International Journal of Statistics and Applied Mathematics
  • Printed Journal
  • Indexed Journal
  • Refereed Journal
  • Peer Reviewed Journal

International Journal of Statistics and Applied Mathematics

2020, Vol. 5, Issue 4, Part A

Hermitian matrix inequalities and a conjecture


Author(s): Dr. Ravindra Kumar Dev

Abstract: In many ways Hermitian matrices resemble real numbers. Indeed, all eigenvalues of a Hermitian matrix are real and the matrix is diagonalizable. This similitude may lead an unwary mind to wrong conclusions. This is especially true in the study of inequalities involving Hermitian matrices.
In the sequel we use capital letters A, B,..., X, etc., to denote n X n Hermitian matrices where n is some integer greater than l; A = A* where A* denotes the conjugate of the transpose of A. We use u and v to denote complex column vectors in C" furnished with the usual inner product (u, v). We define


Pages: 22-26 | Views: 120 | Downloads: 10

Download Full Article: Click Here
How to cite this article:
Dr. Ravindra Kumar Dev. Hermitian matrix inequalities and a conjecture. Int J Stat Appl Math 2020;5(4):22-26.
Call for book chapter
International Journal of Statistics and Applied Mathematics