasticity). Each baseline was carefully chosen to
represent a distinct paradigm of Al deployment ranging from
centralized cloud inference to fully localized edge
computation. This experimental diversity allows a
comprehensive assessment of how SYNAPSE-SCALE
performs under varying conditions of resource availability,
latency constraints, and environmental drift.

A total of 1,200 sequential inference requests were simulated
to mirror real-world deployment scenarios. The simulation
was divided into three temporal phases easy, hard, and
moderate to emulate dynamic environmental changes and data
distribution shifts, often referred to as concept drift (Gama et
al., 2014; Webb et al., 2016) - %1, During the “easy” phase,
data patterns remained stable and predictable. The “hard”
phase introduced significant variability and increased input
difficulty, simulating conditions such as degraded network
connectivity, hardware throttling, or increased input noise.
Finally, the “moderate” phase reflected a partially stabilized

state, resembling post-drift adaptation in real-world systems.
Each system was evaluated using four key performance
indicators: Average quality (accuracy or model performance),
average latency, average computational cost, and SLA
violation rate the percentage of requests exceeding the strict
75 ms latency threshold (Satyanarayanan, 2017) 4. This
threshold reflects practical requirements for low-latency
applications such as autonomous navigation, real-time
analytics, and interactive services (Shi et al., 2016) 2],

3.1 Quantitative Results

As evident from Table 2, SYNAPSE-SCALE demonstrates
superior balance across all performance dimensions. While
the Cloud-only approach vyields slightly higher accuracy
(0.89), it suffers from significant latency (120 ms) and cost
overheads due to remote processing and bandwidth
consumption. Conversely, the Edge-only system achieves the
lowest latency and cost but sacrifices quality, indicating its
inability to maintain accuracy in complex or variable
conditions (Zhang et al., 2022) [?81, The Static Elastic model
offers moderate improvements through its flexible
architecture but lacks the adaptive routing and continual
learning mechanisms required to handle drift efficiently. The
Bandit without elasticity baseline adapts placement decisions
but is limited by its static model configurations.

Table 2: Comparative performance metrics of SYNAPSE-SCALE and baseline systems

Method Avg Quality | Avg Latency (ms) | Avg Cost (units) SLA Violations (%)
Cloud-only 0.89 120 100 5.0
Edge-only 0.81 40 30 0.0

Static Elastic 0.86 60 45 0.5
Bandit (no elasticity) 0.87 70 60 1.2
SYNAPSE-SCALE (ours) 0.88 55 38 0.8
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In contrast, SYNAPSE-SCALE achieves a near-cloud level of
accuracy (0.88) while maintaining latency (55 ms) and cost
(38 units) close to the Edge-only baseline. Importantly, SLA
violations remain below 1%, demonstrating that the system
successfully adheres to latency constraints while optimizing
performance dynamically. These results highlight the

https://www.mathsjournal.com

effectiveness of combining elastic architecture selection with
contextual bandit routing and continual learning, as proposed
in this study.

3.2 Quality over time
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Fig 1: The graph representing illustrates the moving-average quality trends for all methods across the 1,200 inference steps

During the initial “easy” phase, all models perform
comparably, reflecting stable conditions. However, as the
simulation enters the “hard” phase, models without adaptive
mechanisms experience a notable drop in accuracy. The
Edge-only and Static Elastic baselines decline rapidly due to
their inability to adjust to new input patterns, while the Cloud-
only method retains high accuracy but incurs substantial
latency penalties. The Bandit without elasticity method
manages to mitigate this degradation partially but lacks the
flexibility to restructure its model configuration.

By contrast, SYNAPSE-SCALE shows remarkable resilience.
Its drift-aware contextual bandit router detects distributional

shifts and rebalances routing decisions accordingly.
Simultaneously, its adapter-based continual learning module
fine-tunes lightweight network components, allowing it to
recover faster after drift. Notably, SYNAPSE-SCALE
achieves full recovery in approximately 120 time steps,
compared to 500 steps for the Bandit baseline (Figure 1).
These observations align with findings in continual learning
literature emphasizing the importance of online adaptation for
maintaining long-term performance (Farajtabar et al., 2020;
Parisi et al., 2019) 3437,

3.3 Latency Distribution
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Fig 2: The graph representing Cumulative Distribution Function (CDF) of latency for all tested methods.
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The Cloud-only approach exhibits a long-tail latency
distribution, with 99th-percentile latency exceeding 200 ms
due to communication overheads and server-side queuing
delays (Satyanarayanan, 2017) 4. The Edge-only approach
delivers consistently low latency but lacks flexibility in
handling difficult inputs. The Static Elastic and Bandit
without elasticity systems perform moderately well but fail to
guarantee low tail latency during high-load periods.

In contrast, SYNAPSE-SCALE maintains tight latency
bounds throughout the simulation (Figure 2). By dynamically

https://www.mathsjournal.com

routing low-uncertainty samples to local devices and
delegating high-uncertainty cases to edge or cloud resources,
it minimizes both average and tail latencies. This adaptive
trade-off mechanism proves crucial in ensuring QoS (Quality
of Service) compliance, which is essential in latency-sensitive
applications such as augmented reality, smart manufacturing,
and autonomous control systems (Shi et al., 2016; Varghese
et al., 2018) (58,

3.4 Cost Distribution
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Fig 3: The graph showing comparing the cost per inference request for Cloud-only and SYNAPSE-SCALE methods

Unsurprisingly, the Cloud-only configuration incurs the
highest cost per request due to continuous remote
computation and bandwidth usage. SYNAPSE-SCALE, on
the other hand, demonstrates a significant cost reduction of
approximately 60%, shifting the majority of requests into
lower-cost operational zones (Figure 3). This efficiency is
achieved through intelligent model selection, quantization-
aware sub-network activation, and adaptive placement
deploying smaller, energy-efficient models for low-
complexity tasks while reserving high-cost computation for
high-uncertainty cases

These results align with recent findings in green Al and
sustainable  computing, emphasizing that intelligent
scheduling and architectural elasticity can drastically reduce
energy consumption and carbon emissions without sacrificing
performance (Patterson et al., 2021; Strubell et al., 2019) 2%
7

4. Discussion

The results affirm that SYNAPSE-SCALE successfully
integrates accuracy, adaptability, and efficiency within a
single, unified framework. Unlike traditional models that
prioritize one metric at the expense of others, SYNAPSE-
SCALE demonstrates that adaptive elasticity and continual
learning can co-exist to maintain optimal balance. Its drift-
aware contextual bandit mechanism enables responsive
decision-making, while adapter-based continual learning
ensures long-term stability under evolving conditions.

The observed improvements in both quantitative and
qualitative metrics position SYNAPSE-SCALE as a strong
candidate for real-world deployment in heterogeneous Al
ecosystems, where tasks, environments, and resources
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fluctuate dynamically. Future research may explore extending
this architecture to multi-modal and federated learning
settings, where similar trade-offs exist between
communication efficiency and model adaptability.
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