

ISSN: 2456-1452
 NAAS Rating (2025): 4.49
 Maths 2026; 11(1): 125-127
 © 2026 Stats & Maths
www.mathsjournal.com
 Received: 12-12-2025
 Accepted: 09-01-2026

Ganiyu Ajileye
 Department of Mathematics,
 Federal University Wukari,
 Taraba State, Nigeria

Ojo Olamiposi Aduroja
 Department of Mathematics,
 University of Ilesa, Ilesa, Osun
 State, Nigeria

Ruth Bolaji Ilugbiyin
 Department of Mathematics,
 University of Ilesa, Ilesa, Osun
 State, Nigeria

A numerical method for solving second-kind linear Fredholm integral equations

Ganiyu Ajileye, Ojo Olamiposi Aduroja and Ruth Bolaji Ilugbiyin

DOI: <https://www.doi.org/10.22271/math.2026.v11.i1b.2247>

Abstract

This study presents a numerical technique for solving second-kind Fredholm integral equations via the collocation method. The modeled problem is transformed into an algebraic equation system and solved with standard collocation points. After determining the approach's uniqueness and convergence, numerical examples were used to assess its efficacy. The results indicate that the method outperforms others.

Keywords: Fredholm, integral equations, standard collocation points, approximate solution.

1. Introduction

Integral equations have sparked widespread interest in a variety of applications, including biological, physical, and engineering concerns. Several works have looked into numerical approaches for solving Fredholm integro-differential equations. Many engineering and mechanics issues can be solved using second-order Fredholm integral equations in two dimensions. In plasma physics calculations, for example, Fredholm integral equations are typically solved Mirzaee and Hadadiyan [1].

Many efforts have been conducted to create and analyze numerical approaches for solving Fredholm integral equations of the second kind, including: Adomian decompositions method by Khan and Bakodah [2], divided differences interpolation by Parandin and Gholamtabor [3], Bernstein method by Adhraa and Ayal [4], Collocation method by Ajileye *et al.* [5], Agbolade and Anake [6], Hybrid linear multistep method by Mehdiyera *et al.* [7], Chebyshev-Galerkin method by Issa and Saleh [8], Lagrange Interpolation by Shoukralla and Ahmed [9], Least-Squares Method by Al-Humedi and Shoushan [10], Chebyshev polynomials by Maadadi & Rahmoune [11], Optimal Auxiliary Function Method (OAFM) by Zada *et al.* [12], Modified Simpson's Rule by Djaidja and Khirani [13] and many other methods.

This paper introduces a new method for obtaining an approximate numerical solution to the second kind of linear Fredholm integral equation of the form

$$y(x) + \alpha \int_a^b G(x, t) y(t) dt = F(x), a \leq x \leq b \quad (1)$$

Where $G(x, t)$ represents the Fredholm integral kernel, α is the supplied parameter, $F(x)$ is a known function, and $y(x)$ is the unknown function to be calculated.

2. Fundamental Terms and Definitions

In order to formulate the given problem, we provide certain definitions and basic ideas of integral in this part.

2.1 Definition 1: (Ajileye *et al.*, 2024) Let (a_m) be a sequence of real integers and $m < 0$. The power series in t with coefficients a_m is an equation.

$$u(x) = \sum_{m=0}^N a_m t^m = \theta(t)B \quad (2)$$

Where $\theta(t) = [1 t t^2 \cdots t^N]^T, B[a_0 a_1 \cdots a_N]^T$

Then $u(t, m) = t^m B, i = 0(1)N, m \in \mathbb{Z}^+$

2.2 Definition 2: (Agbolade and Anake, 2017) This method identifies the essential collocation sites between intervals. For example, $[c, d]$ is defined as

$$x_i = c + \frac{(d-c)i}{M}, i = 0, 1, 2, \dots, M \quad (3)$$

3. Materials and Methods

In this section, we implement approximation approach for the numerical solution of Fredholm integral equations.

