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Abstract

This study presents a numerical technique for solving second-kind Fredholm integral equations via the
collocation method. The modeled problem is transformed into an algebraic equation system and solved
with standard collocation points. After determining the approach's uniqueness and convergence,
numerical examples were used to assess its efficacy. The results indicate that the method outperforms
others.
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1. Introduction

Integral equations have sparked widespread interest in a variety of applications, including
biological, physical, and engineering concerns. Several works have looked into numerical
approaches for solving Fredholm integro-differential equations. Many engineering and
mechanics issues can be solved using second-order Fredholm integral equations in two
dimensions. In plasma physics calculations, for example, Fredholm integral equations are
typically solved Mirzaee and Hadadiyan ™.

Many efforts have been conducted to create and analyze numerical approaches for solving
Fredholm integral equations of the second kind, including: Adomian decompositions method
by Khan and Bakodah [, divided differences interpolation by Parandin and Gholamtabor E,
Bernstein method by Adhraa and Ayal [, Collocation method by Ajileye et al. I, Agbolade
and Anake ¢, Hybrid linear multistep method by Mehdiyera et al. [/, Chebyshev-Galerkin
method by Issa and Saleh 8, Lagrange Interpolation by Shoukralla and Ahmed 1, Least-
Squares Method by Al-Humedi and Shoushan 1%, Chebyshev polynomials by Maadadi &
Rahmoune [, Optimal Auxiliary Function Method (OAFM) by Zada et al. 4, Modified
Simpson's Rule by Djaidja and Khirani [ and many other methods.

This paper introduces a new method for obtaining an approximate numerical solution to the
second kind of linear Fredholm integral equation of the form

y@) +af Gl y)dt =F(x),a<x<b (1)

Where G (x, t) represents the Fredholm integral kernel, « is the supplied parameter, F(x) is a
known function, and y(x) is the unknown function to be calculated.

2. Fundamental Terms and Definitions
In order to formulate the given problem, we provide certain definitions and basic ideas of
integral in this part.

2.1 Definition 1: (Ajileye et al., 2024) Let (a,,) be a sequence of real integers and m < 0.
The power series in t with coefficients a,, is an equation.

ulx) = YN _oant™ =0(t)B )
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Where 8(t) = [1tt?--- tN],Blaga; ---ay|"

Thenu(t,m) = t™B,i = 0(1)N,m € Z*
2.2 Definition 2: (Agbolade and Anake, 2017) This method
identifies the essential collocation sites between intervals. For

example, [c, d] is defined as

(d-o)i
M

,i=01,2.....M ?)

Xj=¢ +
3. Materials and Methods

In this section, we implement approximation approach for the
numerical solution of Fredholm integral equations.

3.1 Method of Solution
Let the solution of equation (1) be approximated by

y(x) = Xio anx™ (4)
Substituting equation (4) into equation (1) gives
ThLoanx™ + a ] GCx, 1) (Zhep ant™dt = F(x) (5)
TM oan (x" + o f) GG ©) (tdt) = F®) (6)
Equation (6) can be rewrite in the form

Ehtoan ) = F(x) (7)

Where

b
B(x) =x"+ ocf G(x,t) (t™)dt

Using the standard collocation points, collocate equation (6)
at Xi.

b-a)i .
xi=a+®2i=012....M
M —
Zn=oan B(x1) = F(x;) (8)
Where,
‘F/fo(xo) Bi(x)  BL(x) /meﬂl FE )]
| By(x)  Ai(x,) By (x) | l F (x) }
L (%) =] B,(x,) |,F(X.):| .
\ : | :
| \
[ p,000) Bix) Balxy) o (x) ] LF(x) ]

We solve the system of equations (8) for the unknown values
and input the results into the approximate solution to get the
numerical result.

