
 

~125~ 

International Journal of Statistics and Applied Mathematics 2026; 11(1): 125-127 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISSN: 2456-1452 

NAAS Rating (2025): 4.49 

Maths 2026; 11(1): 125-127 

© 2026 Stats & Maths 

www.mathsjournal.com 

Received: 12-12-2025 

Accepted: 09-01-2026 

 

Ganiyu Ajileye 

Department of Mathematics, 

Federal University Wukari, 

Taraba State, Nigeria 

 

Ojo Olamiposi Aduroja  

Department of Mathematics, 

University of Ilesa, Ilesa, Osun 

State, Nigeria 

 

Ruth Bolaji Ilugbiyin 

Department of Mathematics, 

University of Ilesa, Ilesa, Osun 

State, Nigeria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author: 

Ganiyu Ajileye 

Department of Mathematics, 

Federal University Wukari, 

Taraba State, Nigeria 

 
 

 

 

 

 

 
 

 

 

A numerical method for solving second-kind linear 

Fredholm integral equations 

 
Ganiyu Ajileye, Ojo Olamiposi Aduroja and Ruth Bolaji Ilugbiyin 
 

DOI: https://www.doi.org/10.22271/maths.2026.v11.i1b.2247  

 
Abstract 

This study presents a numerical technique for solving second-kind Fredholm integral equations via the 

collocation method. The modeled problem is transformed into an algebraic equation system and solved 

with standard collocation points. After determining the approach's uniqueness and convergence, 

numerical examples were used to assess its efficacy. The results indicate that the method outperforms 

others. 
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1. Introduction 

Integral equations have sparked widespread interest in a variety of applications, including 

biological, physical, and engineering concerns. Several works have looked into numerical 

approaches for solving Fredholm integro-differential equations. Many engineering and 

mechanics issues can be solved using second-order Fredholm integral equations in two 

dimensions. In plasma physics calculations, for example, Fredholm integral equations are 

typically solved Mirzaee and Hadadiyan [1]. 

Many efforts have been conducted to create and analyze numerical approaches for solving 

Fredholm integral equations of the second kind, including: Adomian decompositions method 

by Khan and Bakodah [2], divided differences interpolation by Parandin and Gholamtabor [3], 

Bernstein method by Adhraa and Ayal [4], Collocation method by Ajileye et al. [5], Agbolade 

and Anake [6], Hybrid linear multistep method by Mehdiyera et al. [7], Chebyshev-Galerkin 

method by Issa and Saleh [8], Lagrange Interpolation by Shoukralla and Ahmed [9], Least-

Squares Method by Al-Humedi and Shoushan [10], Chebyshev polynomials by Maadadi & 

Rahmoune [11], Optimal Auxiliary Function Method (OAFM) by Zada et al. [12], Modified 

Simpson's Rule by Djaidja and Khirani [13] and many other methods. 

This paper introduces a new method for obtaining an approximate numerical solution to the 

second kind of linear Fredholm integral equation of the form 

 

𝑦(𝑥) + 𝛼 ∫ 𝐺(𝑥, 𝑡)
𝑏

𝑎
𝑦(𝑡)𝑑𝑡 = 𝐹(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏          (1) 

 

Where 𝐺(𝑥, 𝑡) represents the Fredholm integral kernel, 𝛼 is the supplied parameter, 𝐹(𝑥) is a 

known function, and 𝑦(𝑥) is the unknown function to be calculated. 

 

2. Fundamental Terms and Definitions 

In order to formulate the given problem, we provide certain definitions and basic ideas of 

integral in this part. 

 

2.1 Definition 1: (Ajileye et al., 2024) Let (𝑎𝑚) be a sequence of real integers and 𝑚 <  0. 

The power series in t with coefficients 𝑎𝑚 is an equation. 

 

𝑢(𝑥) = ∑ 𝑎𝑚𝑡𝑚 = 𝜃(𝑡)𝐵𝑁
𝑚=0               (2)
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Where θ(t) =  [1t t2 · · ·  tN ], B[a0 a1 · · · aN ]T 

 

Then u(t, m)  =  tmB, i =  0(1)N, m ∈  Z+ 

 

2.2 Definition 2: (Agbolade and Anake, 2017) This method 

identifies the essential collocation sites between intervals. For 

example, [𝑐, 𝑑] is defined as 

 

xi = c +
(d−c)i

M
, i = 0, 1, 2 … … . M      (3) 

 

3. Materials and Methods 

In this section, we implement approximation approach for the 

numerical solution of Fredholm integral equations. 

 

3.1 Method of Solution 

Let the solution of equation (1) be approximated by 

 

𝑦(𝑥) = ∑ 𝑎𝑛𝑥𝑛𝑀
𝑛=0            (4) 

 

Substituting equation (4) into equation (1) gives 

 

∑ anxnM
n=0 + α ∫ G(x, t)

b

a
(∑ antnM

n=0 )dt = F(x)   (5) 

 

∑ an
M
n=0 (xn + α ∫ G(x, t)

b

a
(tn)dt) = F(x)    (6) 

 

Equation (6) can be rewrite in the form 

 

∑ an
M
n=0 β(x) = F(x)         (7) 

 

Where 

 

β(x) = xn + α ∫ G(x, t)
b

a

(tn)dt 

 

Using the standard collocation points, collocate equation (6) 

at 𝑥𝑖 . 
 

xi = a +
(b−a)i

M
, i = 0, 1, 2 … … . M  

 

∑ an
M
n=0 β(xi) = F(xi)        (8)  

 

Where, 
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We solve the system of equations (8) for the unknown values 

and input the results into the approximate solution to get the 

numerical result. 