3.1 Method of Solution

Let the solution of equation (1) be approximated by

$$y(x) = \sum_{n=0}^M a_n x^n \quad (4)$$

Substituting equation (4) into equation (1) gives

$$\sum_{n=0}^M a_n x^n + \alpha \int_a^b G(x, t) (\sum_{n=0}^M a_n t^n) dt = F(x) \quad (5)$$

$$\sum_{n=0}^M a_n \left(x^n + \alpha \int_a^b G(x, t) (t^n) dt \right) = F(x) \quad (6)$$

Equation (6) can be rewrite in the form

$$\sum_{n=0}^M a_n \beta(x) = F(x) \quad (7)$$

Where

$$\beta(x) = x^n + \alpha \int_a^b G(x, t) (t^n) dt$$

Using the standard collocation points, collocate equation (6) at x_i .

$$x_i = a + \frac{(b-a)i}{M}, i = 0, 1, 2, \dots, M$$

$$\sum_{n=0}^M a_n \beta(x_i) = F(x_i) \quad (8)$$

Where,

$$\beta(x_i) = \begin{bmatrix} \beta_0(x_0) & \beta_1(x_0) & \beta_2(x_0) & \cdots & \beta_N(x_0) \end{bmatrix}^T, F(x_i) = \begin{bmatrix} F(x_0) \\ F(x_1) \\ \vdots \\ F(x_N) \end{bmatrix}$$

We solve the system of equations (8) for the unknown values and input the results into the approximate solution to get the numerical result.

4. Numerical Examples

To assess the accuracy and usefulness of the procedure, we provide numerical examples in this section. Let the approximate and exact solutions be denoted by $y_n(x)$ and $y(x)$ respectively. $\text{Error}_N = |y_n(x) - y(x)|$

Example 1: Consider the Fredholm integral equation

$$y(x) = \int_0^1 xt y(t) dt + e^{3x} + \frac{(2e^3+1)x}{9} \quad (9)$$

Exact solution: $y(x) = e^{3x}$

Solution 1

The approximate solution to equation (9) at $N = 5$ yields

$$y_5 = 1.00000000000063 + 3.15243302340969x + 2.82511637499556x^2 + 10.9927934007719x^3 - 7.66395900305361x^4 + 9.78006358630955x^5$$

Table 1: Exact, approximate and absolute error values for example 1

X	Exact	Our Method N=5	Errors	Error Parandin et al.=5
0.2	1.822118800	1.822300893	1.82093e-4	3.08e-3
0.4	3.320116923	3.320481107	3.64184e-4	7.5e-3
0.6	6.049647464	6.050193740	5.46276e-4	1.13e-2
0.8	11.02317638	11.02390475	7.2837e-4	1.51e-2
1.0	20.08553692	20.08644739	9.1047e-4	1.88e-2

The result obtained for Example 1, as shown in Table 1 revealed that our method performed better than the method proposed in the literature at the same value of N.

Example 2: Consider the Fredholm integral equation

$$y(x) = e^{2x+\frac{1}{3}} - \frac{1}{3} \int_0^1 e^{2x+\frac{5t}{3}} y(t) dt \quad (10)$$

Exact solution: $y(x) = e^{2x}$

Solution 2

The approximate solution to equation (10) at $N = 8$ yields

$$y_8 = 1.0000000281580 + 1.99999058246613x + 2.00019645690918x^2 + 1.33168411254883x^3 + 0.674118041992188x^4 + 0.247802734375000x^5 + 0.117797851562500x^6 - 0.183105468750000e - 3x^7 + 0.177345275878906e - 1x^8$$

Table 2: Exact, approximate and absolute error values for example 2

X	Exact	Our Method, N=8	Errors	Error Parandin et al.=10
0.2	1.221402758000	1.221402752000	3.40e-08	9.149e-08
0.4	1.491824698000	1.491824780000	8.20e-08	6.031e-06
0.6	1.822118800000	1.822118933000	1.33e-07	7.08e-05
0.8	2.225540928000	2.225541113000	1.85e-07	4.10e-04
1.0	2.718281828000	2.718282092000	2.67e-07	1.61e-03

In numerical Example 2, as shown in Table 2, the approximate solution at $N=8$ yields a better result compared to the result obtained in the literature at $N=10$.