4. Numerical Examples

To assess the accuracy and usefulness of the procedure, we
provide numerical examples in this section. Let the
approximate and exact solutions be denoted by y, (x) and

y(x) respectively. Errory = |y, (x) — y(X)|
Example 1: Consider the Fredholm integral equation

(2e3+1)x

y(x) = fol xty(t)dt + e3* + 9)
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Exact solution: y(x) = e3*

Solution 1

The approximate solution to equation (9) at N = 5 yields
Vs =

1.00000000000063 + 3.15243302340969x
+2.82511637499556x% 4+ 10.9927934007719x%3
—7.66395900305361x* + 9.78006358630955x°>

Table 1: Exact, approximate and absolute error values for example 1

X Exact |Our Method n=s| Errors |Error parandinetal.=5
0.2/1.822118800| 1.822300893 (1.82093e-4 3.08e-3
0.4({3.320116923| 3.320481107 |3.64184e-4 7.5e-3
0.6|6.049647464| 6.050193740 |5.46276e-4 1.13e-2
0.8/11.02317638| 11.02390475 |7.2837e-4 1.51e-2
1.0120.08553692 20.08644739 |9.1047e-4 1.88e-2

The result obtained for Example 1, as shown in Table 1
revealed that our method performed better than the method
proposed in the literature at the same value of N.

Example 2: Consider the Fredholm integral equation

1 5t
y(x) = e**5 — §f01 e y(t)dt (10)

Exact solution: y(x) = e?*

Solution 2

The approximate solution to equation (10) at N = 8 yields
yg = 1.00000000281580 + 1.99999058246613x
+2.00019645690918x2 + 1.33168411254883x3
+0.674118041992188x* + 0.247802734375000x°
+0.117797851562500x° — 0.183105468750000e — 3x”
+0.177345275878906e — 1x8

Table 2: Exact, approximate and absolute error values for example 2

X Exact Our Method, n=s| Errors |Error parandin etal=10
0.21.221402758000] 1.221402752000 (3.40e-08 9.149e-08
0.4{1.491824698000| 1.491824780000 |8.20e-08 6.031e-06
0.6/1.822118800000| 1.822118933000 |1.33e-07 7.08e-05
0.8]2.225540928000] 2.225541113000 (1.85e-07| 4.10e-04
1.0/2.718281828000| 2.718282092000 |2.67e-07 1.61e-03
In numerical Example 2, as shown in Table 2, the

approximate solution at N=8 yields a better result compared
to the result obtained in the literature at N=10.

Example 3: Consider the Fredholm integral equation

y(x) = 2Sin G) + f02n Sin(x)Sin (g) y(t)dt (11)

Exact solution: y(x) = 2Sin G)

Solution 3
The approximate solution to equation (11) at N=5 yields

ys = 1421085472 x 10** + 0.999999801217200x
+0.390448258258402¢ — 5x2 — 0.416818645899184¢
—1x3 + 0.257630599662662¢ — 4x*
+0.503619870869443¢ — 3x°


https://www.mathsjournal.com/

International Journal of Statistics and Applied Mathematics

Table 3: Exact, approximate and absolute error values for example 3

X Exact Our Method, n=s| Errors |Error parandin et al.=10
0.2/0.1996668333| 0.1996668639 |3.06e-08 9.04e-06
0.4/0.3973386616| 0.3973387225 |6.09e-08 1.349e-05
0.6/0.5910404134| 0.5910405039 |9.05e-08 2.012e-05
0.8/0.7788366846| 0.7788368039 [1.193e-07, 3.002e-05
1.0/0.9588510772| 0.9588512244 |1.472e-07| 4.478e-05

The approximate result in Example 2, as shown in Table 3,
confirmed the reliability of our method of solution by giving a
better result compared to the result obtained in the literature at
the value of N=10.

5. Conclusions

This paper investigated the collocation approach for
numerically solving Fredholm integral equations. This
method is dependable, efficient, and easy to compute. All
computations in this paper were performed using Maple 18.
Considering some problems demonstrates the method's
reliability.
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