 

4. Numerical Examples 

 To assess the accuracy and usefulness of the procedure, we 

provide numerical examples in this section. Let the 

approximate and exact solutions be denoted by yn (x) and 

y(x) respectively. ErrorN = |yn(x) − y(x)| 
 

Example 1: Consider the Fredholm integral equation  

 

𝑦(𝑥) = ∫ 𝑥𝑡
1

0
𝑦(𝑡)𝑑𝑡 + 𝑒3𝑥 +

(2𝑒3+1)𝑥

9
      (9) 

Exact solution: 𝑦(𝑥) = 𝑒3𝑥 

 

Solution 1  

The approximate solution to equation (9) at 𝑁 = 5 yields 

y5 =  

1.00000000000063 + 3.15243302340969x 

+2.82511637499556x2 + 10.9927934007719x3 

−7.66395900305361x4 + 9.78006358630955x5 

 
Table 1: Exact, approximate and absolute error values for example 1 
 

X Exact Our Method N=5 Error5 Error Parandin et al.=5 

0.2 1.822118800 1.822300893 1.82093e-4 3.08e-3 

0.4 3.320116923 3.320481107 3.64184e-4 7.5e-3 

0.6 6.049647464 6.050193740 5.46276e-4 1.13e-2 

0.8 11.02317638 11.02390475 7.2837e-4 1.51e-2 

1.0 20.08553692 20.08644739 9.1047e-4 1.88e-2 

 

The result obtained for Example 1, as shown in Table 1 

revealed that our method performed better than the method 

proposed in the literature at the same value of N. 

 
Example 2: Consider the Fredholm integral equation  

 

y(x) = e2x+
1

3 −
1

3
∫ e2x+

5t

3
1

0
y(t)dt      (10) 

 

Exact solution: 𝑦(𝑥) = 𝑒2𝑥 

 

Solution 2 

The approximate solution to equation (10) at 𝑵 = 𝟖 yields 

𝑦8 = 1.00000000281580 + 1.99999058246613𝑥 

+2.00019645690918𝑥2 + 1.33168411254883𝑥3 

+0.674118041992188𝑥4 + 0.247802734375000𝑥5 

+0.117797851562500𝑥6 − 0.183105468750000𝑒 − 3𝑥7 

+0.177345275878906𝑒 − 1𝑥8 

 
Table 2: Exact, approximate and absolute error values for example 2 

 

x Exact Our Method, N=8 Error8 Error Parandin et al.=10 

0.2 1.221402758000 1.221402752000 3.40e-08 9.149e-08 

0.4 1.491824698000 1.491824780000 8.20e-08 6.031e-06 

0.6 1.822118800000 1.822118933000 1.33e-07 7.08e-05 

0.8 2.225540928000 2.225541113000 1.85e-07 4.10e-04 

1.0 2.718281828000 2.718282092000 2.67e-07 1.61e-03 

 

In numerical Example 2, as shown in Table 2, the 

approximate solution at N=8 yields a better result compared 

to the result obtained in the literature at N=10. 

 

Example 3: Consider the Fredholm integral equation  

 

y(x) = 2Sin (
x

2
) + ∫ Sin(x)Sin (

π

2
)

2π

0
y(t)dt    (11) 

 

Exact solution: y(x) = 2Sin (
x

2
) 

 

Solution 3 

The approximate solution to equation (11) at N=5 yields 

 

𝑦5 = 1.421085472 × 1014 + 0.999999801217200𝑥 

+0.390448258258402𝑒 − 5𝑥2 − 0.416818645899184𝑒 

−1𝑥3 + 0.257630599662662𝑒 − 4𝑥4 

+0.503619870869443𝑒 − 3𝑥⁵ 
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Table 3: Exact, approximate and absolute error values for example 3 
 

x Exact Our Method, N=5 Error5 Error Parandin et al.=10 

0.2 0.1996668333 0.1996668639 3.06e-08 9.04e-06 

0.4 0.3973386616 0.3973387225 6.09e-08 1.349e-05 

0.6 0.5910404134 0.5910405039 9.05e-08 2.012e-05 

0.8 0.7788366846 0.7788368039 1.193e-07 3.002e-05 

1.0 0.9588510772 0.9588512244 1.472e-07 4.478e-05 

 

The approximate result in Example 2, as shown in Table 3, 

confirmed the reliability of our method of solution by giving a 

better result compared to the result obtained in the literature at 

the value of N=10. 

 

5. Conclusions 

This paper investigated the collocation approach for 

numerically solving Fredholm integral equations. This 

method is dependable, efficient, and easy to compute. All 

computations in this paper were performed using Maple 18. 

Considering some problems demonstrates the method's 

reliability. 
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