Example 3: Consider the Fredholm integral equation

$$y(x) = 2\sin\left(\frac{x}{2}\right) + \int_0^{2\pi} \sin(x) \sin\left(\frac{\pi}{2}\right) y(t) dt \quad (11)$$

Exact solution: $y(x) = 2\sin\left(\frac{x}{2}\right)$

Solution 3

The approximate solution to equation (11) at $N=5$ yields

$$y_5 = 1.421085472 \times 10^{14} + 0.999999801217200x + 0.390448258258402e - 5x^2 - 0.416818645899184e - 1x^3 + 0.257630599662662e - 4x^4 + 0.503619870869443e - 3x^5$$

Table 3: Exact, approximate and absolute error values for example 3

x	Exact	Our Method, N=5	Errors	Error Parandin <i>et al.</i> =10
0.2	0.1996668333	0.1996668639	3.06e-08	9.04e-06
0.4	0.3973386616	0.3973387225	6.09e-08	1.349e-05
0.6	0.5910404134	0.5910405039	9.05e-08	2.012e-05
0.8	0.7788366846	0.7788368039	1.193e-07	3.002e-05
1.0	0.9588510772	0.9588512244	1.472e-07	4.478e-05

The approximate result in Example 2, as shown in Table 3, confirmed the reliability of our method of solution by giving a better result compared to the result obtained in the literature at the value of N=10.

5. Conclusions

This paper investigated the collocation approach for numerically solving Fredholm integral equations. This method is dependable, efficient, and easy to compute. All computations in this paper were performed using Maple 18. Considering some problems demonstrates the method's reliability.

References

1. Mirzaee F, Hadadiyan E. Numerical solution of linear Fredholm integral equations via two-dimensional modification of hat functions. *Appl Math Comput.* 2015;250:805-816.
2. Khan RH, Bakodah HO. Adomian decomposition method and its modification for nonlinear Abel's integral equations. *Comput Math Appl.* 2013;7:2349-2358.
3. Parandin N, Gholamtabar Sh. Numerical solution of the linear Fredholm integral equations of the second kind. *J Math Ext.* 2010;5(1):31-39.
4. Adhraa MM, Ayal AM. Numerical solution of linear Volterra integral equations with delay using Bernstein polynomial. *Int Electron J Math Ed.* 2019;14(3):735-740.
5. Ajileye G, Adiku L, Auta JT, Aduroja OO, Oyedepo T. Linear and nonlinear Fredholm integro-differential equations: an application of collocation method. *J Fract Calc Appl.* 2024;15(2):6-16.
6. Agbolade AO, Anake TA. Solution of first order Volterra linear integro differential equations by collocation method. *J Appl Math.* 2017;2017:1510267. DOI: 10.1155/2017/1510267.
7. Mehdiyeva G, Ibrahimov V, Imanova M. On the construction of the multistep methods to solving the initial-value problem for ODE and the Volterra integro-differential equations. Oxford: IAPE; 2018. ISBN: 978-1-912532-05-6.
8. Issa K, Saleh F. Approximate solution of perturbed Volterra Fredholm integro differential equation by Chebyshev-Galerkin method. *J Math.* 2017;2017:8213932. DOI: 10.1155/2017/8213932.
9. Shoukralla ES, Ahmed BM. Numerical solution of Volterra integral equation of the second kind using Langrange interpolation via the Vandermonde matrix. *J Phys: Conf Ser.* 2020;1447:012015.
10. Al-Humedi HO, Shoushan AF. Numerical solution of mixed integro-differential equations by Least-squares method and Laguerre polynomial. *Earthline J Math Sci.* 2021;6(2):309-323.
11. Maadadi A, Rahmoune A. Numerical solution of nonlinear Fredholm integro-differential equations using Chebyshev polynomials. *Int J Adv Sci Tech Res.* 2018;8(4):85-91. doi:10.26808/rs.st.i8v4.09.
12. Zada L, Al-Hamami M, Nawaz R, Jehanzeb S, Morsy A, Abdel-Aty A, *et al.* A new approach for solving Fredholm integro-differential equations. *Inf Sci Lett.* 2021;10(3):3-10.
13. Djaidja N, Khiran A. Approximate solution of linear Fredholm integral equation of the second kind using modified Simpson's rule. *Math Model Eng Probl.* 2024;11(3):817-823.